
Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Event B: Modeling and Reasoning with Data Structures1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1With material from J. R. Abrial bookModeling in Event-B: system and software engineering.

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Infinite Lists . s. 4
Finite Lists . s. 15
Infinite Trees . s. 16
Finite Trees . s. 17

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Strategy

Data structures involving pointers / references described with
relations, functions.
Specific axioms of these specific data structures give properties of
the functions that model the data structures.
These properties are necessary for theorem provers to discharge
proofs on data structures.
Specific forms of these axioms (capturing induction on the data
structures) are well-suited to be used in automated proofs.

We will focus on formalizing:
Infinite lists.
Finite lists.
Infinite trees.
Finite trees.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Infinite lists

Set V of list nodes.
Initial node f .
Bijective next function.
There is a next and a previous (with the
exception of f)

axm_1 : f ∈ V

axm_2 : n ∈ V ↣↠ V \{f }

f n

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Characterizing (and avoiding) cycles
Cycles:

a b c d e f g

S = {b, c , d} n[S] = {b, c , d} S ⊆ n[S]

No cycles:

a b c d e f g

S = {b, c , d} n[S] = {c , d , e} S ̸⊆ n[S]

(for almost any S ⊆ V)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Characterizing (and avoiding) cycles
Cycles:

a b c d e f g

S = {b, c , d} n[S] = {b, c , d} S ⊆ n[S]

No cycles:

a b c d e f g

S = {b, c , d} n[S] = {c , d , e} S ̸⊆ n[S]

(for almost any S ⊆ V)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Characterizing (and avoiding) cycles
Cycles:

a b c d e f g

S = {b, c , d} n[S] = {b, c , d} S ⊆ n[S]

No cycles:

a b c d e f g

S = {b, c , d} n[S] = {c , d , e} S ̸⊆ n[S]

(for almost any S ⊆ V)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Avoiding cycles

If a list has a cycle, then there is a S ⊆ V s.t. S ⊆ n[S].
On the other hand, it is always the case that ∅ ⊆ n[∅].
So we insist that this is the only case:

axm_3 :∀S · S ⊆ V ∧ S ⊆ n[S] ⇒ S = ∅

It can be used to prove properties in infinite lists.
We will derive from it an axiom scheme of induction.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

From absence of cycles to induction

Abscense of cycles: ∀S · S ⊆ V ∧ S ⊆ n[S] ⇒ S = ∅
S can be written as S = V \T , for some T
(For example, T = V \S would work)
Then:

∀S · S = V \T∧ S ⊆ V ∧S ⊆ n[S] ⇒ S = ∅

Redundant

Removing redundant subformula: ∀S · S = V \T ∧ S ⊆ n[S] ⇒ S = ∅
Let us focus on S = ∅

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

From absence of cycles to induction

Let us simplify ∀S · S = V \T ∧ S ⊆ n[S] ⇒ S = ∅

If S = V \T , then
S = ∅ ≡ V \T = ∅ ≡ V ⊆ T

The non-cycle condition then becomes
∀S · S = V \T ∧ S ⊆ n[S] ⇒ V ⊆ T

Let us focus on n[S]

Since S = V \T , n[S] = n[V \T]

Since n is bijective, n[V \T] and n[T]
don’t intersect (see figure on the right)
Therefore, n[V \T] = n[V]\n[T]

V

T

V \T

n[V] = V \{f }

n[T]

n[V \T] =
n[V]\n[T]

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

From absence of cycles to induction

Since S = V \T and n[V \T] = n[V]\n[T], S ⊆ n[S] becomes V \T ⊆ n[V]\n[T]

Let us simplify that condition
By definition: f ∈ V and f ̸∈ n[V \T] (f is not in the range of n)
Since V \T ⊆ n[V \T], f ̸∈ V \T
(because f ̸∈ n[V \T] and V \T is a subset of n[V \T])
Therefore f must be subtracted from V by T , and then f ∈ T

Also by definition, n[V] = V \{f }.
So we can rewrite V \T ⊆ n[V]\n[T] as V \T ⊆ (V \{f })\n[T]

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

From absence of cycles to induction

Let us simplify
a︷︸︸︷
V \

b︷︸︸︷
T︸ ︷︷ ︸

e

⊆
c︷ ︸︸ ︷

(V \{f }) \
d︷︸︸︷

n[T]︸ ︷︷ ︸
f

.

