
Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

A Market Compliant with COVID-19 Regulations

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

mailto:manuel.carro@upm.es

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Goals . s. 3
Initial model . s. 8
First refinement . s. 12
Second refinement . s. 31
Third refinement . s. 51

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Scenario

We have to automate the checkout desk of a market.
We have to control when clients enter the checkout area.
Expected behavior:

Clients wait in front of a screen displaying a number or “WAIT”.
When a number appears, client walks to the corresponding counter.
As soon as it passes by the screen, “WAIT” is displayed.
When the client reaches the counter, either a new number is
displayed (if there are free counters) or “WAIT” (otherwise).
When a client leaves, a counter number is displayed.

Sensors register people movements.
People behave (no need for physical barriers).

Note: non-complete model.
Focus on showing use of sets and giving a taste of model checking.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

What we see

(Sizes not necessarily proportional)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements

REQ 1 The market exit is divided in three areas: the waiting area, the checkout counters
and a checkout corridor that connects them.

REQ 2 At most one client can be in the corridor at any time.

REQ 3 At most one client can be in a checkout counter at any time.

REQ 4 A screen at the entrance of the tells clients to either wait for the corridor to be clear
or a counter to be free, or displays the identifier of an available counter.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements

REQ 5 When the corridor is not empty, the screen displays “WAIT”.

REQ 6 When no counter is free, the screen displays “WAIT”.

REQ 7 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

REQ 8 There are sensors that register people passing at the entrance of the corredor and
at the entrance and exit of every counter.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Modeling approach

As usual: bird’s-eye view.
Include more requirements, details as we “get closer”.
Do not to overspecify early: refinement may become impossible.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view, visible events

Clients arrive at the checkout desks.

Clients leave the checkout desks.

We only check that we do not have
more clients than counters.

Partial fullfillment of

REQ 9 At most one client can be in a
checkout counter at any time.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model

Context c0

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS ∈ ??

Machine m0
VARIABLES nclients
INVARIANTS nclients ∈ 0..NCOUNTERS

Event arrive
where nclients < NCOUNTERS
then

nclients := nclients + 1
end

Event leave
where nclients > 0
then

nclients := nclients − 1
end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model

Context c0

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS ∈ ??

Machine m0
VARIABLES nclients
INVARIANTS nclients ∈ 0..NCOUNTERS

Event arrive
where nclients < NCOUNTERS
then

nclients := nclients + 1
end

Event leave
where nclients > 0
then

nclients := nclients − 1
end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view

Keep track of (non) available counters.

Fullfill

REQ 10 At most one client can be
in a checkout counter at any
time.

Do not follow people.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!

WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!

card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS ???

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

busy ⊆ COUNTERS

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

busy ⊆ COUNTERS
card(busy) = nclients

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =

∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅

We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then
busy := busy\{c}

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events
Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then
busy := busy\{c}

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)
arrive/grd1/GRDmay need simplifying comparison in goal

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view

Will introduce several components.
Screen: tells clients what to do
(controls entrance to corridor).

One-person, one-way corridor:
changes contents of screen.

Selection of available counter via
screen.

Difference with car semaphores: screen
goes “red” even if there are free counters
(when people in corridor), then may go
“green” again.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Initial model considerations

Two variables for display, one for corridor:
wait ∈ BOOL: clients need to wait?
next_counter ∈ COUNTERS : show free
counter / register client destination.
(can be used to open physical barrier?).

in_corridor ∈ BOOL

Relationship below.
Will be captured via invariants.

in_corridor wait meaning of next_counter
FALSE FALSE Destination of client (displayed)
FALSE TRUE Meaningless (all counters busy, not displayed)
TRUE FALSE IMPOSSIBLE
TRUE TRUE Destination of client (not displayed)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Initial model considerations

Introducing event enter.
Refining events arrive, leave.
Events & variables model both people,
controller.

Will be split in next refinement.

Handling the screen

Could be checked after every
state-changing event.

Repeated reasoning, models.
Specialize events for every situation.
(last and non-last car in bridge example)

Separate events handle screen
according to state variables.

But: additional interleavings, more
error possibilities!

Risky if not verified!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor :=

0

wait :=

FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?

Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor :=

0

wait :=

FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait :=

FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait := FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait := FALSE

next_counter :∈ COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements and invariants
REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = 1 ⇒ wait = TRUE

(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements and invariants
REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = 1 ⇒ wait = TRUE

(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements and invariants
REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = 1 ⇒ wait = TRUE

(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements and invariants
REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = 1 ⇒ wait = TRUE

(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

The new enter and refined arrive and leave

leave does not need to be changed.
A client (can) enter when there is no need to wait.
The corridor has one more person.
Other clients have to wait

Event enter
where wait = FALSE
then

in_corridor := in_corridor + 1
wait := TRUE

end

Type in “enter”

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Refining arrive

next_counter : see next slide. GRD not discharged.

Event arrive (abstract)
refines arrive
any c
where

c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

end

Event arrive (concrete)
refines arrive
where in_corridor > 0
with c: c = next_counter
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}

end

Parameter c disappeared: need to state
concrete value for it.
Modify “arrive”
GRD needs
in_corridor > 0 ⇒ next_counter ̸∈ busy

If invariant⇒ GRD proven.
It is! Add it and GRD should be proven.
Not a requirement, but (a) necessary
lemma and (b) sensible.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Screen management

Display is set to “WAIT” when a client enters.
We only need to decide whether we allow more clients to enter.

Event screen_num
where

wait = TRUE
then

next_counter :∈ COUNTERS \ busy
wait := FALSE

end

Type them in
All POs should be fine now.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Screen management

Display is set to “WAIT” when a client enters.
We only need to decide whether we allow more clients to enter.

Event screen_num
where

COUNTERS ̸= busy
in_corridor = 0
wait = TRUE

then
next_counter :∈ COUNTERS \ busy
wait := FALSE

end

Type them in
All POs should be fine now.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Rationale for screen management

Hybrid approach
From NOWAIT to WAIT in “enter” event.
From WAIT to NOWAIT in specific event.

NOWAIT⇒WAIT can only happen when a person enters corridor.
enter is appropiate.
Plus (for safety), the screen should turn to WAIT immediately when
a person entering corridor is detected.
Separate event⇒ interleaving of other events possible, unless
additional logic (& complexity) is added.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Rationale for screen management

WAIT⇒ NOWAIT could happen after arrive or leave.
Related logic in two events.
In arrive:

Only if there are available counters.
Needs two variants of arrive (as in the “Cars in a narrow bridge”
example).

In leave:
Only if the corridor is empty.
Needs two variants of leave.

All that logic can be put in a single separate event (screen_num).
Having another event activated before screen_num is safe: it
would only delay more clients entering the corridor.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Deadlock freedom

As usual, disjunction of
guards.
Events with parameters need
special treatment.

Event leave
any c
where
c ∈ busy

then
. . .

Logical reading: the event is
enabled if there is some c
such that c ∈ busy ∧
DLF:

wait = FALSE ∨
in_corridor > 0 ∨
(∃x · x ∈ busy) ∨

(COUNTERS ̸= busy ∧
in_corridor = 0 ∧

wait = TRUE)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view

Keep previous “logical” model.
Add physical model on top, connect
with logical model.

Separate environment and system
variables / events.

Keep interactions clear!
Guidelines:

Some events simulate environment
(clients).
They react to environment variables
and act on sensors.
Events that represent the controller.
They react to sensors and act on
environment variables.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

How sensors work

Not necessarily real sensors.
Client presence activates sensor (a BOOL).

Stays on until deactivated by controller.
Modeling sensor arrays:

First idea: use booleans, functions.

S_E ∈ BOOL
S_A ∈ COUNTER → BOOL
S_L ∈ COUNTER → BOOL

S_E sensor entry; S_A sensor arrival; S_L sensor for leaving.
However, two last ones are indicator sets.
We can use the set of activated sensors.

S_A,S_L ⊆ COUNTER

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model

enter, arrive, leave refined.
New events enter_s, arrive_s, leave_s.

Note: we will not show leave_s. It is of little interest.
*_s represent people; they react to environment variables, trigger
changes in sensors.
Modeling agent behavior: variables that represent what people
can see, do.

SCREEN_CNT ∈ {WAIT ,NOWAIT} What the screen displays (WAIT or a number)
CROSSING_E ∈ BOOL Sensor: a person enters the corridor
IN_CORRIDOR ∈ {0, 1} Number of people in the corridor

IN_CORRIDOR could be BOOL. We would then need a gluing
invariant with in_corridor . Keeping it in {0, 1} is easier.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model
Event enter (abstract)

refines enter
where wait = FALSE
then

in_corridor := TRUE
wait := TRUE

end

CROSSING_E in enter_s: a physical person is
crossing. Others can see it. We behave
correctly.
In enter: controller events should not update
environment variables. But we (exceptionally?)
modelthe assumption that the controller is fast
enough to update its state in zero time after a
person physically crosses the sensor.

