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Purpose of this lecture

@ We will formalize the solution to a problem in distributed
computing.
e Studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a Method of
Multi-programming. Springer Verlag, 1999.

@ Using and updating functions.
@ Formalize and prove properties on an interesting structure: a tree.
@ Proofs more complex than those seen so far.

As usual:
@ Define the informal requirements
@ Define the refinement strategy
@ Construct the various more and more concrete models




Comparison with previous examples

@ Not a transformational system.
e Not supposed to finish.
e No final result.

@ Not reactive.
o No external world that reacts to
system changes.

@ Distributed.
e Different nodes act autonomously.
@ With limited information access.
e However, communication assumed
to be reliable.

@ Internal concurrency.

e Every node has concurrent
processes.

@ Small model: just three events in the
last refinement.

@ However, proofs and reasoning are
comparatively complex.



Requirements =i dea |

] ENV 1 \ We have a fixed set of processes forming a tree \

o>
AN

@ Note: they do not need to form a tree from the beginning.
@ A set of communicating processes can coordinate to form a tree.




Requirements (Cont.)

@ All processes are supposed to execute forever the same code.
@ But processes must remain (somewhat) synchronized.
@ For this, each process has (initially) one counter.

’ ENV 2 ‘ Each process has a counter, which is a natural number

@ A process counter represents its “phase”
(related to the work for which they have to synchronize).
@ Difference between any two counters < one.
e Each process is thus at most one phase ahead of the others



Requirements (Cont.)

@/@\@?\@
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FUN 3 \ The difference between any two counters is at most one




Requirements (Cont.) =i dea

@ Reading the counters

’ FUN 4 ‘ Each process can read the counters of its neighbors only ‘

(Neighbors to be understood as connected by a link)

@ Modifying the counters

FUN 5 | The counter of a process can be modified by this process
only




Refinement strategy =i (dea

@ Construct abstract initial model dealing with FUN 3 and FUN 5
@ Improve design to (partially) take care of FUN 4

@ Improve design to better take care of FUN 4

@ (Simplify final design to obtain efficient implementation).

’ FUN 3 \ The difference between any two counters is at most one ‘

] FUN 4 \ Processes read counters of immediate neighbors only \

] FUN 5 \ A process can modify only its counter(s) \




Steps

LA L

i dea |

[Initial model: all nodes access the state of all nodes.|

First refinement: restrict access to a single node.

Second refinement: local check, upwards wave.

Third refinement: construct downwards wave.

Fourth refinement: remove upwards and downwards counters.




Initial model: the state =i dea

@ Simplify situation: forget about tree
@ We just define the counters and express the main property: FUN 3

’ FUN 3 ‘ The difference between any two counters is at most one ‘

@ The initial model is always far more abstract than the final system
@ Other requirements are probably not fulfilled



Abstract situation

zi dea &

FUN 3 \ The difference between any two counters is at most 1




o s
@i dea ‘&
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Suggest constants, axioms, variables,
invariants for an initial model!



Initial model: the state

inv0 2: Vz,y-

carrier set: P axm0_1: finite(P)
inv01: ¢ € P—N
: . xze P
variable: c¢ yEP

=

c(z) < c(y) +1

v' Create project synch_tree
v’ Create context c0 with set, axiom
v’ Create machine mo with variable, invariants.




Is that right?

@ inv0_2 may be surprising:
To:Vx,y-xe PNy eP=c(x)<c(y)+1

@ IsitthesameasZ; : Vi,j - |c(i) — c(j)| <1?



Is that right?

@ inv0_2 may be surprising:
To:Vx,y - x e PNy e P=c(x)<c(y)+1
@ IsitthesameasZ; : Vi,j- |c(i) — c(j)| < 1?

Proof by double implication.
Let us choose two arbitrary nodes with counters a and b.
@ If the invariant holds, then a < b+ 1 and b < a + 1. From there,
a—b<1landb—ac<]1,therefore|a— bl <1,andZy = 7;.
@ If|a— b| <1,thenbotha—b<1and b—a<1. Then,inv0_2is
implied by the intended invariant, and Z; = Z,.



