Synchronizing Processes on a Tree Network¹

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid \&
IMDEA Software Institute

[^0]Goals s． 3
Requirements s． 5
Initial model s． 10
First refinement s． 20
Second refinement s． 48
Third refinement s． 52
Fourth refinement s． 66

- We will formalize the solution to a problem in distributed computing.
- Studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a Method of Multi-programming. Springer Verlag, 1999.
- Using and updating functions.
- Formalize and prove properties on an interesting structure: a tree.
- Proofs more complex than those seen so far.

As usual:

- Define the informal requirements
- Define the refinement strategy
- Construct the various more and more concrete models
- Not a transformational system.
- Not supposed to finish.
- No final result.
- Not reactive.
- No external world that reacts to system changes.
- Distributed.
- Different nodes act autonomously.
- With limited information access.
- However, communication assumed to be reliable.
- Internal concurrency.
- Every node has concurrent processes.
- Small model: just three events in the last refinement.
- However, proofs and reasoning are comparatively complex.

ENV 1 We have a fixed set of processes forming a tree

－Note：they do not need to form a tree from the beginning．
－A set of communicating processes can coordinate to form a tree．

- All processes are supposed to execute forever the same code.
- But processes must remain (somewhat) synchronized.
- For this, each process has (initially) one counter.

> | ENV 2 | Each process has a counter, which is a natural number |
| :--- | :--- |

- A process counter represents its "phase" (related to the work for which they have to synchronize).
- Difference between any two counters \leq one.
- Each process is thus at most one phase ahead of the others

FUN 3 The difference between any two counters is at most one

- Reading the counters

FUN 4 \quad Each process can read the counters of its neighbors only
(Neighbors to be understood as connected by a link)

- Modifying the counters

FUN 5 $\begin{aligned} & \text { The counter of a process can be modified by this process } \\ & \text { only }\end{aligned}$

POLTÉCNICA

- Construct abstract initial model dealing with FUN 3 and FUN 5
- Improve design to (partially) take care of FUN 4
- Improve design to better take care of FUN 4
- (Simplify final design to obtain efficient implementation).

FUN 3 The difference between any two counters is at most one
FUN 4 Processes read counters of immediate neighbors only
FUN 5 A process can modify only its counter(s)

1. Initial model: all nodes access the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

- Simplify situation: forget about tree
- We just define the counters and express the main property: FUN 3

FUN 3 \quad The difference between any two counters is at most one

- The initial model is always far more abstract than the final system
- Other requirements are probably not fulfilled

Abstract situation

FUN 3 The difference between any two counters is at most 1

Suggest constants, axioms, variables, invariants for an initial model!


```
axm0_1: finite(P)
```

inv0_1: $c \in P \rightarrow \mathbb{N}$

$$
\text { inv0_2: } \quad \forall x, y \cdot\left(\begin{array}{l}
x \in P \\
y \in P \\
\Rightarrow \\
c(x) \leq c(y)+1
\end{array}\right)
$$

\checkmark Create project synch_tree
\checkmark Create context co with set, axiom
\checkmark Create machine mo with variable, invariants.

- inv0_2 may be surprising:

$$
\mathcal{I}_{0}: \forall x, y \cdot x \in P \wedge y \in P \Rightarrow c(x) \leq c(y)+1
$$

- Is it the same as $\mathcal{I}_{1}: \forall i, j \cdot|c(i)-c(j)| \leq 1$?

Proof by double implication.

Let us choose two arbitrary nodes with counters a and b.

- If the invariant holds, then $a \leq b+1$ and $b \leq a+1$. From there, $a-b \leq 1$ and $b-a \leq 1$, therefore $|a-b| \leq 1$, and $\mathcal{I}_{0} \Rightarrow \mathcal{I}_{1}$.
- If $|a-b| \leq 1$, then both $a-b \leq 1$ and $b-a \leq 1$. Then, invo_2 is implied by the intended invariant, and $\mathcal{I}_{1} \Rightarrow \mathcal{I}_{0}$.