Event enter_s
where SCREEN_CNT = NOWAIT

CROSSING_E = FALSE
then

CROSSING_E := TRUE
S_E := TRUE
IN_CORRIDOR := IN_CORRIDOR + 1

end

Event enter
refines enter
where S_E = TRUE // Only look at sensor
then // abstract actions plus ...

S_E := FALSE;
CROSSING_E := FALSE // See explanation
SCREEN_CNT = WAIT

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model

Event arrive (abstract)
refines arrive
where in_corridor > 0
with c: c = next_counter
then

in_corridor := FALSE
busy := busy ∪ {next_counter}

end

CROSSING_E is used here to ensure that a
person has actually crossed the entrance
and is in the corridor.

Event arrive_s
where IN_CORRIDOR > 0

CROSSING_E = FALSE // State updated
then

IN_CORRIDOR := IN_CORRIDOR − 1
S_A:= S_A ∪ {next_counter}

end

Event arrive
refines arrive
where next_counter ∈ S_A
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}
S_A:= S_A \ {next_counter}

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model

Event screen_num (abstract)
where wait = TRUE

COUNTERS ̸= busy
in_corridor = 0

then
next_counter :∈ COUNTERS \ busy
wait := FALSE

end

Event screen_num (concrete)
where wait = TRUE

COUNTERS ̸= busy
in_corridor = 0

then
next_counter :∈ COUNTERS \ busy
wait := FALSE
SCREEN_CNT := NOWAIT

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Physical invariants

Invariants for environment emulation.
inv1: SCREEN_CNT ∈ SCREEN
inv2: IN_CORRIDOR ∈ {0,1}
inv3: CROSSING_E ∈ BOOL
inv4: S_E ∈ BOOL
inv5: S_A ⊆ COUNTERS

We ought to state requirements in the physical model as well (that
is what happens in reality).
We will skip stating requirements in physical model – only for
brevity!
They should be reflected here as well.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Changes to model

Extend context c1 into c2.
Add set SCREEN , constantsWAIT , NOWAIT .
Axioms: SCREEN = {WAIT ,NOWAIT},WAIT ̸= NOWAIT .

Refine m2 into m3, should see c2.
Add variables SCREEN_CNT , IN_CORRIDOR , CROSSING_E , S_E ,
S_A
Add invariants:

inv1: SCREEN_CNT ∈ SCREEN
inv2: IN_CORRIDOR ∈ {0,1}
inv3: CROSSING_E ∈ BOOL
inv4: S_E ∈ BOOL
inv5: S_A ⊆ COUNTERS

Add / modify events (next two slides)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Changes to model (Cont.)

Event enter_s
where SCREEN_CNT = NOWAIT

CROSSING_E = FALSE
then

CROSSING_E := TRUE
S_E := TRUE
IN_CORRIDOR := IN_CORRIDOR + 1

end

Event enter
refines enter
where S_E = TRUE // Only look at sensor
then

in_corridor := in_corridor + 1
wait := TRUE
S_E := FALSE;
CROSSING_E := FALSE
SCREEN_CNT = WAIT

end

Event arrive_s
where IN_CORRIDOR > 0

CROSSING_E = FALSE // State updated
then

IN_CORRIDOR := IN_CORRIDOR − 1
S_A:= S_A ∪ {next_counter}

end

Event arrive
refines arrive
where next_counter ∈ S_A
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}
S_A:= S_A \ {next_counter}

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Changes to model (Cont.)