Initial model: events

init
C

P x {0}

ascending

any n where
n €€ P
Vm-m € P = c(n) < c(m)

then

c(n):=c(n)+1

end

i dea |

@ Note: any nis logicallyVvn-ne PA---
e V can appear in guards.

@ any introduces V whose scope is the

whole event.

@ Intuition: Any increment that respects

v' Add initialization, event

difference among nodes can be done.
Does not mean all increments are

executed: non-determinism!

Not final state (there is none): action

that (hopefully) respects invariant.

Note: x is entered with **, any with pull-down menu, “Add event pa-

rameter”.



Proof of invariant preservation

c e P—>N inv0_1
x e P
eP .
Va,y- :y> inv0_2
c(xz) <c(y) +1
nekP Guards of event
Vm:(m € P =c¢(n) <c(m)) ascending
l_
x e P
eP
Va,y- :y>

(e {nc(n)+1}(z) < (¢ {n— c(n) +1})(y) +1

f

Modified invariant inv0_2

In Rodin: automatic; if not, repeatedly apply lassoing, pO or mO.




Model so far

CONTEXT c0
SETS

P
AXIOMS

axml: finite(P)
END

MACHINE m0
SEES c0
VARIABLES

C
INVARIANTS

invl: c€ P—N

inv2: Vz,y-x € PAy € P=c(z) <1+ c(y)

EVENTS
Initialisation
begin
actl: ¢:= P x {0}
end
Event ascending (ordinary) =

any

n
where

grdi2: neP

grdil: Vm-m € P = c(n) < c(m
then

act1l: ¢(n):=c¢(n)+1
end

)




Problem with the current event

ascending
any n where
nepP
Vm-m € P = c(n) < c(m)
then
c(n):=c(n)+1
end

What requirement is this event breaking?



Problem with the current event =i dea

ascending
any n where
nepP
Vm-m € P = c(n) < c(m)
then
c(n):=c(n)+1
end

What requirement is this event breaking?

’ FUN 2 ‘ Each node can read the counters of its immediate neighbors only ‘




Steps

. Initial model: all nodes access the state of all nodes.

. |First refinement: restrict access to a single node.|

. Second refinement: local check, upwards wave.

. Third refinement: construct downwards wave.

. Fourth refinement: remove upwards and downwards counters.

u b W N =



First refinement: (partially) solving the problem

@ Introduce a designated process r.
@ Assume that counter of r always minimal

Vm-me P = c(r) < c(m)

@ Rationale:

e We only synchronize with r — not compliant, but communication restricted.

e Helps ensure that difference between any two nodes < one.
@ Ifinv0_1:Vx,y-x € PAy € P=c(x) <c(y)+1,then|c(r) — c(m)| <1 forany m.
@ If ¢(r) < c(m), then c(m) = c(r) or c¢(m) = ¢(r) + 1 for any m.
@ Then |c(m) — c(n) < 1], for any m, n (will be proved).

@ Treat this property as a new (temporary) invariant.

v' Extend co into c1 (left pane, right click, “Extend”), add constant r, axiom r € P
v Refine mo into m1 (left pane, right click, “Refine”), add new invariant
v' m0 should “see” c1



First refinement: proposal for the event refinement =i

We simplify the guard

(abstract-)ascending
any n where
neP
Vm-m € P = c¢(n) < ¢(m)
then
c(n):=c(n)+1
end

(concrete-)ascending
any n where
nepP
c(n) = ¢(r)
then
c(n):=c(n)+1
end

@ Note: if ¢(r) minimal, c(n) < c(r) impossible; therefore c(n) = ¢(r)

v' Change “extended” to “not extended”, change guard

@ We have then to prove guard strengthening.




Guard strengthening

c e P—+N inv0_1
x e P

Va,y-| YEL invo 2
=

c(z) < c(y) +1
vm-(meP = < ¢(m)) new invariant

n € P Guards of concrete
c(n) = c(r)| event ascending

|_

nepP Guards of abstract

Vm.(méeP= < ¢(m)) eventascending

In Rodin: lasso + p0

v' Go to the proving perspective, discharge proof




Model so far

inv1 not discharged.

