
Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Event B: Sets, Relations, Functions, Arithmetic1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1With material from J. R. Abrial bookModeling in Event-B: system and software engineering.

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Sets . s. 3
Relations . s. 8
Functions . s. 13
Arithmetic . s. 15
Phone Agenda . s. 16
Old societies . s. 28

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Set theory: membership

For a complete reference and succinct but rigorous definitions of all
the constructions presented in these slides, please check the Event B
mathematical toolit

Event-B formal reasoning is built based on:
First-order logic inference rules (seen).
Set theory (to be briefly reviewed now).

Set theory as a foundation for relations, functions (and, therefore,
data structures).

Proofs often reduced to proving goals on sets.

https://wp.software.imdea.org/cbc/wp-content/uploads/sites/5/2020/01/EventB-Summary.pdf
https://wp.software.imdea.org/cbc/wp-content/uploads/sites/5/2020/01/EventB-Summary.pdf

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Set theory: membership

A set is a well-defined collection of distinct objects.
Set theory is based on the membership predicate

E ∈ S

E is an expression, S is a set.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Set theory: basic constructs
Definitions

There are three basic constructs in set theory, defined by equivalences.
S and T are sets, x is a variable, P is a predicate, F is an expression.

Cartesian product: S × T
E 7→ F ∈ S × T ≡ E ∈ S ∧ F ∈ T

Powerset: P(T)
S ∈ P(T) ≡ ∀x · x ∈ S ⇒ x ∈ T

Comprehension:
Version 1: {x | x ∈ S ∧ P(x)}

E ∈ {x | x ∈ S ∧ P(x)} ≡ E ∈ S ∧ P(E)
Version 2: {x · x ∈ S ∧ P(x) | F (x)}

E ∈ {x · x ∈ S ∧ P(x) | F (x)} ≡ ∃x · x ∈ S ∧ P(x) ∧ E = F (x)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Set theory: basic constructs
Examples

{1, 2, 3} × {a, b} = {1 7→ a, 1 7→ b, 2 7→ a, 2 7→ b, 3 7→ a, 3 7→ b}
P({1, 2, 3}) = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3},∅}

{x | x ∈ {2, 3, 4, 5} ∧ x mod 2 = 0} = {2, 4}
{x · x ∈ {2, 3, 4, 5} ∧ x mod 2 = 1 | x2} = {25, 9}

Reminder: A 7→ B is a tuple.
It is sometimes written as (A,B) in other formalisms.
Shortcut: m..n ≡ {x ∈ Z | m ≤ x ∧ x ≤ n}

{x | x ∈ N ∧ x < 2} × 8..10
{x · x ∈ 3..5 | x 7→ x ∗ x}

{n · n ∈ N | (0..n) 7→ n}

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Operations on sets

S ⊆ T ≡ S ∈ P(T)

S = T ≡ S ⊆ T ∧ T ⊆ S

S ∪ T ≡ {x | x ∈ S ∨ x ∈ T}
S ∩ T ≡ {x | x ∈ S ∧ x ∈ T}
S \ T ≡ {x | x ∈ S ∧ x ̸∈ T}

E ∈ {a, . . . , z} ≡ E = a ∨ . . . ∨ E = z

E ∈ ∅ ≡ ⊥

Operators based on membership and
logic operations.
Note: E ̸∈ T ≡ ¬(E ∈ T).
Also: generalized / conditional union
and intersection (see reference cards).

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Binary relations

A binary relation r is a subset of their
Cartesian product: r ⊆ S × T

Different syntax to highlight structure.
S ↔ T is the set of all possible
relations between S and T .

r would be one of them: r ∈ S ↔ T .
S ↔ T = P(S × T)

r ∈ 1..3↔ 7..11
r = {1 7→ 10, 2 7→ 7, 2 7→ 11}
4 7→ 10 ̸∈ r

x ∈ dom(r) ≡ ∃y · x 7→ y ∈ r

y ∈ ran(r) ≡ ∃x · x 7→ y ∈ r

r−1 ≡ {y 7→ x | x 7→ y ∈ r}

r ∈ {meat, fish, pasta, bacon}↔ {carbs, protein, fat} – write a couple of relations.
dom(r), ran(r), relation with S and T

How many different r may there be?

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Types of relations

Total S ←↔ T r ∈ S ↔ T ∧ dom(r) = S
Surjective S ↔→ T r ∈ S ↔ T ∧ ran(r) = T
Both S ↔↔ T r ∈ S ↔→ T ∧ r ∈ S ←↔ T

Hint: sets and relations are very useful modeling tools!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Operations on relations

Domain restriction S ◁ r {x 7→ y ∈ r | x ∈ S}
Domain subtraction S ◁− r {x 7→ y ∈ r | x ̸∈ S}
Range restriction r ▷ T {x 7→ y ∈ r | y ∈ T}
Range subtraction r ▷− T {x 7→ y ∈ r | y ̸∈ T}

Assume Prey ∈ Animal ↔ Animal .
We mean hunter 7→ hunted . The syntax of
the relation does not reveal its intended
semantics.

