

Event B: Modeling and Reasoning with Data Structures¹

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid & IMDEA Software Institute

¹With material from J. R. Abrial book *Modeling in Event-B: system and software engineering*.

Infinite Lists	s. 4
Finite Lists	
Infinite Trees	s. 16
Finite Trees	s. 17

Strategy

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

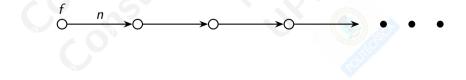
- Data structures involving pointers / references described with relations, functions.
- Specific axioms of these specific data structures give *properties* of the functions that model the data structures.
- These properties are necessary for theorem provers to discharge proofs on data structures.
- Specific forms of these axioms (capturing induction on the data structures) are well-suited to be used in automated proofs.
- We will focus on formalizing:
 - Infinite lists.
 - Finite lists.
 - Infinite trees.
 - Finite trees.

Infinite lists

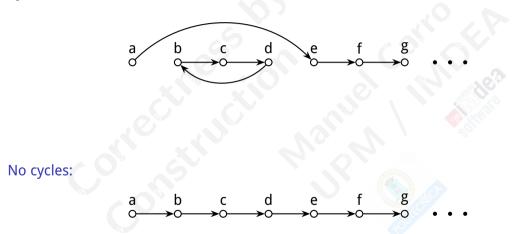
▲日▼▲□▼▲田▼▲田▼ あるの

- Set V of list nodes.
- Initial node *f*.
- Bijective *next* function. There is a *next* and a *previous* (with the exception of *f*)

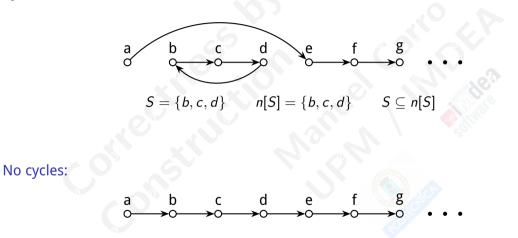
 $\begin{array}{ll} \mathsf{axm_1}: & f \in V \\ \mathsf{axm_2}: & n \in V \rightarrowtail V \setminus \{f\} \end{array}$



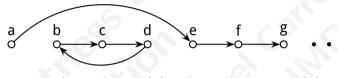
Characterizing (and avoiding) cycles Cycles:



Characterizing (and avoiding) cycles Cycles:

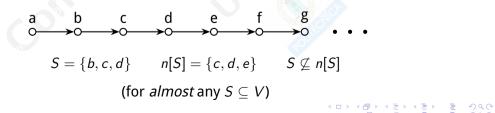


Characterizing (and avoiding) cycles Cycles:



 $S = \{b, c, d\} \qquad n[S] = \{b, c, d\} \qquad S \subseteq n[S]$

No cycles:



Avoiding cycles

・ロト・(四ト・(川下・(日下))

- If a list has a cycle, then there is a $S \subseteq V$ s.t. $S \subseteq n[S]$.
- On the other hand, it is always the case that $\emptyset \subseteq n[\emptyset]$.
- So we insist that this is the only case:

 $\mathsf{axm}_3: \forall S \cdot S \subseteq V \land S \subseteq n[S] \Rightarrow S = \emptyset$

It can be used to prove properties in infinite lists.We will derive from it an axiom scheme of induction.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 • • • • • •

- Abscense of cycles: $\forall S \cdot S \subseteq V \land S \subseteq n[S] \Rightarrow S = \emptyset$
- S can be written as S = V \ T, for some T (For example, T = V \ S would work)
- Then:

$$\forall S \cdot S = V \setminus T \land \underbrace{S \subseteq V}_{\uparrow} \land S \subseteq n[S] \Rightarrow S = \emptyset$$

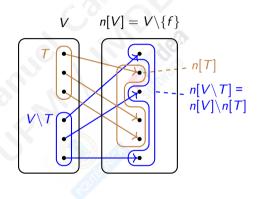
Redundant

- Removing redundant subformula:
- Let us focus on $S = \emptyset$

$$\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow S = \emptyset$$

Let us simplify $\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow S = \emptyset$

- If $S = V \setminus T$, then $S = \emptyset \equiv V \setminus T = \emptyset \equiv V \subseteq T$
- The non-cycle condition then becomes $\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow V \subseteq T$
- Let us focus on *n*[*S*]
- Since $S = V \setminus T$, $n[S] = n[V \setminus T]$
- Since n is bijective, n[V\T] and n[T] don't intersect (see figure on the right)
- Therefore, $n[V \setminus T] = n[V] \setminus n[T]$



◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○◆

・ロト・(四ト・(川下・(日下))