CONTEXT cl
EXTENDS c0
CONSTANTS

T
AXIOMS

axml: 1€ P
END

MACHINE ml

REFINES m0

SEES cl

VARIABLES
c

INVARIANTS

invi: Vmem € P=c¢(r) < c¢(m

EVENTS
Initialisation (extended)
begin
actl: ¢:= P x {0}
end
Event ascending (ordinary) =
refines ascending

any

n
where

grdi: neP

grd2: c¢(r) =c(n)
then

acti: ¢(n) :=c(n)+1
end

END

)




Pending problems =i dea

ascending
any n where
neP
c\n) =c(\r .
ther(l ) (r) Ym-mée P = c(r) < c(m)
c(n) :=c(n)+1
end

1. Prove that new “invariant” is preserved by the event
2. The guard of the event still does not fulfill requirement FUN 4.

] FUN 4 \ Each node can read the counters of its immediate neighbors only ‘

@ Problem 1 solved in this refinement
@ Problem 2 solved later



First refinement: defining the tree

@ Tree: root r and “pointer” f from each

nodein P\ {r} to every node’s parent.

@ Plus some additional properties and
inference rules.

@ Reminder: sets, relations, functions,
specific data structures and their
inference rules.

@ Note: constructing a tree (= root /
leader + links) is a classical problem in
distributed systems.

@ Can also be tackled using Event B.

Invariant: we have a condition involving
nodes in pairs and we need a condition
that relates a single node r with all the
others.

How can we model the relation node /
parent node?



Update model =i dea

v Add to c1 (note f is —, written -->>)
@ Constant f.
@ Axioms:

LCP
feP\{r}—>P\L
VS-SCflS]=S=0

o fLiswritten f~.
@ —: f defined for all P\ {r} and arrives to every elementin P\ L.



Minimal counter at the root

@ Minimality of counter at the root
Vm-me P = c(r) < c(m)

relates c(r) with c(m) for every m.
@ Events change local values and consult neighbouring values.
@ We can (easily) prove properties relating neighbouring nodes.
@ How can we relate local properties with global properties?



Minimal counter at the root

@ We define a weaker, local invariant first.
@ The counter at every node is not greater than its descendants:

invl_1:Ym-me P\{r} = c(f(m)) < c(m)

v' Add it to m1

Rationale (advancing the algorithm)

@ Assume we can update the tree
keeping a maximum difference
between neighbors.

@ Will be helpful to prove c(r) < ¢(m).



Minimal counter at the root: induction
We need to extend the local
property
Vm-me P\{r} = c(f(m)) < c(m)

to the whole tree.

Start with leaves / € L.
Prove that for any /, c(f(/)) < ¢(/), then
c(F(F(N)) < c(f(1)) < (), ...

@ Work upwards towards root r.

OR
@ Start with r.
@ Prove that for all ms.t. r = f(m),
c(r) < c(m).

m is a child of r

@ Then, for all m’ s.t. m = f(m'),
c(m) < ¢(m')...

@ And so on towards the leaves.



Minimal counter at the root: induction

@ Induction: difficult for theorem provers to do on their own.
o Needs to identify base case, property to use for induction.

@ Then, proving property given base case & inductive step within
theorem provers’ capabilities.

@ In Rodin: needs adding induction scheme:
v Add to c1:

VS:SCPAreSA(KNn-ne P\{r}Af(n)eS=neS)=PCS
v Tip: Ctrl-Enter breaks text in input box in separate lines.
@ Instantiating it with the property to prove, expressed as a set:
{x | x € P A clr) < cx)}(nextslide)
v' In m1: ensure you have invl_1: Vm-m e P\{r} = c(f(m)) < c(m)
v Ensurethml_1: Ym-m € P = ¢(r) < c(m) below invariant, marked as theorem




Induction in Rodin: instantiation

@ Double click in the unproved
theorem (left pane).

