A Market Compliant with COVID-19 Regulations

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

=i dea


mailto:manuel.carro@upm.es

=i dea

G0 | s.3
Initial model .o e s.8
Firstrefinement ... ..o 5. 12
Second refinement ... ... e s. 31

Third refinemeNnt ... et s. 51

]



Scenario

@ We have to automate the checkout desk of a market.

@ We have to control when clients enter the checkout area.

@ Expected behavior:
e Clients wait in front of a screen displaying a number or “WAIT".

When a number appears, client walks to the corresponding counter.

"]

@ As soon as it passes by the screen, “WAIT" is displayed.

@ When the client reaches the counter, either a new number is
displayed (if there are free counters) or “WAIT" (otherwise).

e When a client leaves, a counter number is displayed.

@ Sensors register people movements.
@ People behave (no need for physical barriers).

@ Note: non-complete model.

@ Focus on showing use of sets and giving a taste of model checking.

dea

E (g



What we see

DerPors 7
N
v s l
ARRE -
A~ 7N !
el )
A TE |
L;E/
| 5
Ayt X ﬂ?’

(Sizes not necessarily proportional)

=i dea

=



3

Requirements @i dea
[ POLITECNICA|

REQ 1 | The market exit is divided in three areas: the waiting area, the checkout counters
and a checkout corridor that connects them.

’ REQ 2 ‘ At most one client can be in the corridor at any time. ‘

’ REQ 3 \ At most one client can be in a checkout counter at any time. ‘

REQ 4 | A screen at the entrance of the tells clients to either wait for the corridor to be clear
or a counter to be free, or displays the identifier of an available counter.




Requirements @i dea

E (g

’ REQ 5 ‘ When the corridor is not empty, the screen displays “WAIT". ‘

] REQ 6 \ When no counter is free, the screen displays “WAIT". ‘

REQ 7

When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

REQ 8

There are sensors that register people passing at the entrance of the corredor and
at the entrance and exit of every counter.




Modeling approach @i

@ As usual: bird's-eye view.
@ Include more requirements, details as we “get closer”.
@ Do not to overspecify early: refinement may become impossible.

dea

E (g



Stages

1. [Initial model: just number of clients|
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen

4. Third refinement: sensors

dea

E ek



High-level view, visible events mi dea
[ POLITECNICA|

@ Clients arrive at the checkout desks.

NCOUNTERS

@ Clients leave the checkout desks.

/ ,},.,M @ We only check that we do not have

more clients than counters.

@ Partial fullfillment of

REQ 9 | At most one client can be in a
checkout counter at any time.

atie fmw?/



Model

Context cO

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS € 77



Model

Context cO

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS € 77

=i dea

Machine mO

VARIABLES nclients
INVARIANTS nclients € 0..NCOUNTERS

Event arrive
where nclients < NCOUNTERS

then
nclients := nclients + 1
end
Event leave
where nclients > 0
then

nclients := nclients — 1
end

]



Stages

1. Initial model: just number of clients

2. [First refinement: distinguish checkout desks|

3. Second refinement: entrance corridor and screen
4. Third refinement: sensors

dea

E ek



High-level view

[

X

<

xi\x

|

1

—
X
~~—

(

P C

=i dea &

@ Keep track of (non) available counters.

@ Fullfill

REQ 10

At most one client can be
in a checkout counter at any
time.

@ Do not follow people.




Model state

@ Need to model which counter is available.
@ Possibility?



Model state

@ Need to model which counter is available.
@ Possibility?

available € 1..NCOUNTERS — BOOL

=i dea

]



Model state @i dea

@ Need to model which counter is available.
@ Possibility?

available € 1..NCOUNTERS — BOOL

@ But a function A — BOOL denotes aset S C A.
(it is the characteristic or indicator function of the set)

@ Why not using directly a set?

@ The set of busy counters is more useful than the set of available
counters (will see later why).

@ Do we need it to be 1..NCOUNTERS?

e Actually no. We are not going to compare counters.
@ An abstract set will do.

b1



Model state: context and invariants

Context c1

EXTENDS c0

SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!



Model state: context and invariants

Context c1

EXTENDS c0

SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
@ WD PO not discharged!