Initial model: events

any n where

```
init
    c:=P\times{0}
```

 \(\boldsymbol{n} \in \boldsymbol{P}\)
 \(\forall m \cdot m \in P \Rightarrow c(n) \leq c(m)\)
 then
 \(c(n):=c(n)+1\)
 end
 - Note: any n is logically $\forall n \cdot n \in P \wedge \cdots$
- \forall can appear in guards.
- any introduces \forall whose scope is the whole event.
- Intuition: Any increment that respects
difference among nodes can be done.
- Does not mean all increments are executed: non-determinism!
- Not final state (there is none): action that (hopefully) respects invariant.
\checkmark Add initialization, event
Note: \times is entered with $* *$, any with pull-down menu, "Add event parameter".

$$
\begin{aligned}
& c \in P \rightarrow \mathbb{N} \\
& \forall x, y \cdot\left(\begin{array}{l}
x \in P \\
y \in P \\
\Rightarrow \\
c(x) \leq c(y)+1
\end{array}\right)
\end{aligned}
$$

$$
n \in P
$$

$$
\forall m \cdot(m \in P \Rightarrow c(n) \leq c(m))
$$

-

$$
\left.\forall x, y \cdot\left(\begin{array}{l}
x \in P \\
y \in P
\end{array}\right] \begin{array}{l}
(c \notin\{n \mapsto c(n)+1\})(x) \leq(c \notin\{n \mapsto c(n)+1\})(y)+1
\end{array}\right)
$$

$$
\Uparrow
$$

Modified invariant inv0_2

In Rodin: automatic; if not, repeatedly apply lassoing, p0 or m0.

Model so far

MACHINE m0
SEES c0
VARIABLES
c
INVARIANTS
inv1：$\quad c \in P \rightarrow \mathbb{N}$
inv2：$\forall x, y \cdot x \in P \wedge y \in P \Rightarrow c(x) \leq 1+c(y)$

EVENTS

Initialisation

begin
act1：$c:=P \times\{0\}$
end
Event ascending 〈ordinary〉 $\widehat{=}$
any
n
where

$$
\operatorname{grd12:} \quad n \in P
$$

$$
\text { grd11: } \quad \forall m \cdot m \in P \Rightarrow c(n) \leq c(m)
$$

then
act11：$c(n):=c(n)+1$
end
ascending
any n where
$n \in P$
$\forall m \cdot m \in P \Rightarrow c(n) \leq c(m)$
then

$$
\begin{aligned}
& c(n):=c(n)+1 \\
& \text { end }
\end{aligned}
$$

What requirement is this event breaking?

$$
\text { FUN } 2 \text { Each node can read the counters of its immediate neighbors only }
$$

1. Initial model: all nodes access the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

- Introduce a designated process r.
- Assume that counter of r always minimal

$$
\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)
$$

- Rationale:
- We only synchronize with r - not compliant, but communication restricted.
- Helps ensure that difference between any two nodes \leq one.
- If inv0_1: $\forall x, y \cdot x \in P \wedge y \in P \Rightarrow c(x) \leq c(y)+1$, then $|c(r)-c(m)| \leq 1$ for any m.
- If $c(r) \leq c(m)$, then $c(m)=c(r)$ or $c(m)=c(r)+1$ for any m.
- Then $|c(m)-c(n) \leq 1|$, for any m, n (will be proved).
- Treat this property as a new (temporary) invariant.
\checkmark Extend co into c1 (left pane, right click, "Extend"), add constant r, axiom $r \in P$
\checkmark Refine mo into m1 (left pane, right click, "Refine"), add new invariant
\checkmark m0 should "see" c1

We simplify the guard

```
(abstract-)ascending
    any \(n\) where
        \(n \in P\)
        \(\forall m \cdot m \in P \Rightarrow c(n) \leq c(m)\)
    then
        \(c(n):=c(n)+1\)
    end
```

$$
\begin{aligned}
& \text { (concrete-)ascending } \\
& \text { any } n \text { where } \\
& n \in P \\
& c(n)=c(r) \\
& \text { then } \\
& c(n):=c(n)+1 \\
& \text { end }
\end{aligned}
$$

- Note: if $c(r)$ minimal, $c(n)<c(r)$ impossible; therefore $c(n)=c(r)$ \checkmark Change "extended" to "not extended", change guard
- We have then to prove guard strengthening.