@ Switch to prover view, lasso.
@ Locate induction axiom.

@ Enter
{x | x€PAcl) <cx}I

@ Return and p0.

@ The theorem should be
proved now.

1¥om
neP 4y ird = citimll=cim]
et AniteiPy
oo feP oy [} = P L
T ¥ s
scf~[5] = 50
o otsP —
v ¥ 5

00 0oD D

res oA
[ %n

O™ <[l ¥

cleeciyi+l

Selected Hypatheses

~E0al ®
o eiriscin

=i dea

Mee ¥ 0 —| .
w=P oy {rk = clHullscing

Ciex fimitere)
Mer TP A I =P AL
Cee ¥ 5 .
s=f-[5] == S=a
Clet €6F — N
Oct ¥ 5Tdx | ke P acir)=cial}
ek on
Won

NEP Y LT} A Tin)es

nes
PeS
Oex ¥ % Wy
clxl=civiel
Selected Hypotheses
Zaoalx

o rir)sein)

Invariant inv1_1 not yet proved. Requires order between
parent and children c(f(m)) < c¢(m) that ascending cannot
guarantee: guard c(r) = c(n) allows updates in arbitrary
order. Will enforce through more local comparison.



More local comparison

@ Nodes with difference < one from r.
@ When can we update looking locally?

ascending
any n where
neP
c(r) = c(n)
Vm-m e f~[{n}] = c(n) # c(m)
then
c(n) :==c(n) +1

end

Ensure invl_1 is preserved: double click, prover

view, lasso, p0 should do it.
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How it is expected to work

Update order restricted:

@ Before: any node whose counter is @
equal to the root (the one with the
minimum).

@ Now: only those nodes whose A
counters are, in addition, smaller than
all its descendants. A

@ Updates will go in waves towards the
root.



How it is expected to work
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root.
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Update order restricted:
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How it is expected to work

Update order restricted:
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How it is expected to work
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How it is expected to work

Update order restricted:

@ Before: any node whose counter is
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How it is expected to work

Update order restricted:
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How it is expected to work

Update order restricted:

@ Before: any node whose counter is (2)
equal to the root (the one with the
minimum).

counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

@ Now: only those nodes whose A AN



Neighborhood checking

FUN 4

Each process can read the counters of its immediate neighbors
only

@ VYm-m e f1[{n}] = c(n) # c(m) uses only local comparisons.
@ ¢(r) = c(n) uses non-local comparisons.
@ We will tackle that in the next refinement.




Model so far

CONTEXT cl
EXTENDS c0

CONSTANTS
T
f
L
AXIOMS
axml: 7€ P
axm3: LCP
Leaves

axm2: feP\{r}—»P\L

axmd: VS-SC f7lS]=S=02

axmb:
VS.-SCPA
reSA
(Vn-ne P\{r}Af(n)e S=necb)
=
pPCS

END

i dea

MACHINE ml
REFINES m0
SEES cl
VARIABLES
c
INVARIANTS
invi: VYmem € P\ {r} = c(f(m)) < ¢(m)
inv2: (theorem) Vm-m € P = c(r) < ¢(m)
EVENTS
Initialisation (extended)
begin
actl: ¢:= P x {0}
end
Event ascending (ordinary) =
refines ascending
any
n
where
grdl: ne P
grd2: ¢(r) =c(n)
grd3: Vm-m € f'[{n}] = c(n) # c(m)
then
actl: ¢(n) :=c(n) +1
end
END




Steps

. Initial model: all nodes access the state of all nodes.

. First refinement: restrict access to a single node.

. |Second refinement: local check, upwards wave.|

. Third refinement: construct downwards wave.

. Fourth refinement: remove upwards and downwards counters.

u b W N =



Second refinement

@ Replace the guard c(r) = c(n).
@ Processes must be aware when this situation does occur.
@ Add second counter d(-) to each node to capture value of ¢(r).

