
Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

A Market Compliant with COVID-19 Regulations

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

mailto:manuel.carro@upm.es

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Goals . s. 3
Initial model . s. 8
First refinement . s. 11
Second refinement . s. 16
Third refinement . s. 25

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Scenario

We have to automate the checkout desk of a market.
We have to control when clients enter the checkout area.
Expected behavior:

Clients wait in front of a screen displaying a number or “WAIT”.
When a number appears, client walks to the corresponding counter.
As soon as it passes by the screen, “WAIT” is displayed.
When the client reaches the counter, either a new number is
displayed (if there are free counters) or “WAIT” (otherwise).
When a client leaves, a counter number is displayed.

Sensors register people movements.
People behave (no need for physical barriers).

Note: non-complete model.
Focus on showing use of sets and giving a taste of model checking.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

What we see

(Sizes not necessarily proportional)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements

REQ 1 The market exit is divided in three areas: the waiting area, the checkout counters
and a checkout corridor that connects them.

REQ 2 At most one client can be in the corridor at any time.

REQ 3 At most one client can be in a checkout counter at any time.

REQ 4 A screen at the entrance of the tells clients to either wait for the corridor to be clear
or a counter to be free, or displays the identifier of an available counter.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements

REQ 5 When the corridor is not empty, the screen displays “WAIT”.

REQ 6 When no counter is free, the screen displays “WAIT”.

REQ 7 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

REQ 8 There are sensors that register people passing at the entrance of the corredor and
at the entrance and exit of every counter.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Modeling approach

As usual: bird’s-eye view.
Include more requirements, details as we “get closer”.
Do not to overspecify early: refinement may become impossible.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view, visible events

Clients arrive at the checkout desks.

Clients leave the checkout desks.

We only check that we do not have
more clients than counters.

Partial fullfillment of

REQ 9 At most one client can be in a
checkout counter at any time.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model

Context c0

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS ∈ ??

Machine m0
VARIABLES nclients
INVARIANTS nclients ∈ 0..NCOUNTERS

Event arrive
when nclients < NCOUNTERS
then

nclients := nclients + 1
end

Event leave
when nclients > 0
then

nclients := nclients − 1
end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view

Keep track of (non) available counters.

Fullfill

REQ 10 At most one client can be
in a checkout counter at any
time.

Do not follow people.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS ???

busy ⊆ COUNTERS
card(busy) = nclients

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then
busy := busy\{c}

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view

Will introduce several components.
Screen: tells clients what to do
(controls entrance to corridor).

One-person, one-way corridor:
changes contents of screen.

Selection of available counter via
screen.

Difference with car semaphores: screen
goes “red” even if there are free counters
(when people in corridor), then may go
“green” again.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Initial model considerations

Two variables for display, one for corridor:
wait ∈ BOOL: clients need to wait?
next_counter ∈ COUNTERS : show free
counter / register client destination.
(can be used to open physical barrier?).

in_corridor ∈ BOOL

Relationship below.
Will be captured via invariants.

in_corridor wait meaning of next_counter
FALSE FALSE Destination of client (displayed)
FALSE TRUE Meaningless (all counters busy, not displayed)
TRUE FALSE IMPOSSIBLE
TRUE TRUE Destination of client (not displayed)

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Initial model considerations

Introducing event enter.
Refining events arrive, leave.
Events & variables model both people,
controller.

Will be split in next refinement.

Handling the screen

Could be checked after every
state-changing event.

Repeated reasoning, models.
Specialize events for every situation.
(last and non-last car in bridge example)

Separate events handle screen
according to state variables.

But: additional interleavings, more
error possibilities!

Risky if not verified!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait := FALSE

next_counter :∈ COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Requirements and invariants

REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = TRUE ⇒ wait = TRUE

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

The new enter and refined arrive and leave

leave does not need to be changed.
A client (can) enter when there is no need to wait.
The corridor has one more person.
Other clients have to wait

Event enter
when wait = FALSE
then

in_corridor := in_corridor + 1
wait := TRUE

end

Type in “enter”

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Refining arrive

next_counter : see next slide. GRD not discharged.

Event arrive (abstract)
refines arrive
any c
where

c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

end

Event arrive (concrete)
refines arrive
when in_corridor > 0
with c: c = next_counter
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}

end

Parameter c disappeared: need to state
concrete value for it.
Modify “arrive”
GRD needs to relate guards: prove
in_corridor > 0 ⇒ next_counter ̸∈ busy

If it was a gluing invariant, GRD would be
proven.
It is! Add it and GRD should be proven.
Not a requirement, but (a) necessary
lemma and (b) sensible.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Screen management

Display is set to “WAIT” when a client enters.
We only need to decide whether we allow more clients to enter.

Event screen_num
when

COUNTERS ̸= busy
in_corridor = 0
wait = TRUE

then
next_counter :∈ COUNTERS \ busy
wait := FALSE

end

Type them in
All POs should be fine now.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

High-level view

Keep previous “logical” model.
Add physical model on top, connect
with logical model.