=i dea

=



Model state: context and invariants

Context c1

EXTENDS c0

SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!

@ WD PO not discharged!
@ card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

=i dea

]



Model state: context and invariants @i dea

Context c1 Machine m1
EXTENDS c0 ‘
SETS COUNTERS @ Refine mO0 to track busy counters,
AXIOMS card(COUNTERS) = NCOUNTERS create m1.
Create it! o SEES c1

@ WD PO not discharged!

@ card requires the set to be finite.
VARIABLES busy

AXIOMS INVARIANTS 777
finite( COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

]



Model state: context and invariants @i dea

Context c1 Machine m1
EXTENDS c0 ‘
SETS COUNTERS @ Refine mO0 to track busy counters,
AXIOMS card(COUNTERS) = NCOUNTERS create m1.
Create it! o SEES c1

@ WD PO not discharged!

@ card requires the set to be finite.
VARIABLES busy

AXIOMS INVARIANTS
card(COUNTERS) = NCOUNTERS

(in that order)

]



Model state: context and invariants @i dea

Context c1 Machine m1
EXTENDS c0 ‘
SETS COUNTERS @ Refine mO0 to track busy counters,
AXIOMS card(COUNTERS) = NCOUNTERS create m1.
Create it! o SEES c1

@ WD PO not discharged!

@ card requires the set to be finite.
VARIABLES busy

AXIOMS INVARIANTS
finite(COUNTERS) busy C COUNTERS
card(COUNTERS) = NCOUNTERS card(busy) = nclients

(in that order)

]



Events =i dea ,

@ Initially, busy =



Events =i dea ,

@ Initially, busy =&



Events @i

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any c
where where

then

then



Events @i

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any c
where where

c € COUNTERS
¢ & busy then

then



Events @i

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any c
where where

c € COUNTERS
¢ & busy then
then

busy := busy U {c}

dea

0]



Events @i

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any c
where where

c € COUNTERS C € busy
¢ & busy then
then

busy := busy U {c}

dea

0]



Events @i

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any ¢
where where
c € COUNTERS C € busy
¢ & busy then
then busy := busy\{c}

busy := busy U {c}

dea

E ek



Events @i dea

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any ¢
where where
c € COUNTERS C € busy
¢ & busy then
then busy := busy\{c}

busy := busy U {c}

Fill in the Rodin model. POs should become green (otherwise, lasso + PO/ML)
arrive/grd1/GRD may need simplifying comparison in goal

E (g



Stages

1. Initial model: just number of clients

2. First refinement: distinguish checkout desks

3. [Second refinement: entrance corridor and screen|
4. Third refinement: sensors

dea

E ek



High-level view

71

S
~ TN

LERATAY

h S

P

EERANEN

@ Will introduce several components.
@ Screen: tells clients what to do
(controls entrance to corridor).

=i dea

E (g

@ One-person, one-way corridor:
changes contents of screen.

@ Selection of available counter via
screen.

Difference with car semaphores: screen
goes “red” even if there are free counters
(when people in corridor), then may go
“green” again.



Initial model considerations

=i dea &
[ POLITECNICA

AUreen =4 Two variables for display, one for corridor:
gl = FAISE
g T @ wait € BOOL: clients need to wait?
/L‘_]_l:
T : s @ next_counter € COUNTERS: show free
; v counter / register client destination.
(can be used to open physical barrier?).
—— pen phy
/ X — @ in_corridor € BOOL
enln e K \,&Mgc Relationship below.
Will be captured via invariants.
in_corridor wait meaning of next_counter
FALSE FALSE Destination of client (displayed)
FALSE TRUE Meaningless (all counters busy, not displayed)
TRUE FALSE IMPOSSIBLE
TRUE TRUE Destination of client (not displayed)




Initial model considerations

LAk =g

e kel = FHSE

—le |-

RN X
el
L I
A —— ]l

L—\/

/i AL

/ xRk
{ / ™
oo i ¥ Dot

@ Introducing event enter.

@ Refining events arrive, leave.
@ Events & variables model both people,
controller.

o Will be splitin next refinement.

