
Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

One-Way Bridge1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Example and several slides from J. R. Abrial bookModeling in Event-B: system and software engineering.

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Goals . s. 3
Requirements . s. 7
Initial model . s. 17
First refinement: one-way bridge . s. 29

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Goals of this chapter

Example of reactive system
development.
Including modeling the environment.
Invariants: capture requirements.

Invariant preservation will prove that
requirements are respected.

Increasingly accurate models
(refinement).

Refinements “zoom in”, see more
details.
Models separately proved correct.

Final system: correct by construction.
Correctness criteria: proof obligations.
Proofs: helped by theorem provers
working on sequent calculus.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Difference with previous examples

Previous examples were transformational.
Input⇒ transformation⇒ output.

Current example:
Interaction with environment.

Sensors and communication channels:
Hardware sensors modeled with events.
Channels modeled with variables.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Correctness within an environment

Control software reads sensor, raises
barrier.

If conditions allow it.

Software behavior relies on
environment:

Cars stop on a closed barrier.
Cars drive over sensor.
. . .

Correctness proofs: take this behavior
into account.

Model external actions as events.
E.g., sensor signal raised by event.
Following expected behavior.

Software control also events.
Everything subject to proofs.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Correctness within an environment

Control software reads sensor, raises
barrier.

If conditions allow it.

Software behavior relies on
environment:

Cars stop on a closed barrier.
Cars drive over sensor.
. . .

Correctness proofs: take this behavior
into account.

Model external actions as events.
E.g., sensor signal raised by event.
Following expected behavior.

Software control also events.
Everything subject to proofs.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements document

Sequential systems specified through {Pre} P {Post}.
Considerably more difficult in case of (a) large real-world and (b)
reactive systems.
Building it piece-wise, modeling (natural-language) requirements
and ensuring they are respected: a way to ensure we have a
detailed system specification that is provable correct.

Two kinds of requirements:
Concerned with the equipment (EQP).
Concerned with system functionality (FUN).

Objective: control cars on a narrow bridge.
Bridge links the mainland to (small) island.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (2) 6

The system is controlling cars on a bridge
between the mainland and an island FUN-1

- This can be illustrated as follows

Bridge MainlandIsland

6

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (3) 7

- The controller is equipped with two traffic lights with two colors.

The system has two traffic lights with two
colors: green and red EQP-1

7

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (4) 8

- One of the traffic lights is situated on the mainland and the other

one on the island. Both are close to the bridge.

- This can be illustrated as follows

Bridge MainlandIsland

8

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (5) 9

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

- Drivers are supposed to obey the traffic light by not passing when

a traffic light is red.

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

9

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (6) 10

- There are also some car sensors situated at both ends of the bridge.

- These sensors are supposed to detect the presence of cars

intending to enter or leave the bridge.

- There are four such sensors. Two of them are situated on the bridge

and the other two are situated on the mainland and on the island.

The system is equipped with four car sensors
each with two states: on or off EQP-4

10

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (7) 11

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

- The pieces of equipment can be illustrated as follows:

BridgeIsland Mainland

traffic light
sensor

11

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

RequirementsA Requirements Document (8) 12

- This system has two main constraints: the number of cars

on the bridge and the island is limited and the bridge is one way.

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

12

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Overview

Software controller has model of the world.
In some sense, it partially simulates it.
Knowledge of world through sensors.
Incrementally adding requirements, proving they are implemented.

When finished, an additional software layer (= more events)
simulate the “real world”.

“Real world” simulation only interacts with controller through
sensors, actuators.
Proof that controller + simulation follow requirements.

Real implementation: strip “Real world” layer, derive code from
software controller.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Strategy

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3)
Third refinement Introducing the sensors (EQP-4,5)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Initial model

We ignore the equipment (traffic lights and sensors).
We do not consider the bridge.
We focus on the pair island + bridge.
FUN-2: limit number of cars on island + bridge.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Situation from the skyA Situation as Seen from the Sky 19

M a i n l a n d
I s l a n d

+ b r i d g e

19

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Situation from the skyTwo Events that may be Observed 20

ML_out

ML_in

20

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Formalization of state
✓ Create project Cars, context c0, machine m0, add constant, axiom, variable, invariants, initializa-
tion

Static part (context):

constant: d

axm0_1: d ∈ N

d is the maximum number of cars allowed
in island + bridge.