Separate environment and system
variables / events.

Keep interactions clear!
Guidelines:

Some events simulate environment
(clients).
They react to environment variables
and act on sensors.
Events that represent the controller.
They react to sensors and act on
environment variables.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

How sensors work

Not necessarily real sensors.
Client presence activates sensor (a BOOL).

Stays on until deactivated by controller.
Modeling sensor arrays:

First idea: use booleans, functions.

S_E ∈ BOOL
S_A ∈ COUNTER → BOOL
S_L ∈ COUNTER → BOOL

S_E sensor entry; S_A sensor arrival; S_L sensor for leaving.
However, two last ones are indicator sets.
We can use the set of activated sensors.

S_A,S_L ⊆ COUNTER

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model

enter, arrive, leave refined.
New events enter_s, arrive_s, leave_s.

Note: we will not show leave_s. It is of little interest.
*_s represent people; they react to environment variables, trigger
changes in sensors.
Modeling agent behavior: variables that represent what people
can see, do.

SCREEN_CNT ∈ {WAIT ,NOWAIT} What the screen displays (WAIT or a number)
CROSSING_E ∈ BOOL A person is crossing the corridor sensor
IN_CORRIDOR ∈ {0, 1} Number of people in the corridor

IN_CORRIDOR could be BOOL. We would then need a gluing
invariant with in_corridor . Keeping it in {0, 1} is easier.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model
Event enter (abstract)

refines enter
when wait = FALSE
then

in_corridor := TRUE
wait := TRUE

end

CROSSING_E in enter_s: a physical person is
crossing. Others can see it. We behave
correctly.
In enter: controller events should not update
environment variables. But we (exceptionally?)
model assumption that controllers so fast that
when a person has physically crossed,
controller has already updated state.

Event enter_s
when SCREEN_CNT = NOWAIT

CROSSING_E = FALSE
then

CROSSING_E := TRUE
S_E := TRUE
IN_CORRIDOR := IN_CORRIDOR + 1

end

Event enter
refines enter
when S_E = TRUE // Only look at sensor
then // abstract actions plus ...

S_E := FALSE;
CROSSING_E := FALSE // See explanation
SCREEN_CNT = WAIT

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Using sensors in refined model

Event arrive (abstract)
refines arrive
when in_corridor > 0
with c: c = next_counter
then

in_corridor := FALSE
busy := busy ∪ {next_counter}

end

CROSSING_E is used here to ensure that a
person has actually crossed the entrance
and is in the corridor.

Event arrive_s
when IN_CORRIDOR > 0

CROSSING_E = FALSE // State updated
then

IN_CORRIDOR := IN_CORRIDOR − 1
S_A:= S_A ∪ {next_counter}

end

Event arrive
refines arrive
when next_counter ∈ S_A
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}
S_A:= S_A \ {next_counter}

end

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Physical invariants

Invariants for environment emulation.
inv1: SCREEN_CNT ∈ SCREEN
inv2: IN_CORRIDOR ∈ {0,1}
inv3: CROSSING_E ∈ BOOL
inv4: S_E ∈ BOOL
inv5: S_A ⊆ COUNTERS

We ought to state requirements in the physical model as well (that
is what happens in reality).
We will skip stating requirements in physical model – only for
brevity!
They should be reflected here as well.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Proof obligations

In my case: pending to discharge
enter_s/inv2/INV (IN_CORRIDOR ∈ {0,1})
enter/grd2/GRD (S_E = TRUE⇒ wait = FALSE)
arrive/grd1/GRD (next_counter ∈ S_A⇒ in_corridor > 0)

We will need additional helping invariants to prove them.
We will use a new approach: see how the system behaves
dynamically.
Check variable values for possible invariants.
Try to prove that they are inductive invariants and see if they help
proving things.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Animating a model with ProB

Install ProB from the “Install new software” dialog.
Check the default values in the Preferences dialog.
I would increase the size of deferred sets to 5 or 6.
And set the boundaries for integers to the range -10 to 10.
Right-click on model ’m3’.
Drive execution by clicking on the events in the left pane.
You can see the changes in variables in the pane in the middle.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Animating a model with ProB

Animating the model shows that it is, fundamentally, an event sequence that
enables either leave or screen_num or both at the end.
It starts again after that.
We can make a chart of the state of variables after every event.