Handling the screen

@ Could be checked after every
state-changing event.

o Repeated reasoning, models.

e Specialize events for every situation.
(last and non-last car in bridge example)

@ Separate events handle screen
according to state variables.

@ But: additional interleavings, more
error possibilities!

@ Risky if not verified!



Introducing the model

@ Refine m1 into m2. @ Initialization:
@ New variables and their types: , ,
in_corridor
in_corridor € {0,1} wait
wait € BOOL next_counter

next_counter € COUNTERS

Why in_corridor € {0, 1} instead of in_corridor € BOOL ?



Introducing the model @i
@ Refine m1 into m2. @ Initialization:
@ New variables and their types: . ,
in_corridor
in_corridor € {0,1} war
wait € BOOL next_counter
next_counter € COUNTERS
Why in_corridor € {0, 1} instead of in_corridor € BOOL ?
Additional security.  in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect

in_corridor := in_corridor + 1 will be detected

dea

E )



Introducing the model @i
@ Refine m1 into m2. @ Initialization:
@ New variables and their types: . ,
in_corridor
in_corridor € {0,1} war
wait € BOOL next_counter
next_counter € COUNTERS
Why in_corridor € {0, 1} instead of in_corridor € BOOL ?
Additional security.  in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect

in_corridor := in_corridor + 1 will be detected

dea

E )



Introducing the model @i

@ Refine m1 into m2. @ Initialization:
@ New variables and their types: . ,
in_corridor = 0
in_corridor € {0,1} wait = FALSE
wait € BOOL next_counter €

next_counter € COUNTERS

Why in_corridor € {0, 1} instead of in_corridor € BOOL ?

Additional security.  in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

0]



Introducing the model @i dea

@ Refine m1 into m2. @ Initialization:
@ New variables and their types: . ,
in_corridor = 0
in_corridor € {0,1} wait = FALSE
wait € BOOL next_counter &€ COUNTERS

next_counter € COUNTERS

Why in_corridor € {0, 1} instead of in_corridor € BOOL ?

Additional security.  in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

0]



Requirements and invariants

dea

’ REQ 0 \ When the corridor is not empty, the screen displays “WAIT".

0]




Requirements and invariants @i

dea

’ REQ 0 \ When the corridor is not empty, the screen displays “WAIT".

E ek

in_corridor = 1 = wait = TRUE
(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

] REQ 0 \ When no counter is free, the screen displays “WAIT".




Requirements and invariants @i dea
’ REQ 0 \ When the corridor is not empty, the screen displays “WAIT".

E (g

in_corridor = 1 = wait = TRUE
(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

] REQ 0 \ When no counter is free, the screen displays “WAIT".

busy = COUNTERS = wait = TRUE

REQ 0 | When access to the corridor is possible, the screen displays the identifier of one of
the available counters.




Requirements and invariants @i dea

’ REQ 0 \ When the corridor is not empty, the screen displays “WAIT".

E ek

in_corridor = 1 = wait = TRUE
(Note: this formula is equivalent to the IMPOSSIBLE line in slide 33)

] REQ 0 \ When no counter is free, the screen displays “WAIT".

busy = COUNTERS = wait = TRUE

REQ 0

When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE = next_counter ¢ busy

Enter them!




The new enter and refined arrive and leave

@ |leave does not need to be changed.

@ A client (can) enter when there is no need to wait.

@ The corridor has one more person.
@ Other clients have to wait

Event enter
where wait = FALSE

then
in_corridor := in_corridor + 1
wait := TRUE
end

Type in “enter”

dea

0]



Refining arrive

@ next_counter: see next slide.

Event arrive (abstract)
refines arrive
any ¢
where
c € COUNTERS
c ¢ busy
then
busy := busy U {c}
end

@ GRD not discharged.

Event arrive (concrete)
refines arrive
where in_corridor > 0
with c: ¢ = next_counter
then

dea

in_corridor := in_corridor — 1
busy := busy U {next counter}

end

E (g

@ Parameter c disappeared: need to state

concrete value for it.
@ Modify “arrive”
@ GRD needs

in_corridor > 0 = next_counter & busy

@ If invariant = GRD proven.