N 4 P
e x le) 1 ‘\i/ 1)
1@ @ //\‘\



Second refinement: the state

carrier set: P

constants: r, f

Invariant inv2_2

is as inv0_2
variables: c¢,d
inv21: d € P—N
x e P
. epP
inv22: Va,y- :Zi
d(z) <d(y) +1

i dea |

d has an overall property similar
toc:

Vx,y-x€ PNy € P=c(x) <
c(y)+1

@ d will capture the value of
c(r).

@ It will be updated in a
downward wave.

v’ Refine m1 into m2
v Add variable d and invariants



Updating d @i dea

This refinement captures:
@ The existence of d.
@ How its update can proceed not to break its invariant.

Event descending
any n where

neP

Vm-me P = d(n) <d(m)
then

d(n) :=d(n)+1
end

v Add event to m2
v Initialize d to 0 (copy the initialization of c)



Steps =i dea

. Initial model: all nodes access the state of all nodes.

. First refinement: restrict access to a single node.

. Second refinement: local check, upwards wave.

. [Third refinement: construct downwards wave.|

. Fourth refinement: remove upwards and downwards counters.

u b W N =



Third refinement =i dea

@ We extend the invariant of counter d.
@ We establish the relationship between both counters ¢ and d.
o This will allow us to refine event ascending

@ We construct the descending wave (by refining event descending).
@ Remark: this is the most difficult refinement.

v’ Refine m2 into m3



Idea behind third refinement =i dea hk*
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Idea behind third refinement =i dea Q

[ Frill PR
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Idea behind third refinement i dea (&
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State and invariants i dea

@ Recall local condition for c:

invl_1:Ym-me P\{r} = c(f(m)) < c(m)
Every node’s counter is smaller than or equal to its children’s.
@ Local condition for d is similar:

inv3_1:Ym-me P\{r} = d(m) < d(f(m))

Every node’s counter is smaller than or equal to its parent (if it has
a parent). This is what makes the wave descending.

@ inv3_1 and tree induction proves that the root has the highest
value of d(-):

thm3_1:Vn-ne P = d(n) < d(r)

(remember: root had the smallest value of c(-))



Proving theorem and invariant

v’ Add to m3:
inv3_.1: Vm-me P\ {r} = d(m) < d(f(m))
thm3_1: Vn-ne P=d(n) <d(r)

v' Mark the latter as theorem

v' Double click on the PO for THM

v' Go to proving perspective; locate induction axiom
v Instantiate with {x|x € P A d(x) < d(r)}, invoke p0
v That should prove thm3_1

v" inv3_1 cannot be proved yet - reasons similar to c.
We will deal with that later



Refining ascending

Event (abstract —)ascending Event (concrete—)ascending

any n where any n where
neP neP
c(n) = ¢(r) c(n) = d(n)
VYm-m € f[{n}] = c(n) # c(m) Vm-m e f[{n}] = c(n) # c(m)

then then
c(n) :==c(n)+1 c(n):==c(n)+1

end end

@ Downward wave d will eventually ascending: only local comparisons now!

propagate d(r).
v' Change event guard in m3



Refining ascending

Event (abstract —)ascending Event (concrete—)ascending

any n where any n where
neP neP
c(n) = ¢(r) c(n) = d(n)
VYm-m € f[{n}] = c(n) # c(m) Vm-m e f[{n}] = c(n) # c(m)

then then
c(n) :==c(n)+1 c(n):==c(n)+1

end end

@ Downward wave d will eventually ascending: only local comparisons now!

propagate d(r).
v' Change event guard in m3
@ Need to prove guard strengthening.



Refining ascending

Event (abstract —)ascending
any n where
necP
c(n) = ¢(r)
VYm-m € f[{n}] = c(n) # c(m)
then
c(n) :==c(n)+1
end

@ Downward wave d will eventually
propagate d(r).
v' Change event guard in m3

@ Need to prove guard strengthening.

@ We cannot. ¢ and d unrelated so far!
v’ Relate c and d:inv3_2 :d(r) < c(r)

@ If needed: proving perspective, lasso +

p0 proves strengthening.

Event (concrete—)ascending
any n where
necP
c(n) = d(n)
Vm-m e f[{n}] = c(n) # c(m)
then
c(n):==c(n)+1
end

ascending: only local comparisons now!