Guard strengthening

$$
\begin{array}{ll}
c \in P \rightarrow \mathbb{N} & \text { inv0_1 } \\
\forall x, y \cdot\left(\begin{array}{l}
x \in P \\
y \in P \\
\Rightarrow \\
c(x) \leq c(y)+1
\end{array}\right) & \text { inv0_2 } \\
\forall m \cdot(m \in P \Rightarrow c(r) \leq c(m)) & \text { new invariant } \\
n \in P & \text { Guards of concre } \\
\qquad c(n)=c(r) & \text { event ascending } \\
\vdash & \\
n \in P & \text { Guards of abstra } \\
\forall m \cdot(m \in P \Rightarrow c(n) \leq c(m)) & \text { event ascending }
\end{array}
$$

In Rodin: lasso + p0
\checkmark Go to the proving perspective, discharge proof

Model so far

－ildea

inv1 not discharged．

CONTEXT c1 EXTENDS c0 CONSTANTS

AXIOMS
axm1：$r \in P$
END

MACHINE m1
REFINES m0
SEES c1

VARIABLES

INVARIANTS
inv1：$\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$

EVENTS

Initialisation 〈extended〉
begin
act1：$c:=P \times\{0\}$
end
Event ascending 〈ordinary〉 $\widehat{=}$ refines ascending
any
n
where
grd1：$n \in P$
$\operatorname{grd2}: \quad c(r)=c(n)$
then
act1：$c(n):=c(n)+1$
end
END

POLITÉCNICA

```
ascending
    any n where
        n}\in
        c(n)=c(r)
    then
```

 \(\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)\)
 1. Prove that new "invariant" is preserved by the event.
2. The guard of the event still does not fulfill requirement FUN 4.

- Problem 1 solved in this refinement
- Problem 2 solved later
- Tree: root r and "pointer" f from each node in $P \backslash\{r\}$ to every node's parent.
- Plus some additional properties and inference rules.
- Reminder: sets, relations, functions, specific data structures and their inference rules.
- Note: constructing a tree (\equiv root / leader + links) is a classical problem in distributed systems.
- Can also be tackled using Event B.

Invariant: we have a condition involving nodes in pairs and we need a condition that relates a single node r with all the others.
\checkmark Add to c1 (note f is \rightarrow, written -->>)

- Constant f.
- Axioms:

$$
\begin{gathered}
L \subseteq P \\
f \in P \backslash\{r\} \rightarrow P \backslash L \\
\forall S \cdot S \subseteq f^{-1}[S] \Rightarrow S=\varnothing
\end{gathered}
$$

- f^{-1} is written f^{\sim}.
- \rightarrow : f defined for all $P \backslash\{r\}$ and arrives to every element in $P \backslash L$.

POLTEECNICA
－Minimality of counter at the root

$$
\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)
$$

relates $c(r)$ with $c(m)$ for every m ．
－Events change local values and consult neighbouring values．
－We can（easily）prove properties relating neighbouring nodes．
－How can we relate local properties with global properties？

- We define a weaker, local invariant first.
- The counter at every node is not greater than its descendants:

$$
\text { inv1_1: } \forall m \cdot m \in P \backslash\{r\} \Rightarrow c(f(m)) \leq c(m)
$$

\checkmark Add it to $m 1$

Rationale (advancing the algorithm)

- Assume we can update the tree keeping a maximum difference between neighbors.
- Will be helpful to prove $c(r) \leq c(m)$.