Event screen_num
where wait = TRUE

COUNTERS ̸= busy
in_corridor = 0

then
next_counter :∈ COUNTERS \ busy
wait := FALSE
SCREEN_CNT := NOWAIT

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Proof obligations

In my case: pending to discharge
enter_s/inv2/INV (IN_CORRIDOR ∈ {0,1})
enter/grd2/GRD (S_E = TRUE⇒ wait = FALSE)
arrive/grd1/GRD (next_counter ∈ S_A⇒ in_corridor > 0)

We will need additional helping invariants to prove them.
We will use a new approach: see how the system behaves
dynamically.
Check variable values for possible invariants.
Try to prove that they are inductive invariants and see if they help
proving things.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Animating a model with ProB

Install ProB from the “Install new software” dialog.
Check the default values in the Preferences dialog.
I would increase the size of deferred sets to 5 or 6.
And set the boundaries for integers to the range -10 to 10.
Right-click on model ’m3’.
Drive execution by clicking on the events in the left pane.
You can see the changes in variables in the pane in the middle.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Animating a model with ProB

Animation: fundamentally, event sequence that enables either leave or screen_num
(or both) at the end.
It starts again after that.
We can make a chart of the state of variables after every event.

INIT enter_s enter arrive_s arrive
SCREEN_CNT NOWAIT NOWAIT WAIT WAIT WAIT
IN_CORRIDOR 0 1 1 0 0
S_E ⊥ ⊤ ⊥ ⊥ ⊥
CROSSING_E ⊥ ⊤ ⊥ ⊥ ⊥
S_A ∅ ∅ ∅ {n_c} ∅
in_corridor 0 0 1 1 0
wait ⊥ ⊥ ⊤ ⊤ ⊤

Useful to infer patterns.
Must be proven (intuition / separate simulations not conclusive)!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

First impressions

S_E and CROSSING_E seem to have the same values.
Inspect the events

Can be fused, but thismodel is oversimplified.
More realistic model⇒ they might differ.

We can however reflect this:
Add inv6: S_E = CROSSING_E.
It is inductive and immediately discharged
It gives additional hypotheses, relationships among variables useful
for later proofs.
Does not immediately help with pending proofs.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

First impressions

S_E and CROSSING_E seem to have the same values.
Inspect the events
Can be fused, but thismodel is oversimplified.

More realistic model⇒ they might differ.
We can however reflect this:

Add inv6: S_E = CROSSING_E.
It is inductive and immediately discharged
It gives additional hypotheses, relationships among variables useful
for later proofs.
Does not immediately help with pending proofs.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

First impressions

The next observation is that apparently S_A is either ∅ or
{next_counter} .
That makes sense w.r.t. the expected behavior of the model:

Only one person in the corridor.
Can enter the corridor only when the corridor is empty.
That happens when no one is in the corridor, arrival sensors.

Inspect events.

So it seems we could add inv7: S_A = ∅ ∨ S_A = {next_counter} .
Does not seem to help.
And inv7/INV not discharged for screen_num .
screen_num does not change S_A, but it changes next_counter.

S_A should be ∅ after screen_num.
Since it is ∅ after arrive, and leave does not change it, it seems it
should be so (see animation for intuition).

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

First impressions

The next observation is that apparently S_A is either ∅ or
{next_counter} .
That makes sense w.r.t. the expected behavior of the model:

Only one person in the corridor.
Can enter the corridor only when the corridor is empty.
That happens when no one is in the corridor, arrival sensors.

Inspect events.
So it seems we could add inv7: S_A = ∅ ∨ S_A = {next_counter} .

Does not seem to help.
And inv7/INV not discharged for screen_num .
screen_num does not change S_A, but it changes next_counter.

S_A should be ∅ after screen_num.
Since it is ∅ after arrive, and leave does not change it, it seems it
should be so (see animation for intuition).

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

screen_num/inv8/INV

Checking event: screen_num requires in_corridor = 0
(and does not change it)
Checking chart: whenever in_corridor = 0, S_A = ∅.
Se we can posit inv8: in_corridor = 0 ⇒ S_A = ∅.
screen_num/inv7/INV immediately proven.
And arrive/grd1/GRD also!

arrive/grd1/GRD PO is next_counter ∈ S_A⇒ in_corridor = 1.
Since we had S_A = ∅ ∨ S_A = {next_counter}, the GRD PO is
equivalent to inv8.

But: inv8 PO unproven for two events.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

enter_s/inv2/INV

IN_CORRIDOR ∈ {0, 1}.
enter_s increments IN_CORRIDOR.
Prove that IN_CORRIDOR = 0 whenever enter_s is enabled.

Guard: SCREEN_CNT = NOWAIT ∧ CROSSING_E = FALSE
From the chart: if SCREEN_CNT = NOWAIT ∧ CROSSING_E = FALSE,
then IN_CORRIDOR = 0.