Refining descending

@ Adifferent case.

@ Two situations raise a change of d:
1. For a non-root node: parent’s d change.
2. For the root node: ¢(r) changes.

@ Different guards.

@ We will prepare the events to be edited.

v' Change (concrete) descending event to non-extended
v’ Left click on circle to left of name to select

Ctrl-C to copy, Ctrl-V to paste

v' Rename first event as descending_nr.

v' Rename second event as descending._r.




Refining descending: the non-root case

Event (abstract —)descending
any n where

necP

Vm-me N = d(n) < d(m)
then

d(n):=d(n)+1

end

v' Update guards

Event (concrete—)descending
any n where
ne P\{r}
d(n) £ d(f(m)
then
d(n):=d(n)+1
end

(Note: Rodin > 3.6 seems to prove strengthening automatically; previ-
ous versions needed additional steps [in next slide])



Proving guard strengthening

=i dea '3

I

Note: the steps below do not seem to be necessary in Rodin 3.6 with
the Atelier B provers installed. Strengthening is proven automatically.

ne P\{r},d(n)=d(f(n)),me P + d(n) < d(m)

We need some magic mushrooms to help the provers:
thm3_2: Vn-ne P\{r} = d(f(n)) € d(n)..d(n) +1
thm3_3: Vn-ne P=d(r) € d(n).d(n)+1

thm3_2 downward wave, parent is at most one more than
children (when it has just been increased)

thm3_3 special case for root (the first one to be increased)



Refining descending (Cont. — the root case.)

Event (abstract —)descending
any n where
neP
Vm-me P = d(n) <d(m)
then
d(n):=d(n)+1
end

Event (concrete—)descending

refines
descending

when
d(r) # c(r)

with

nn=r
then

v’ Click on circle left of param. n, delete
@ Parameter n disappeared!
@ Substitute (witness) for GRD, SIM.
@ We are particularizing for r.

@ Similar to gluing invariant!
@ Note with label: specific Rodin idiom.
@ Need to prove

d(r) #c(r), me P Fd(r) < d(m)




Finishing proofs @i dea
The technique in this slide was necessary for Rodin versions previous to 3.6. For Rodin 3.6 onwards, i
seems that it is not necessary. Skip to the next slide.

I needed two more magic pills:
inv3_.3: Vn-ne P=c(n)ed(n).d(n)+1 Toprove GRD

thm3_4: Vn-ne P = c¢(r) € d(n)..d(n)+1 To proveinv3_3

Plus, if not added before:
thm3_2: Vn-ne P\{r} = d(f(n)) € d(n)..d(n) +1

thm3_3: Vn-ne P=d(r) € d(n).d(n)+1

After this, the invariant can be proved with a combination of several steps:

@ Apply lasso. @ Do POinc¢(n) <d(n)+1+1goal.
° Instgntlate Vn-c(r) € d(q)--d(”) +1 @ Note that only possibility to prove is
(which relates ¢ and d) with n. d(n) = c(n).

@ Remove € in goal
(c(n) € d(n)+1..d(n) + 1+ 1) to create
inequalities. @ Apply ML to the subgoals.

@ Do case distinction with d(n) = c(n),



Finishing proofs @i dea
This strategy is necessary with Rodin 3.6 and 3.7 and, apparently, 3.9.

An additional invariant is necessary to prove GRD of descending r:
inv3_.3: Vn-ne P = c(n)ed(n).d(n)+1

After adding it, GRD is immediately proven. However, the invariant remains unproven. It
can be proved with the following steps:

@ Apply lasso. c(n) <d(n)+1+1.

@ Remove € in goal @ For d(n) +1 < ¢(n), do case
c(n) €d(n)+1.d(n)+1+1to distinction:
transform it into inequalities that can e Either with d(n) = c(n), or
be proven separately. e with d(n) + 1 = c(n)

@ Use ml or pO for the goal and ML to the subgoals.