We need to extend the local property

$$
\forall m \cdot m \in P \backslash\{r\} \Rightarrow c(f(m)) \leq c(m)
$$

to the whole tree.

- Start with leaves $I \in L$.
- Prove that for any $I, c(f(I)) \leq c(I)$, then $c(f(f(I))) \leq c(f(I)) \leq c(I), \ldots$
- Work upwards towards root r.

OR

- Start with r.
- Prove that for all m s.t. $r=f(m)$, $c(r) \leq c(m)$. m is a child of r
- Then, for all m^{\prime} s.t. $m=f\left(m^{\prime}\right)$, $c(m) \leq c\left(m^{\prime}\right) \ldots$
- And so on towards the leaves.
- Induction: difficult for theorem provers to do on their own.
- Needs to identify base case, property to use for induction.
- Then, proving property given base case \& inductive step within theorem provers' capabilities.
- In Rodin: needs adding induction scheme:
\checkmark Add to c1:
$\forall S \cdot S \subseteq P \wedge r \in S \wedge(\forall n \cdot n \in P \backslash\{r\} \wedge f(n) \in S \Rightarrow n \in S) \Rightarrow P \subseteq S$ \checkmark Tip: Ctrl-Enter breaks text in input box in separate lines.
- Instantiating it with the property to prove, expressed as a set: $\{x \mid x \in P \wedge c(r) \leq c(x)\}$ (next slide)

```
\checkmark In m1: ensure you have inv1_1: \forallm m m P\{r}=>c(f(m))\leqc(m)
\checkmark Ensure thm1_1: \forallm m 倍 = c(r)\leqc(m) below invariant, marked as theorem
```


Induction in Rodin: instantiation

- Double click in the unproved
theorem (left pane).
- Switch to prover view, lasso.
- Locate induction axiom.
- Enter
- Return and p0.
- The theorem should be proved now.

$$
\{x \mid x \in P \wedge c(r) \leq c(x)\}
$$

Selected Hypotheses
(iz Goal ${ }^{3}$
ct $c(r) \leq c(m)$

> Invariant inv1_1 not yet proved. Requires order between parent and children $c(f(m)) \leq c(m)$ that ascending cannot guarantee: guard $c(r)=c(n)$ allows updates in arbitrary order. Will enforce through more local comparison.

More local comparison

- Nodes with difference \leq one from r.
- When can we update looking locally?
ascending
any n where

$$
\begin{aligned}
& n \in P \\
& c(r)=c(n) \\
& \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
\end{aligned}
$$

then

$$
c(n):=c(n)+1
$$

end
Ensure inv1_1 is preserved: double click, prover view, lasso, pO should do it.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

POLTÉCNICA

FUN 4 Each process can read the counters of its immediate neighbors only

- $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)$ uses only local comparisons.
- $c(r)=c(n)$ uses non-local comparisons.
- We will tackle that in the next refinement.

Model so far

CONTEXT c1
EXTENDS c0

CONSTANTS

r

f

L

AXIOMS

$$
\begin{array}{ll}
\text { axm1: } & r \in P \\
\text { axm3: } & L \subseteq P \\
\text { Leaves } \\
\text { axm2: } \quad f \in P \backslash\{r\} \rightarrow P \backslash L \\
\text { axm4: } \quad \forall S \cdot S \subseteq f^{-1}[S] \Rightarrow S=\varnothing \\
\text { axm5: } \\
\quad \forall S \cdot S \subseteq P \wedge \\
r \in S \wedge \\
(\forall n \cdot n \in P \backslash\{r\} \wedge f(n) \in S \Rightarrow n \in S) \\
\Rightarrow \\
P \subseteq S
\end{array}
$$

END

MACHINE m1
 REFINES m0
 SEES c1
 VARIABLES
 c
 INVARIANTS

$$
\begin{aligned}
& \text { inv1: } \quad \forall m \cdot m \in P \backslash\{r\} \Rightarrow c(f(m)) \leq c(m) \\
& \text { inv2: }\langle\text { theorem }\rangle \forall m \cdot m \in P \Rightarrow c(r) \leq c(m)
\end{aligned}
$$