@ Itis! Add it and GRD should be proven.

@ Not a requirement, but (a) necessary

lemma and (b) sensible.



Screen management @i

@ Display is set to “WAIT” when a client enters.
@ We only need to decide whether we allow more clients to enter.

Event screen  num

where
wait = TRUE
then
next counter :€ COUNTERS \ busy
wait := FALSE
end
Type them in

All POs should be fine now.

dea

E (g



Screen management @i

@ Display is set to “WAIT” when a client enters.
@ We only need to decide whether we allow more clients to enter.

Event screen  num
where

COUNTERS # busy
in_corridor = 0

wait = TRUE
then
next counter :€ COUNTERS \ busy
wait := FALSE
end
Type them in

All POs should be fine now.

dea

E (g



Rationale for screen management @i

@ Hybrid approach
e From NOWAIT to WAIT in “enter” event.
@ From WAIT to NOWAIT in specific event.
@ NOWAIT = WAIT can only happen when a person enters corridor.
@ enter is appropiate.
@ Plus (for safety), the screen should turn to WAIT immediately when
a person entering corridor is detected.
e Separate event = interleaving of other events possible, unless
additional logic (& complexity) is added.

dea

E (g



Rationale for screen management =

WAIT = NOWAIT could happen after arrive or leave.

Related logic in two events.
In arrive:
@ Only if there are available counters.
e Needs two variants of arrive (as in the “Cars in a narrow bridge”
example).
In leave:
@ Only if the corridor is empty.
o Needs two variants of leave.
All that logic can be put in a single separate event (screen_num).

Having another event activated before screen_num is safe: it
would only delay more clients entering the corridor.

dea

E (g



Deadlock freedom

@ As usual, disjunction of
guards.

@ Events with parameters need
special treatment.

Event leave
any c
where

c € busy
then

@ Logical reading: the event is
enabled if there is some ¢
such that c € busy A .. ..

@ DLF:

wait = FALSE Vv

in_corridor > 0V

(3x - x € busy) V
(COUNTERS # busy A
in_corridor = 0 A
wait = TRUE)

dea

E (g



Stages

1. Initial model: just number of clients

2. First refinement: distinguish checkout desks

3. Second refinement: entrance corridor and screen
4. [Third refinement: sensors|

dea

E (g



High-level view

-
N

~
LT AN

~

ANEY

XK

} jé"*‘\) %

B
B

v
v
X

]
Aoyt

@ Keep previous “logical” model.
@ Add physical model on top, connect
with logical model.

=i dea &
[ POLITECNICA

@ Separate environment and system
variables / events.

@ Keep interactions clear!

@ Guidelines:

@ Some events simulate environment
(clients).

e They react to environment variables
and act on sensors.

e Events that represent the controller.

e They react to sensors and act on
environment variables.



How sensors work

@ Not necessarily real sensors.

@ Client presence activates sensor (a BOOL).
e Stays on until deactivated by controller.

@ Modeling sensor arrays:
e Firstidea: use booleans, functions.

S_E € BOOL
S_A € COUNTER — BOOL
S_L € COUNTER— BOOL

e S_E sensor entry; S_A sensor arrival; S_L sensor for leaving.

@ However, two last ones are indicator sets.
@ We can use the set of activated sensors.

S_AS.L C COUNTER



Using sensors in refined model @i dea

@ enter, arrive, leave refined.
@ New events enter_s, arrive_s, leave_s.
o Note: we will not show leave_s. It is of little interest.
@ *_srepresent people; they react to environment variables, trigger
changes in sensors.
@ Modeling agent behavior: variables that represent what people
can see, do.

SCREEN_CNT e {WAIT, NOWAIT} What the screen displays (WAIT or a number)
CROSSING_E € BOOL Sensor: a person enters the corridor
IN_CORRIDOR € {0,1} Number of people in the corridor

@ IN_CORRIDOR could be BOOL. We would then need a gluing
invariant with in_corridor. Keeping it in {0, 1} is easier.