Dynamic part (machine):
variable: n

inv0_1: n ∈ N
inv0_2: n ≤ d

n number of cars in island + bridge
Always smaller than or equal to d (FUN_2)

Labels axm0_1, inv0_1, chosen
systematically.
Label axm, inv recalls purpose.
0 (as in inv0_1): initial model.

Later: inv1_ 1 for invariant 1 of
refinement 1, etc.

Any systematic convention is valid.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Situation from the skyEvent ML out 24

- This is the first transition (or event) that can be observed

- A car is leaving the mainland and entering the Island-Bridge

Before After

ML_out

- The number of cars in the Island-Bridge is incremented

24

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Situation from the skyEvent ML in 25

- We can also observe a second transition (or event)

- A car leaving the Island-Bridge and re-entering the mainland

Before

ML_in

After

- The number of cars in the Island-Bridge is decremented

25

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Situation from the sky
✓ Create events ML_out, ML_in. Add actions. Guards?Formalizing the two Events: an Approximation 26

- Event ML out increments the number of cars

ML out
n := n + 1

- Event ML in decrements the number of cars

ML in
n := n − 1

- An event is denoted by its name and its action (an assignment)

26

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events

INITIALISATION
n := 0

Event ML_out
where
n < d

then
n := n + 1

end

Event ML_in
where

0 < n
then
n := n − 1

end

ML_out/inv0_1/INV d ∈ N, n ∈ N, n ≤ d , n < d ⊢ n + 1 ∈ N
ML_out/inv0_2/INV d ∈ N, n ∈ N, n ≤ d , n < d ⊢ n + 1 ≤ d

ML_in/inv0_1/INV d ∈ N, n ∈ N, n ≤ d , 0 < n ⊢ n − 1 ∈ N
ML_in/inv0_2/INV d ∈ N, n ∈ N, n ≤ d , n < d ⊢ n − 1 < d

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
Therefore, (some) event(s) have to
always be enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m ⊢
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ⊢ n < d ∨ 0 < n

✓ Add invariant at the end, mark as
theorem.

Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
Therefore, (some) event(s) have to
always be enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m ⊢
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ⊢ n < d ∨ 0 < n

✓ Add invariant at the end, mark as
theorem.
Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
Therefore, (some) event(s) have to
always be enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m ⊢
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ⊢ n < d ∨ 0 < n

✓ Add invariant at the end, mark as
theorem.
Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
Therefore, (some) event(s) have to
always be enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m ⊢
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ⊢ n < d ∨ 0 < n

✓ Add invariant at the end, mark as
theorem.
Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Strategy

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3)
Third refinement Introducing the sensors (EQP-4,5)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Physical system (reminder)Reminder of the physical system 84

BridgeIsland Mainland

traffic light
sensor

84

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

One-way bridge

We introduce the bridge.
We refine the state and the events.
We also add two new events: IL_in and IL_out.
We are focusing on FUN-3: one-way bridge.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

One-way bridge

First Refinement: Introducing a one Way Bridge 86

IL_in

I s l a n d

I s l a n d

One Way
Bridge

ML_out

IL_out ML_in

86

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

One-way bridgeIntroducing Three New Variables: a, b, and c 87

b

a

c

- a denotes the number of cars on bridge going to island

- b denotes the number of cars on island

- c denotes the number of cars on bridge going to mainland

- a, b, and c are the concrete variables

- They replace the abstract variable n

87

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 ??
Formalization of one-way bridge (FUN-3) inv1_5 ??

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to prove the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing correctly that requirement.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 a+ b + c = n
Formalization of one-way bridge (FUN-3) inv1_5 ??

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to prove the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing correctly that requirement.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 a+ b + c = n
Formalization of one-way bridge (FUN-3) inv1_5 a = 0 ∨ c = 0

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to prove the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing correctly that requirement.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 a+ b + c = n
Formalization of one-way bridge (FUN-3) inv1_5 a = 0 ∨ c = 0

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to prove the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing correctly that requirement.

	Goals
	Requirements
	Initial model
	First refinement: one-way bridge