EVENTS

Initialisation 〈extended〉
begin
act1：$c:=P \times\{0\}$
end
Event ascending 〈ordinary〉 $\widehat{=}$
refines ascending
any
where

$$
\text { grd1: } n \in P
$$

$$
\operatorname{grd} 2: \quad c(r)=c(n)
$$

$$
\operatorname{grd3}: \quad \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
$$

then
act1：$c(n):=c(n)+1$
end
END

1. Initial model: all nodes access the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

POITECNICA

- Replace the guard $c(r)=c(n)$.
- Processes must be aware when this situation does occur.
- Add second counter $d(\cdot)$ to each node to capture value of $c(r)$.

carrier set:	P
constants:	r, f
variables:	c, d

Invariant inv2_2 is as inv0_2

$$
\text { inv2_1: } d \in P \rightarrow \mathbb{N}
$$

inv2_2: $\forall x, y \cdot\left(\begin{array}{l}x \in P \\ y \in P \\ \Rightarrow \\ d(x) \leq d(y)+1\end{array}\right)$
d has an overall property similar to c :
$\forall x, y \cdot x \in P \wedge y \in P \Rightarrow c(x) \leq$ $c(y)+1$

- d will capture the value of $c(r)$.
- It will be updated in a downward wave.
\checkmark Refine m1 into m2
\checkmark Add variable d and invariants

POLITÉCNICA
This refinement captures:

- The existence of d.
- How its update can proceed not to break its invariant.

Event descending
any n where

$$
n \in P
$$

$$
\forall m \cdot m \in P \Rightarrow d(n) \leq d(m)
$$

then
$d(n):=d(n)+1$
end
\checkmark Add event to m2
\checkmark Initialize d to 0 (copy the initialization of c)

1. Initial model: all nodes access the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

- We extend the invariant of counter d.
- We establish the relationship between both counters c and d.
- This will allow us to refine event ascending
- We construct the descending wave (by refining event descending).
- Remark: this is the most difficult refinement.
\checkmark Refine m2 into m3

Idea behind third refinement

State and invariants

- Recall local condition for c :

$$
\text { inv1_1: } \forall m \cdot m \in P \backslash\{r\} \Rightarrow c(f(m)) \leq c(m)
$$

Every node's counter is smaller than or equal to its children's.

- Local condition for d is similar:

$$
\text { inv3_1 }: \forall m \cdot m \in P \backslash\{r\} \Rightarrow d(m) \leq d(f(m))
$$

Every node's counter is smaller than or equal to its parent (if it has a parent). This is what makes the wave descending.

- inv3_1 and tree induction proves that the root has the highest value of $d(\cdot)$:

$$
\text { thm3_1: } \forall n \cdot n \in P \Rightarrow d(n) \leq d(r)
$$

(remember: root had the smallest value of $c(\cdot)$)

POLITÉCNICA
\checkmark Add to m3:

$$
\begin{array}{cc}
\text { inv3_1: } & \forall m \cdot m \in P \backslash\{r\} \Rightarrow d(m) \leq d(f(m)) \\
\text { thm3_1: } & \forall n \cdot n \in P \Rightarrow d(n) \leq d(r)
\end{array}
$$

\checkmark Mark the latter as theorem
\checkmark Double click on the PO for THM
\checkmark Go to proving perspective; locate induction axiom
\checkmark Instantiate with $\{x \mid x \in P \wedge d(x) \leq d(r)\}$, invoke $p 0$
\checkmark That should prove thm3_1
\checkmark inv3_1 cannot be proved yet - reasons similar to c.
We will deal with that later

Refining ascending

Event (abstract-)ascending
any n where

$$
\begin{aligned}
& n \in P \\
& c(n)=c(r) \\
& \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
\end{aligned}
$$

then

$$
\text { end } c(n):=c(n)+1
$$

- Downward wave d will eventually propagate $d(r)$.
\checkmark Change event guard in m3
- Need to prove guard strengthening.
- We cannot. c and d unrelated so far!
\checkmark Relate c and d : inv3_2 : $d(r) \leq c(r)$
- If needed: proving perspective, lasso + p0 proves strengthening.