Third refinement: invariants

inv31: Vm-(m e P\ {r} = d(m) <d(f(m)))

inv32:  d(r) < c(r)

invd3: Vn-(neP = c(n) € dn)..d(n)+1)

thm31: Vm.(m € P = d(m) < d(r))

thm32: Vn-(n e P\ {r} = d(f(n)) € d(n)..d(n)+1)
thm33: Vn-(neP = d(r) € d(n)..d(n)+1)

thm34: vn-(ne€ P = c(r) € d(n)..d(n)+1)




Third refinement: events

Event descending r Event descending nr

when any n where

_ hd(r) # c(r) ne P\{r}

t
with d(n) # d(f(m)
then then

d(r) == d(r) +1 d(n) :=d(n)+1

end end

Event ascending
any n where
neP
c(n) = d(n)
Vm-m € f[{n}] = c(n) # c(m)
then
c(n) :==c(n)+1
end



Steps =i dea

1. Initial model: all nodes access the state of all nodes.

2. First refinement: restrict access to a single node.

3. Second refinement: local check, upwards wave.

4. Third refinement: construct downwards wave.

5. [Fourth refinement: remove upwards and downwards counters.|




Observation

@ The difference among counters is at most one.
e That has been proven by construction.

@ In the guards, we only care whether they are equal or not.
@ For this, we only need parity!

a,be NAlJa—b| <1= (a=b< parity(a) = parity(b))

@ We will prove that this is a valid refinement.

v' Extend context c1 into c2
v' Refine m3 into m4
v m4 should see c2




Formalizing parity
- We replace the counters by their parities

- we add the constant parity

carrier set: P

constants: r, f, parity

axm4_1. parity € N— {0,1}
axm4.2: parity(0) =0

axm4 2: Vz.(xz €N = parity(x + 1) =1 — parity(z))

v' Add parity and axioms to c2. Note: parity is a function!
v' Need some clicking (dom toN + ML ) to prove WD



The definitions that replace ¢(-) and d(-)

- We replace c and d by p and g

variables: p,q

invd1: pe P—{0,1}
invd2: qe P— {0,1}
invd3: Vn.(n € P = p(n) = parity(c(n)))

invd4: Vn.(n € P = q(n) = parity(d(n)))

v' Do it in m4. Note the gluing invariants! p and q really syntactic sugar.
v Remove variables c and d. Not accessed / updated in this refinement!
v Initialize p and q, remove initializations for c and d.



New events: counters replaced by parity

ascending
any n where
ne€P

p(n) = q(n)

then

enzé(n) i=1—p(n)

vm - (m € f{n}] = p(m) # p(n))

descending_1
any n where
n € P\{r}
q(n) # q(f(n))
then

q(n) :=1—gq(n)
end

descending 2
when

thglgr) #q(r)

q(r) :=1—q(r)
end

i dea




Proving remaining POs (in ascending)

GRD of g(n) = p(n)

The essence of the pending GRD proof is
...q(n) = p(n) F c(n) = d(n).
Depends on proving parity(a) = parity(b) = a = b.
Holds in specific cases (if |a — b| < 1).
But theorem provers unable to apply / deduce that property.
Needs to be stated explicitly:

Vx,y - yeNAxey.y+1 =
(parity(x) = parity(y) < x = y)

@ We could make it axiom, but it can be proven as theorem (better!).



Proving remaining POs (in ascending) =i dea
Proving new THM in c2

@ We need to deal with Well Definedness and the theorem itself.

WD: Removing dom in goal + PO takes care of it (if WD is to be discharged).
THM: Adding hypothesis + case distinction works. See below.

@ < splitin two implications. One is @ New goal: y = y + 1. We need to find
proven. contradiction in hypotheses.

@ For the other: introduce ah with
possible valuesof x: x =y vVx =y +1

(because x € y..y + 1 among the > , ]
hypotheses). @ Use dc with parity(y) = 0. This causes

o Prove new hypothesis with ml. two instantiations that make proving
@ For the pending x = y goal, bring Inconsistegty easier.
hypotheses with lasso. @ PO works for both branches.