E (g



Using sensors in refined model mi dea

Event enter (abstract) Event enter s —
refines enter where SCREEN _CNT = NOWAIT
where wait = FALSE CROSSING _E = FALSE
then then
in_corridor := TRUE CROSSING _E := TRUE
wait := TRUE S E:=TRUE
end IN_ CORRIDOR := IN_CORRIDOR + 1
end
CROSSING_E in enter_s: a physical person is
crossing. Others can see it. We behave Event enter
correcﬂy. refines enter
In enter: controller events should not update where S E = TRUE // Only look at sensor
environment variables. But we (exceptionally?) then // abstract actions plus ...
modelthe assumption that the controller is fast S E := FALSE:
enough to update its state in zero time after a CROSSING E := FALSE // See explanatior
person physically crosses the sensor. SCREEN CNT = WAIT

end



Using sensors in refined model

Event arrive (abstract)
refines arrive
where in_corridor > 0
with c: ¢ = next_counter
then
in_corridor := FALSE
busy := busy U {next counter}
end

CROSSING _E is used here to ensure that a
person has actually crossed the entrance
and is in the corridor.

=i dea

E (g

Event arrive_s
where IN_CORRIDOR > 0
CROSSING _E = FALSE // State updat
then
IN CORRIDOR :=IN_CORRIDOR —1
S Ai=S AU {next_ counter}
end

Event arrive

refines arrive
where next counter € S_A
then
in_corridor := in_corridor — 1

busy := busy U {next counter}
S Ai=S A\ {next counter}
end



Using sensors in refined model

Event screen num (abstract)
where wait = TRUE
COUNTERS # busy
in_corridor =0
then
next counter :€ COUNTERS \ busy
wait := FALSE
end

=i dea

Event screen _num (concrete)
where wait = TRUE
COUNTERS # busy
in_corridor =0
then
next counter :€ COUNTERS \ busy
wait := FALSE
SCREEN CNT := NOWAIT
end



Physical invariants @ dea %

@ Invariants for environment emulation.

invl: SCREEN CNT € SCREEN
inv2: IN_CORRIDOR € {0,1}
inv3: CROSSING E € BOOL
invd: S E € BOOL

invb: S A C COUNTERS

@ We ought to state requirements in the physical model as well (that
is what happens in reality).

@ We will skip stating requirements in physical model - only for
brevity!

@ They should be reflected here as well.



Changes to model @i dea

@ Extend context c1 into c2.
@ Add set SCREEN, constants WAIT, NOWAIT.
@ Axioms: SCREEN = {WAIT, NOWAIT }, WAIT # NOWAIT.

@ Refine m2 into m3, should see c2.

@ Add variables SCREEN_CNT, IN_CORRIDOR, CROSSING E, S E,
S A

@ Add invariants:

invl: SCREEN CNT € SCREEN
inv2: IN_CORRIDOR € {0,1}
inv3: CROSSING E € BOOL
invd: S E € BOOL

inv6: S A C COUNTERS

@ Add / modify events (next two slides)

b1



Changes to model (Cont.)

Event enter_s
where SCREEN _CNT = NOWAIT
CROSSING _E = FALSE

then
CROSSING _E := TRUE
S_E:= TRUE

IN_CORRIDOR := IN_CORRIDOR + 1
end

Event enter
refines enter
where S_E = TRUE // Only look at sensor
then

in_corridor := in_corridor + 1
wait := TRUE
S E := FALSE;

CROSSING _E := FALSE
SCREEN CNT = WAIT
end

=i dea

Event arrive_s
where IN_ CORRIDOR > 0
CROSSING _E = FALSE // State updated
then
IN_CORRIDOR := IN_CORRIDOR — 1
S Ai=S AU {next counter}
end

Event arrive
refines arrive
where next _counter € S_A
then
in_corridor := in_corridor — 1
busy := busy U {next counter}
S Ai=S A\ {next counter}
end



Changes to model (Cont.)

Event screen _num
where wait = TRUE
COUNTERS # busy
in_corridor =0

then
next counter :€ COUNTERS \ busy
wait := FALSE

SCREEN CNT := NOWAIT
end

=i dea

]



Proof obligations @i dea

E (g

@ In my case: pending to discharge

e enter_s/inv2/INV (IN_CORRIDOR € {0,1})
e enter/grd2/GRD (S_E = TRUE = wait = FALSE)
e arrive/grd1/GRD (next_counter € S_A = in_corridor > 0)

@ We will need additional helping invariants to prove them.