Event (concrete-)ascending
any n where

$$
\begin{aligned}
& n \in P \\
& c(n)=d(n) \\
& \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
\end{aligned}
$$

then

$$
\text { end } c(n):=c(n)+1
$$

ascending: only local comparisons now!

Refining descending

- A different case.
- Two situations raise a change of d :

1. For a non-root node: parent's d change.
2. For the root node: $c(r)$ changes.

- Different guards.
- We will prepare the events to be edited.
\checkmark Change (concrete) descending event to non-extended
\checkmark Left click on circle to left of name to select
Ctrl-C to copy, Ctrl-V to paste
\checkmark Rename first event as descending_nr.
\checkmark Rename second event as descending_r.

Event (abstract-)descending
any n where

$$
n \in P
$$

then

$$
\forall m \cdot m \in N \Rightarrow d(n) \leq d(m)
$$

$$
d(n):=d(n)+1
$$

end

Event (concrete-)descending any n where

$$
n \in P \backslash\{r\}
$$

then

$$
d(n) \neq d(f(n))
$$

$$
d(n):=d(n)+1
$$

end
\checkmark Update guards
(Note: Rodin ≥ 3.6 seems to prove strengthening automatically; previous versions needed additional steps [in next slide])

Note: the steps below do not seem to be necessary in Rodin 3.6 with the Atelier B provers installed. Strengthening is proven automatically.

$$
n \in P \backslash\{r\}, d(n)=d(f(n)), m \in P \vdash d(n) \leq d(m)
$$

We need some magic mushrooms to help the provers:

$$
\begin{array}{lc}
\text { thm3_2: } & \forall n \cdot n \in P \backslash\{r\} \Rightarrow d(f(n)) \in d(n) . . d(n)+1 \\
\text { thm3_3: } & \forall n \cdot n \in P \Rightarrow d(r) \in d(n) . . d(n)+1
\end{array}
$$

thm3_2 downward wave, parent is at most one more than children (when it has just been increased)
thm3_3 special case for root (the first one to be increased)

Event (abstract-)descending
any n where

$$
n \in P
$$

$$
\forall m \cdot m \in P \Rightarrow d(n) \leq d(m)
$$

then

$$
d(n):=d(n)+1
$$

end

Event (concrete-)descending refines
descending
when
$d(r) \neq c(r)$
with
n : $n=r$
then

$$
d(r):=d(r)+1
$$

end
\checkmark Click on circle left of param. n, delete

- Parameter n disappeared!
- Substitute (witness) for GRD, SIM.
- We are particularizing for r.
- Similar to gluing invariant!
- Note with label: specific Rodin idiom.
- Need to prove $d(r) \neq c(r), m \in P \vdash d(r) \leq d(m)$

Finishing proofs

The technique in this slide was necessary for Rodin versions previous to 3.6. For Rodin 3.6 onwards, it seems that it is not necessary. Skip to the next slide.
I needed two more magic pills:

$$
\begin{array}{cl}
\text { inv3_3: } & \forall n \cdot n \in P \Rightarrow c(n) \in d(n) . . d(n)+1 \\
\text { thm3_4: } & \forall n \cdot n \in P \Rightarrow c(r) \in d(n) . . d(n)+1
\end{array} \text { To prove GRD }
$$

Plus, if not added before:

$$
\begin{array}{lc}
\text { thm3_2: } & \forall n \cdot n \in P \backslash\{r\} \Rightarrow d(f(n)) \in d(n) . . d(n)+1 \\
\text { thm3_3: } & \forall n \cdot n \in P \Rightarrow d(r) \in d(n) . . d(n)+1
\end{array}
$$