INIT enter_s enter arrive_s arrive
SCREEN_CNT NOWAIT NOWAIT WAIT WAIT WAIT
IN_CORRIDOR 0 1 1 0 0
S_E ⊥ ⊤ ⊥ ⊥ ⊥
CROSSING_E ⊥ ⊤ ⊥ ⊥ ⊥
S_A ∅ ∅ ∅ {n_c} ∅
in_corridor 0 0 1 1 0
wait ⊥ ⊥ ⊤ ⊤ ⊤
busy ∅ ∅ ∅ ∅ {...}

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

First impressions

S_E and CROSSING_E have the same values.
The model can be simplified.
But: thismodel is slightly oversimplified.
In a more realistic model, they might be different.
However, in out current situation we can take advantage of this.
Add inv6: S_E = CROSSING_E.
It is inductive and immediately discharged
It gives additional hypotheses, relationships among variables
useful for later proofs.
Does not immediately help with pending proofs.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

First impressions

The next observation is that S_A is either ∅ or next_counter .
That makes sense w.r.t. the expected behavior of the model:

Only one person in the corridor.
Can enter the corridor only when the corridor is empty.
That happens when no one is in the corridor, arrival sensors.

So we can add inv7: S_A = ∅ ∨ S_A = {next_counter} .
Does not seem to help anything.
And inv7/INV not discharged for screen_num .
However, screen_num does not change S_A, so inv7 should be
preserved.
We will deal with it later.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

enter_s/inv2/INV

Seems in_corridor = 0 before and after enter_s.
Nobody should be in corridor when a person can enter.
Also, in_corridor (in the controller) changes with a delay w.r.t.
physical environment.
After INITIALIZATION: SCREEN_CNT = NOWAIT and S_E = FALSE.
Only state moment we see this.
We posit the invariant
inv8: (SCREEN_CNT = NOWAIT ∨ S_E = FALSE)⇒ IN_CORRIDOR = 0
enter_s/inv2/INV can be proven:

Remove ∈ in IN_CORRIDOR ∈ {0,1} goal (generates disjunction), and
Forcing one of the disjunction components to evaluate numerically.

screen_num/inv8/INV is however not discharged.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

enter/grd2/GRD

The proof obligation is (S_E = TRUE⇒ wait = FALSE).
Let us posit it is an invariant.

That will discharge GRD automatically.
And we can see in the table that S_E = FALSE ∨ wait = FALSE seems
to hold.

Add inv9: S_E = FALSE ∨ wait = FALSE
enter/grd2/GRD is now proved.
enter_s/inv9/INV not discharged.
We will deal with it later.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

arrive/grd1/GRD

arrive/grd1/GRD pending.
Let us posit it is an invariant.
Add inv10: next_counter ∈ S_A⇒ in_corridor = 1 .
GRD immediately proven.
One pending proof from screen_num also discharged.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Linking levels of specification

We do not have invariants that link the state of the controller and
the environment.
Without them, the model is not really checking thay they agree.
Let us start linking the status of the corridor.
If someone is physically in, and the sensor does not register a
person, the control has already registered that person.
(Can also be deduced from the table)
inv11: IN_CORRIDOR = 1 ∧ S_E = FALSE⇒ in_corridor = 1
That discharges screen_num/inv8/INV
arrive/inv11/INV pending to be discharged; we will deal with it
later.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Linking levels of specification

Also, the values of SCREEN_CNT and wait match
(although they have different types)
Introduce inv12: SCREEN_CNT = NOWAIT⇔WAIT = FALSE

Pending enter_s/inv9/INV is discharged.
Finally, if there is someone in the corridor, there is no one in the
checkout counter sensor
inv13: IN_CORRIDOR = 1⇒ S_A = ∅.
This discharges arrive/inv11/INV.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Linking levels of specification

Two pending POs in my case:
arrive/inv11/INV
screen_num/inv7/INV

Both can be solved similarly:
Click on them, go to the proving perspective.
On the proof tree on the left:

Right-click on the root node.
Select “Prune” to clean the proof attempted so fat.
In the proof control window, click on “Lasso” to bring related
hypotheses from the available ones.

That should allow the automatic provers discharge the proof.

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

Summary of invariants

inv1: SCREEN_CNT ∈ SCREEN
inv2: IN_CORRIDOR ∈ {0,1}
inv3: CROSSING_E ∈ BOOL
inv4: S_E ∈ BOOL
inv5: S_A ⊆ COUNTERS
inv6: S_E = CROSSING_E
inv7: S_A = ∅ ∨ S_A = {next_counter}
inv8: (SCREEN_CNT = NOWAIT ∨ S_E = FALSE) ⇒ IN_CORRIDOR = 0
inv9: S_E = FALSE ∨ wait = FALSE
inv10: next_counter ∈ S_A ⇒ in_corridor = 1
inv11: IN_CORRIDOR = 1 ∧ S_E = FALSE ⇒ in_corridor = 1
inv12: SCREEN_CNT = NOWAIT ⇔ WAIT = FALSE
inv13: IN_CORRIDOR = 1 ⇒ S_A = ∅

Co
rr
ec
tn
es
s
by

Co
ns
tr
uc
tio
n

M
an
ue
l C
ar
ro

U
PM

/
IM
D
EA

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

@ @ @ @ @ @ @ @ @ @ @ @ @ @ @

	Goals
	Initial model
	First refinement
	Second refinement
	Third refinement