Mammal ◁ Prey

Mammal ◁− Prey

Prey ▷ Spiders

Fish ◁ (Prey ▷ Spiders)

Spiders ◁− (Prey ▷ Spiders)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Operations on relations

Image p[S] {y | x 7→ y ∈ p ∧ x ∈ S}
if p = {a 7→ 1, b 7→ 2, c 7→ 3, d 7→ 4} and S = {b, c} then p[S] = {2, 3}

Composition p; q {x 7→ z | x 7→ y ∈ p ∧ y 7→ z ∈ q}
if q = {1 7→ 1, 2 7→ 4, 3 7→ 9, 4 7→ 16} then p; q = {a 7→ 1, b 7→ 4, c 7→ 9, d 7→ 16}

Identity id(S) {x 7→ x | x ∈ S}
if S = {a, b, c} then id(S) = {a 7→ a, b 7→ b, c 7→ c}

Overriding p ◁− q (dom(q)◁− p) ∪ q
p ◁− {a 7→ −1, c 7→ −3, e 7→ −5} = {a 7→ −1, b 7→ 2, c 7→ −3, d 7→ 4, e 7→ −5}

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Some useful results, definitions

(r−1)−1 = r

dom(r−1) = ran(r)
(S ◁ r)−1 = r−1 ▷ S

(p; q)−1 = q−1; p−1

p; (q; r) = (p; q); r

p; (q ∪ r) = (p; q) ∪ (p; r)

(p; q)[S] = q[p[S]]

r [S ∪ T] = r [S] ∪ r [T]

r = r−1 symmetric
r ∩ r−1 = ∅ asymmetric
id(S) ⊆ r reflexive
r ; r ⊆ r transitive

Set-theoretic notation more readable than predicate calculus
r = r−1 ≡ ∀x , y · x ∈ S ∧ y ∈ S ⇒ (x 7→ y ∈ r ⇔ y 7→ x ∈ r)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Functions

Functions: one type of relations.
Every element in the domain relates to one element in the range
only:

x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z

Notation:
f (x) = y ≡ x 7→ y ∈ f .
f (x) := y ≡ f := f ◁− {x 7→ y}

WD conditions for f (x):
f ∈ S 7→ T
x ∈ dom(f)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Classes of functions

Total function: dom(f) = S S → T
Partial function: dom(f) ⊂ S S 7→ T

Injection: if f (x) = f (y), then x = y

Total injection S ↣ T
Partial injection S 7↣ T

Surjection: ran(f) = T

Total surjection S ↠ T
Partial surjection S 7↠ T

Bijection S ↣↠ T

Selecting the right type of function imposes (useful) constraints / invariants to the
domain and make it possible to use different proofs.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Arithmetic

The usual (+, -, *, ÷) plus: mod, ˆ (power).
card(set), min(set), max(set)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

A Phone Agenda

Model a phone agenda.
Associates phone numbers and people.
We do not care what phone numbers and people are.

E.g., phone numbers do not have to be numbers.
We don’t make arithmetic with them!

Plus a set of integrity constraints, operations.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

A Phone Agenda
Requirements

FUN 1 We should model a library to handle people and their phone numbers, providing a
series of operations.

FUN 2 The library should allow us to add a person and their phone number.

FUN 3 The library should allow us to remove a phone number from the agenda.

FUN 4 The library should allow us to remove a person from the agenda.

FUN 5 The library should allow us to mark a phone number as the preferred contact for the
person to whom the phone number belongs

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

A Phone Agenda
Requirements

FUN 6 The library should allow us to unmark a phone number as preferred contact

FUN 7 The library should allow us to transfer one phone number to a new owner

FUN 8 There cannot be persons in the agenda without an associated phone number

FUN 9 There cannot be phone numbers in the agenda without an associated owner

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

A Phone Agenda
Requirements

FUN 10 One person can have several phone numbers

FUN 11 Every phone number can be the contact of one person only

FUN 12 Any person must have at most one preferred number

We don’t include events to consult the agenda (e.g., “Give me
person X’s phone number”). They are trivial.
The events will have guards as non-restrictive as possible as long
as a sensible outcome can be achieved.