@ One hypothesis is
parity(y + 1) = parity(y), which is false.



Proving remaining POs (in ascending)

GRD of g(n) = p(n)

Do lasso.
Instantiate theorem

Vx,y - yeNAxey.y+1 =
(parity(x) = parity(y) < x = y)

with c(n), d(n).
(Bring it from hypotheses if not among
selected hypotheses).
Note: instantiate the right variable
with the right value!
Invoke PO for the branches remaining
to be proven.

~ & simplification rewrites : c{n)=d{n)
= bype rewrites ; cini=din}
- simplification rewrites @ cin)=din}
wualids  oiny=din}
- @slfds @ cinl=din)
% hyp {inst cinl.din)) : c{nl=d{n)
- generalized MP : {incdomidiadeP + EjaincdomiciaceP + £}
- simplification rewrites : (TAT)AlTAT)
@Taogoal: T
- wgeneralized MP : cinl=din)
= almplification rewrites @ cinj=din}
@FP: cin)=din}




Proving POs (in ascending) @i dea

GRD of Vm - m € f~[{n}] = p(n) # p(m)

Idea: we have to prove that if p(m) # p(f(m)), then c(n) # c(f(m)). We
have a theorem that says parity(x) = parity(y) < x = y when

x € y..y + 1. So we need c(n) € c(f(n))..c(f(n)) + 1 to apply it. We add
it as a theorem, which is immediately proven.

1. Add anew THM:Vn-n e P\ {r} = c(n) € c(f(n))..c(f(n)) + 1
2. Click on the PO for the undischarged GRD.

3. Introduce the hypothesis n = f(m) (which comes from
m € f~1[{n}]) with ah and use ML repeatedly.

4. If some subgoal is not proven, bring all the available hypotheses
from the Search window and use ML.



Discharging POs (in descending)

@ In my case, GRD for g(n) # gq(f(n)) in descending_nr remains to
be proven.

@ It should imply d(n) # d(f(n)).

@ Similar to the previous case.

@ Add a symmetrical theorem
Vn-ne P\ {r}=d(f(n)) € d(n)..d(n) +1

@ Itis immediately proven and it also automatically discharges the
pending GRD proof.



Discharging POs (in descending)

@ With Rodin 3.8 it may be the case that the invariant

Vn-n e P = p(n) = parity(c(n)))
is unproven.
@ The goal to be proven is
1 — p(n) = parity(c(n) + 1)

which is immediate from the definition or parity and c(n).

@ Just apply lasso, instantiate the definition of parity with c(n), and
use ML or PO

At this point, all the POs should be discharged.




Less Manual Work?

@ Atelier B provers: developed for (Event-)B,
integrated with Rodin.

@ Not the most powerful provers.

@ Additional provers: Install Software — Work
with “~ All Available Sites -” — Prover
Extensions — SMT Solvers.

Available Software

Check thir iterns that you wish ba inskatl

wiork with: | -all Available Sites--

mming Languages
= B Praver FxIensions
beizabells For Rodin
5 Filter

1 item skl

@ Can often discharge proofs without / with less
manual intervention.



https://www.atelierb.eu/en/

Less Manual Work?

@ Atelier B provers: developed for (Event-)B,
integrated with Rodin.

@ Not the most powerful provers.

@ Additional provers: Install Software — Work
with “~ All Available Sites -” — Prover
Extensions — SMT Solvers.

Available Software

Cheek thieitems that ol wish b instat

—-all Available Sites--

oy Led

@ Can often discharge proofs without / with less
manual intervention.

@ Why not using them before?

@ SMT solvers external — stability not
guaranteed?

@ If using SMT Solvers, examples requiring
interaction likely too complex for a first
contact.

@ Install and try the SMT solvers in the examples

in this section of the course using less
additional theorems / invariants.

@ Plugin feeds SMT solvers with “Selected

Hypothesis”. Possible heuristics:

@ Bring hypotheses to the “Selected” set
with lasso, or

@ Select all hypotheses in “Search” tab, add
them to “Selected".


https://www.atelierb.eu/en/
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