@ We will use a new approach: see how the system behaves
dynamically.

@ Check variable values for possible invariants.

@ Try to prove that they are inductive invariants and see if they help
proving things.



Animating a model with ProB

@ Install ProB from the “Install new software” dialog.

@ Check the default values in the Preferences dialog.

@ I would increase the size of deferred sets to 5 or 6.

@ And set the boundaries for integers to the range -10 to 10.
@ Right-click on model 'm3'.

@ Drive execution by clicking on the events in the left pane.

@ You can see the changes in variables in the pane in the middle.

=i dea

b1



Animating a model with ProB mi dea
[ POLITECNICA|

@ Animation: fundamentally, event sequence that enables either leave or screen _num
(or both) at the end.

@ It starts again after that.
@ We can make a chart of the state of variables after every event.

INIT enter s enter arrive_s arrive

SCREEN_CNT ~ NOWAIT NOWAIT WAIT  WAIT  WAIT

IN_CORRIDOR 0 1 1 0 0
S E 1 T SO L L
CROSSING_E 1 T 1 1 1
S A %] %] %] {n_c} %]
in_corridor 0 0 1 1 0
wait 1 1 T T T

@ Useful to infer patterns.
@ Must be proven (intuition / separate simulations not conclusive)!



First impressions

@ S E and CROSSING E seem to have the same values.
@ Inspect the events

=i dea

]



First impressions @i

@ S E and CROSSING E seem to have the same values.
@ Inspect the events
@ Can be fused, but this model is oversimplified.
@ More realistic model = they might differ.
@ We can however reflect this:

@ Add inv6: S_E = CROSSING_E.

e Itis inductive and immediately discharged

e It gives additional hypotheses, relationships among variables useful
for later proofs.

e Does not immediately help with pending proofs.

dea

E (g



First impressions

@ The next observation is that apparently S A is either @ or
{next_counter} .

@ That makes sense w.r.t. the expected behavior of the model:

e Only one person in the corridor.
e Can enter the corridor only when the corridor is empty.

e That happens when no one is in the corridor, arrival sensors.

@ Inspect events.

dea

E (g



First impressions

@ The next observation is that apparently S A is either @ or
{next_counter} .
@ That makes sense w.r.t. the expected behavior of the model:

e Only one person in the corridor.
e Can enter the corridor only when the corridor is empty.
e That happens when no one is in the corridor, arrival sensors.

@ Inspect events.

@ So it seems we could add inv7: S_A=@ Vv S_A = {next_counter}.

e Does not seem to help.
e And inv7/INV not discharged for screen_num .
e screen_num does not change S_A, but it changes next_counter.
@ S_Ashould be @ after screen_num.
@ Sinceitis o after arrive, and leave does not change it, it seems it
should be so (see animation for intuition).

dea

E (g



screen_num/inv8/INV

@ Checking event: screen_num requires in_corridor =0
(and does not change it)

@ Checking chart: whenever in_corridor =0, S_A = .
@ Se we can posit inv8: in_corridor =0 = S_A = @.

@ screen_num/inv7/INV immediately proven.

@ And arrive/grd1/GRD also!

e arrive/grd1/GRD PO is next_counter € S_A = in_corridor = 1.

@ Since we had S_A =g v S_A = {next_counter}, the GRD PO is
equivalent to inv8.

@ But: inv8 PO unproven for two events.

dea

E (g



enter_s/inv2/INV

IN_CORRIDOR € {0,1}.

enter_s increments IN_CORRIDOR.

Prove that IN_CORRIDOR = 0 whenever enter_s is enabled.
@ Guard: SCREEN_CNT = NOWAIT A CROSSING_E = FALSE

From the chart: if SCREEN_CNT = NOWAIT A CROSSING_E = FALSE,
then IN_CORRIDOR = 0.

e Intuition: the corridor should be empty when a person can enter.
We posit the invariant
inv9: (SCREEN_CNT = NOWAIT A CROSSING_E = FALSE) =
IN_CORRIDOR =0
enter_s/inv2/INV is proven. If not:
@ Remove € in IN_CORRIDOR € {0,1} goal (generates disjunction), and
e Forcing one of the disjunction components to evaluate numerically.

screen_num/inv9/INV is however not discharged.