We know that f ∈ V and f ∈ T .
f is not in set (f), and then it should not be in (e); it is removed by (b).
Then we have to worry about how much is removed by (b) and (d).
If (d) removes “too much”, then (e) will be larger.
I.e., if (d) contains an element that is not in (b), then (e) will contain an element that
is not in (f).
Therefore, (d) cannot contain elements that are not in (b)
(or, any element in (d) must also be in (b))
So the formula simplifies to n[T] ⊆ T .

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

From absence of cycles to induction

Putting all together, the non-cycle condition becomes

∀S · S = V \T ∧ f ∈ T ∧ n[T] ⊆ T ⇒ V ⊆ T

If we expand n[T] ⊆ T :

thm_2 : ∀T · f ∈ T ∧ (∀x · x ∈ T ⇒ n(x) ∈ T) ⇒ V ⊆ T

T the set of elements with some property P : T = {x |P(x)}
So the meaning of thm_2 is:

If the initial node f has property P (f ∈ T), and
For every element with property P (x ∈ T), the next one has this
property (n(x) ∈ T), then
All elements have property P (V ⊆ T).

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using thm_2 to prove list properties

We want to prove P(x) for all x ∈ V .
Elements for which P holds:
T = {x |x ∈ V ∧ P(X)}.
We want to prove that T = V .

Since by construction T ⊆ V , it is
enough to prove V ⊆ T .

We do that by instantiating T in thm_2.

f ∈ {x |x ∈ V ∧ P(x)} ∧
∀x · x ∈ {x |x ∈ V ∧ P(x)} ⇒ n(x) ∈ {x |x ∈ V ∧ P(x)} ⇒

V ⊆ {x |x ∈ V ∧ P(x)}

f ∈ {x |x ∈ V ∧ P(x)} ≡ P(f).
Second part equivalent to
∀x · x ∈ V ∧ P(x) ⇒ P(n(x)).

The RHS is equivalent to
∀x · x ∈ V ⇒ P(x).

Instantiating thm_2 gives a scheme to prove by induction in infinite lists.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Finite lists

Basically as infinite lists, but including a last (l) element and a different axiom 2:

axm_4 : l ∈ V

axm_5 : finite(V)

axm_2′ : n ∈ V \{l}↣↠ V \{f }
induction : ∀T · T ⊆ V ∧ f ∈ T ∧ (∀x · x ∈ V \{l} ∧ x ∈ T ⇒ n(x) ∈ T) ⇒ V ⊆ T

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Infinite trees

t is the root.
p links node with parent (surjection).
No cycles.

axm_1 : t ∈ V

axm_2 : p ∈ V \{t}↠ V

axm_3 : ∀S · S ⊆ p−1[S] ⇒ S = ∅

Induction rule:
∀T · t ∈ T ∧ p−1[T] ⊆ T ⇒ V ⊆ T

Instantiation to prove properties:
∀T · T ⊆ V ∧ t ∈ T ∧

(∀x · x ∈ V \{t} ∧ p(x) ∈ T ⇒ x ∈ T)

⇒ V ⊆ T

Note: placement of p in implication is
opposite w.r.r. f for lists – “direction” of
arrows reversed!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Finite trees

t is the root.

p relates every node with its parent.

L is the set of tree leaves.

There should not be cycles.

axm_1 : t ∈ V

axm_2 : L ⊆ V

axm_3 : p ∈ V \{t}↠ V \L
axm_4 : ∀S · S ⊆ p−1[S] ⇒ S = ∅

The induction scheme is as in infinite trees.

	Infinite Lists
	Finite Lists
	Infinite Trees
	Finite Trees