E.g., removing a phone does not need to check that it is in the
agenda; if it is not, it becomes a no-op.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda

CONTEXT phone_Ctx
SETS

People Infinite. If finite, all the POs can be discharged anyway
Phones Infinite. If finite, all the POs can be discharged anyway

END

VARIABLES
agenda The agenda where we store names and phone numbers
preferred A set of numbers that we prefer for calling some people

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda

INVARIANTS
invAgenda: agenda ∈ Phones 7→ People
- Every phone belongs to one person only
- There are no phones without an owner
- There are no persons in the agenda without a phone
invPref: preferred ⊆ dom(agenda)

The preferred numbers have to be in the agenda
uniquePref: ∀p1, p2·(p1 ∈ preferred ∧ p2 ∈ preferred ∧ p1 ̸=
p2)⇒ agenda(p1) ̸= agenda(p2)
Every person has at most one preferred contact

Initialisation We start with an empty agenda
begin

act1: agenda := ∅
act3: preferred := ∅

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda
Event AddPhone ⟨ordinary⟩ =̂

Insert a new phone and person to who it is associated.
any

person External parameters
phone

where
grd1: person ∈ People
grd2: phone ∈ Phones
grd3: phone /∈ dom(agenda)
Needed to respect uniquePref

then
act1: agenda(phone) := person

end

If we do not have grd3, uniquePref/INV cannot
be discharged because of the following
scenario: let us have

agenda = {ph1 7→ prs1, ph2 7→ prs2}
preferred = {ph1, ph2}

If AddPhone is invoked with parameters
prs2, ph1, the result would be
agenda = {ph1 7→ prs2, ph2 7→ prs2}
preferred = {ph1, ph2}
which violates the invariant.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda

Event RemovePhone ⟨ordinary⟩ =̂ Remove a phone number. If it’s the last one for a
person, then the owner also needs to be removed.

any
phone

where
grd1: phone ∈ Phones We do not need to require that it
is already in the agenda (but we might). Nothing will
happen if it is not. If it is the last phone of a person,
the person has to be removed as well.

then
act1: agenda := {phone}◁− agenda
"agenda := agenda \ {phone 7→ agenda(phone)}" also works
act22: preferred := preferred \ {phone}We cannot have
orphan phone numbers. invPref would be violated
otherwise.

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda

Event RemovePerson ⟨ordinary⟩ =̂ If person not in agenda, nothing changes
any

person
where

grd1: person ∈ People
then

act1: agenda := agenda▷− {person} Remove from agenda
all entries associated with that person
act2: preferred := preferred \ agenda−1[{person}] If the
person had a preferred phone number, we have to remove
it. Get the phone numbers associated with the person,
remove them from the list of preferred phone numbers.

end

dom(agenda▷ {person}) instead of agenda−1[{person}] would also work – they are
equivalent expressions.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda
Event MakePreferred ⟨ordinary⟩ =̂ Remember at most one preferred phone number per

person!
any

phone
where

grd2: phone ∈ dom(agenda)We cannot make a phone
preferred if it is not in the agenda

then
act1: preferred :=
(preferred \ agenda−1[{agenda(phone)}]) ∪ {phone} If we
just do preferred := preferred ∪ {phone} we might end
up with more than one preferred phone # per person!

end

If we have
agenda = {ph1 7→ p1, ph2 7→ p1}
preferred = {ph1}
and we want to mark ph2 as preferred, we have

to remove ph1 it from the set of preferred
phones. We ensure that by removing first from
preferred all the phones that belong to the
owner of ph2.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda

Event RemovePreferred ⟨ordinary⟩ =̂
any

phone
where

grd1: phone ∈ Phones It could also be "phone ∈
dom(agenda)". If it is not in the agenda, nothing will
happen.

then
act1: preferred := preferred \ {phone}

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Phone Agenda
Event TrasferPhone ⟨ordinary⟩ =̂ Change the owner of a phone #. We do not set it as

preferred.
any

phone
next_owner

where
grd1: phone ∈ dom(agenda)

grd2: next_owner ∈ People

grd3: next_owner ̸= agenda(phone) It does not make
sense to transfer a phone to its current owner. We
could accept it, but it complicates the specification. For
the sake of clarity, it seems simpler just not to allow
that transition.

then
act1: agenda(phone) := next_owner
act2: preferred := preferred \ {phone}

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Extra slides / example

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is either a man or a woman.
No person is man and woman at the same time.
Only women have husbands, who must be men.
Woman have at most one husband.
Men have at most one wife.
Mother are married women.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON

No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men

Women have husbands (men)
husband ∈ women 7↣menAt most one husband per woman

Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife

Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse =
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father =
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children =

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter =
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter = children ▷ women
sibling =
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter = children ▷ women
sibling = (children−1; children) \ id(PERSON)
brother =

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

An example of functions and relations: an old society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7↣menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter = children ▷ women
sibling = (children−1; children) \ id(PERSON)
brother = men ▷ sibling

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Properties

mother = father ;wife

spouse = spouse−1

father ; father−1 = mother ;mother−1

father ;mother−1 = ∅
mother ; father−1 = ∅
father ; children = mother ; children

sibling = sibling−1

cousin = cousin−1

	Sets
	Relations
	Functions
	Arithmetic
	Phone Agenda
	Old societies