=i dea

b1



enter/grd1/GRD @i dea

@ The proof obligation is (S_E = TRUE = wait = FALSE).
@ Let us posititis an invariant.

e That will discharge GRD automatically.
@ And we can see in the table that S_E = TRUE = wait = FALSE seems
to hold.

@ Add inv10: S_E = TRUE = wait = FALSE
@ enter/grd1/GRD is now proved.

@ enter/inv8/INV discharged as well.

@ enter_s/inv10/INV not discharged.

@ We will deal with it later.

b1



Why does adding a PO (GRD, SIM, ...) as invariant helps? @i dea

@ If the PO already generated the formula to be proven, why adding
it explicitly can be good?

@ Adding it as an invariant makes the prover discharge the PO
immediately.

@ (Butit has to be proven to hold for every event activation).

@ And (as we have seen), making it explicit as an invariant may help
other POs to be discharged.

b1



enter_s/inv10/INV

@ inv10: S_E = TRUE = wait = FALSE
@ enter_s sets S_E = TRUE.
@ Its guard is SCREEN_CNT = NOWAIT A CROSSING_E = FALSE.

@ Try to infer a relationship between the guard and the value of
‘wait’ that can be an invariant.

@ enter_s changes CROSSING_E, so we cannot use it.

@ It seems that the values of SCREEN_CNT and wait match
(although they have different types)

@ Introduce inv11: SCREEN_CNT = NOWAIT < wait = FALSE
@ Pending enter_s/inv10/INV is discharged.
@ And inv11 is proven as invariant.

=i dea

b1



screen_num/inv9/INV

inv9: (SCREEN_CNT = NOWAIT A CROSSING_E = FALSE) =
IN_CORRIDOR =0

screen_num does not change IN_CORRIDOR.

Try to identify and add an invariant related to IN_CORRIDOR that
uses the state in which screen_num can be enabled.

Guard: in_corridor = 0 A wait = TRUE.
Chart: seems that if these are true, then IN_CORRIDOR = 0.

Let us posit the invariant
inv12: (in_corridor = 0 A wait = TRUE) = IN_CORRIDOR =0

Intuition: if controller registers corridor empty and people have to
wait, there must not (physically) be anyone in the corridor.

screen_num/inv9/INV is discharged.
But arrive/inv12/INV to be discharged.

=i dea

b1



arrive/inv12/INV =i dea

inv12: (in_corridor = 0 A wait = TRUE) = IN_CORRIDOR =0
arrive does not change IN_CORRIDOR.

But it requires S_A # @.

Let us try to link S_A with IN_CORRIDOR.

From the chart, it seems that if S_A # &, then IN_CORRIDOR = 0.

Let us posit
inv13: S_A # @ = IN_CORRIDOR = 0.

@ Itis aninvariant and it discharges arrive/inv12/INV.

b1



Summary of invariants @i dea

invl: SCREEN CNT € SCREEN

inv2: IN_CORRIDOR € {0,1}

inv3: CROSSING_E € BOOL

invd: S E € BOOL

inv6: S A C COUNTERS

inv6: S_E = CROSSING_E

inv7: S A=2 VS A= {next counter}

inv8: in_corridor =0=S A=0

inv9: (SCREEN _CNT = NOWAIT A CROSSING _E = FALSE) = IN_CORRIDOR =0
invl0: S_E = TRUE = wait = FALSE

invll: SCREEN CNT = NOWAIT < WAIT = FALSE

inv12: (in_corridor = 0 A wait = TRUE) = IN_CORRIDOR = 0
invl3: S A # @ = IN_CORRIDOR =0



Deadlock freedom

@ Proofs somewhat complex.
e Additional invariants needed.

@ Model checker did not detect deadlocks.

@ But limited reach.
@ Left as an exercise!

dea

E ek



	Goals
	Initial model
	First refinement
	Second refinement
	Third refinement