Intuition: the corridor should be empty when a person can enter.
We posit the invariant
inv9: (SCREEN_CNT = NOWAIT ∧ CROSSING_E = FALSE)⇒
IN_CORRIDOR = 0
enter_s/inv2/INV is proven. If not:

Remove ∈ in IN_CORRIDOR ∈ {0,1} goal (generates disjunction), and
Forcing one of the disjunction components to evaluate numerically.

screen_num/inv9/INV is however not discharged.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

enter/grd1/GRD

The proof obligation is (S_E = TRUE⇒ wait = FALSE).
Let us posit it is an invariant.

That will discharge GRD automatically.
And we can see in the table that S_E = TRUE⇒ wait = FALSE seems
to hold.

Add inv10: S_E = TRUE⇒ wait = FALSE
enter/grd1/GRD is now proved.
enter/inv8/INV discharged as well.
enter_s/inv10/INV not discharged.
We will deal with it later.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Why does adding a PO (GRD, SIM, ...) as invariant helps?

If the PO already generated the formula to be proven, why adding
it explicitly can be good?
Adding it as an invariant makes the prover discharge the PO
immediately.

(But it has to be proven to hold for every event activation).
And (as we have seen), making it explicit as an invariant may help
other POs to be discharged.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

enter_s/inv10/INV

inv10: S_E = TRUE⇒ wait = FALSE
enter_s sets S_E = TRUE.
Its guard is SCREEN_CNT = NOWAIT ∧ CROSSING_E = FALSE.
Try to infer a relationship between the guard and the value of
’wait’ that can be an invariant.
enter_s changes CROSSING_E , so we cannot use it.
It seems that the values of SCREEN_CNT and wait match
(although they have different types)
Introduce inv11: SCREEN_CNT = NOWAIT⇔ wait = FALSE

Pending enter_s/inv10/INV is discharged.
And inv11 is proven as invariant.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

screen_num/inv9/INV

inv9: (SCREEN_CNT = NOWAIT ∧ CROSSING_E = FALSE)⇒
IN_CORRIDOR = 0
screen_num does not change IN_CORRIDOR.
Try to identify and add an invariant related to IN_CORRIDOR that
uses the state in which screen_num can be enabled.
Guard: in_corridor = 0 ∧ wait = TRUE.
Chart: seems that if these are true, then IN_CORRIDOR = 0.
Let us posit the invariant
inv12: (in_corridor = 0 ∧ wait = TRUE)⇒ IN_CORRIDOR = 0
Intuition: if controller registers corridor empty and people have to
wait, there must not (physically) be anyone in the corridor.
screen_num/inv9/INV is discharged.
But arrive/inv12/INV to be discharged.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

arrive/inv12/INV

inv12: (in_corridor = 0 ∧ wait = TRUE)⇒ IN_CORRIDOR = 0
arrive does not change IN_CORRIDOR.
But it requires S_A ̸= ∅.
Let us try to link S_A with IN_CORRIDOR.
From the chart, it seems that if S_A ̸= ∅, then IN_CORRIDOR = 0.
Let us posit
inv13: S_A ̸= ∅ ⇒ IN_CORRIDOR = 0.
It is an invariant and it discharges arrive/inv12/INV.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Summary of invariants

inv1: SCREEN_CNT ∈ SCREEN
inv2: IN_CORRIDOR ∈ {0,1}
inv3: CROSSING_E ∈ BOOL
inv4: S_E ∈ BOOL
inv5: S_A ⊆ COUNTERS
inv6: S_E = CROSSING_E
inv7: S_A = ∅ ∨ S_A = {next_counter}
inv8: in_corridor = 0 ⇒ S_A = ∅
inv9: (SCREEN_CNT = NOWAIT ∧ CROSSING_E = FALSE) ⇒ IN_CORRIDOR = 0
inv10: S_E = TRUE ⇒ wait = FALSE
inv11: SCREEN_CNT = NOWAIT ⇔ WAIT = FALSE
inv12: (in_corridor = 0 ∧ wait = TRUE) ⇒ IN_CORRIDOR = 0
inv13: S_A ̸= ∅ ⇒ IN_CORRIDOR = 0

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Deadlock freedom

Proofs somewhat complex.
Additional invariants needed.

Model checker did not detect deadlocks.
But limited reach.
Left as an exercise!

	Goals
	Initial model
	First refinement
	Second refinement
	Third refinement