- Since $S = V \setminus T$ and $n[V \setminus T] = n[V] \setminus n[T]$, $S \subseteq n[S]$ becomes $V \setminus T \subseteq n[V] \setminus n[T]$
- Let us simplify that condition
- By definition: $f \in V$ and $f \notin n[V \setminus T]$ (*f* is not in the range of *n*)
- Since $V \setminus T \subseteq n[V \setminus T]$, $f \notin V \setminus T$ (because $f \notin n[V \setminus T]$ and $V \setminus T$ is a subset of $n[V \setminus T]$)
- Therefore f must be *subtracted* from V by T, and then $f \in T$
- Also by definition, $n[V] = V \setminus \{f\}$.
- So we can rewrite $V \setminus T \subseteq n[V] \setminus n[T]$ as $V \setminus T \subseteq (V \setminus \{f\}) \setminus n[T]$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

• Let us simplify
$$\underbrace{V \setminus T}_{e} \subseteq \underbrace{(V \setminus \{f\}) \setminus n[T]}_{f}$$
.

- We know that $f \in V$ and $f \in T$.
- f is not in set (f), and then it should not be in (e); it is removed by (b).
- Then we have to worry about how much is removed by (b) and (d).
- If (*d*) removes "too much", then (*e*) will be larger.
- I.e., if (*d*) contains an element that is not in (*b*), then (*e*) will contain an element that is not in (*f*).
- Therefore, (d) cannot contain elements that are not in (b) (or, any element in (d) must also be in (b))
- So the formula simplifies to $n[T] \subseteq T$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Putting all together, the non-cycle condition becomes

 $\forall S \cdot S = V \setminus T \land f \in T \land n[T] \subseteq T \Rightarrow V \subseteq T$

If we expand $n[T] \subseteq T$:

thm_2 : $\forall T \cdot f \in T \land (\forall x \cdot x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T$

- *T* the set of elements with some property *P*: $T = \{x | P(x)\}$
- So the meaning of thm_2 is:
 - If the initial node f has property P ($f \in T$), and
 - For every element with property P ($x \in T$), the next one has this property ($n(x) \in T$), then
 - All elements have property P ($V \subseteq T$).

Using thm_2 to prove list properties

- We want to prove P(x) for all $x \in V$.
- Elements for which *P* holds:

 $T = \{x | x \in V \land P(X)\}.$

• We want to prove that T = V.

- Since by construction $T \subseteq V$, it is enough to prove $V \subseteq T$.
- We do that by instantiating T in thm_2.

$$f \in \{x | x \in V \land P(x)\} \qquad \land$$

$$\forall x \cdot x \in \{x | x \in V \land P(x)\} \Rightarrow n(x) \in \{x | x \in V \land P(x)\} \Rightarrow$$

$$V \subseteq \{x | x \in V \land P(x)\}$$

- $f \in \{x | x \in V \land P(x)\} \equiv P(f).$
- Second part equivalent to $\forall x \cdot x \in V \land P(x) \Rightarrow P(n(x)).$

- The RHS is equivalent to $\forall x \cdot x \in V \Rightarrow P(x)$.
- Instantiating thm_2 gives a scheme to prove by induction in infinite lists.

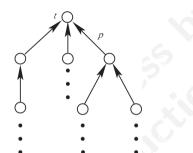
Finite lists

うびん 聞 ふぼやんぼやん ロマ

• Basically as infinite lists, but including a last (/) element and a different axiom 2:

 $\begin{array}{ll} \operatorname{axm}_{4} : & l \in V \\ \operatorname{axm}_{5} : & \operatorname{finite}(V) \\ \operatorname{axm}_{2}' : & n \in V \setminus \{l\} \rightarrowtail V \setminus \{f\} \\ \operatorname{induction} : & \forall T \cdot T \subseteq V \land f \in T \land (\forall x \cdot x \in V \setminus \{l\} \land x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T \end{array}$

Infinite trees



- *t* is the root.
- *p* links node with parent (surjection).
- No cycles.

 $\begin{array}{ll} \mathsf{axm_1}: & t \in V\\ \mathsf{axm_2}: & p \in V \setminus \{t\} \twoheadrightarrow V\\ \mathsf{axm_3}: & \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \varnothing \end{array}$

Induction rule:

 $\forall T \cdot t \in T \land p^{-1}[T] \subseteq T \Rightarrow V \subseteq T$

Instantiation to prove properties: $\forall T \cdot T \subseteq V \land t \in T \land$ $(\forall x \cdot x \in V \setminus \{t\} \land p(x) \in T \Rightarrow x \in T)$ $\Rightarrow V \subseteq T$

Note: placement of *p* in implication is *opposite* w.r.r. *f* for lists – "direction" of arrows reversed!

Finite trees

• *t* is the root.

- *p* relates every node with its parent.
- *L* is the set of tree leaves.
- There should not be cycles.

axm_1 :	$t \in V$
axm_2 :	$L \subseteq V$
axm_3 :	$p \in V ackslash \{t\} woheadrightarrow V ackslash L$
axm_4 :	$\forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \emptyset$

The induction scheme is as in infinite trees.

(日)