After this, the invariant can be proved with a combination of several steps:

- Apply lasso.
- Instantiate $\forall n \cdot c(r) \in d(n) . . d(n)+1$ (which relates c and d) with n.
- Remove \in in goal $(c(n) \in d(n)+1 . . d(n)+1+1)$ to create inequalities.
- Do PO in $c(n) \leq d(n)+1+1$ goal.
- Note that only possibility to prove is $d(n)=c(n)$.
- Do case distinction with $d(n)=c(n)$,
- Apply ML to the subgoals.

Finishing proofs

This strategy is necessary with Rodin 3.6 and 3.7.

An additional invariant is necessary to prove GRD of descending \qquad

$$
\text { inv3_3: } \forall n \cdot n \in P \Rightarrow c(n) \in d(n) . . d(n)+1
$$

After adding it, GRD is immediately proven. However, the invariant remains unproven. It can be proved with the following steps:

- Apply lasso.
- Remove \in in goal $c(n) \in d(n)+1 . . d(n)+1+1$ to transform it into inequalities that can be proven separately.
- Use ml or p0 for the goal

$$
c(n) \leq d(n)+1+1
$$

- For $d(n)+1 \leq c(n)$, do case distinction:
- Either with $d(n)=c(n)$, or
- with $d(n)+1=c(n)$
and ML to the subgoals.

```
inv3_1: }\forallm\cdot(m\inP\{r}=>d(m)\leqd(f(m))
inv3_2: d(r)\leqc(r)
inv3_3: }\quad\foralln\cdot(n\inP=>c(n)\ind(n)..d(n)+1
thm3_1: }\forallm\cdot(m\inP=>d(m)\leqd(r)
thm3_2: }\foralln\cdot(n\inP\{r}=>d(f(n))\ind(n)..d(n)+1
thm3_3: }\foralln\cdot(n\inP=>d(r)\ind(n)..d(n)+1
thm3_4: }\foralln\cdot(n\inP=>c(r)\ind(n)..d(n)+1
```


Third refinement: events

Event descending_r
when
$d(r) \neq c(r)$
with
$\mathrm{n}: n=r$
then

$$
d(r):=d(r)+1
$$

end
Event descending_nr any n where $n \in P \backslash\{r\}$ $d(n) \neq d(f(n))$
then

$$
d(n):=d(n)+1
$$

Event ascending any n where

$$
n \in P
$$

$$
c(n)=d(n)
$$

$$
\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
$$

then

$$
c(n):=c(n)+1
$$

end

1. Initial model: all nodes access the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

- The difference among counters is at most one.
- That has been proven by construction.
- In the guards, we only care whether they are equal or not.
- For this, we only need parity!

$$
a, b \in \mathbb{N} \wedge|a-b| \leq 1 \Rightarrow(a=b \Leftrightarrow \operatorname{parity}(a)=\operatorname{parity}(b))
$$

- We will prove that this is a valid refinement.
\checkmark Extend context c1 into c2
\checkmark Refine m3 into m4
\checkmark m4 should see c2

Formalizing parity

POLITÉCNICA

- We replace the counters by their parities
- we add the constant parity

```
carrier set: P
constants: r,f,parity
```

```
axm4_1: parity }\in\mathbb{N}->{0,1
axm4_2: parity(0) = 0
axm4_2: }\forallx.(x\in\mathbb{N}=>\operatorname{parity}(x+1)=1-\operatorname{parity}(x)
```

\checkmark Add parity and axioms to $c 2$. Note: parity is a function!
\checkmark Need some clicking (dom to $\mathbb{N}+M L$) to prove WD

POLITÉCNICA

- We replace \boldsymbol{c} and \boldsymbol{d} by \boldsymbol{p} and \boldsymbol{q}

```
variables: p,q
```

```
inv4_1: }p\inP->{0,1
inv4_2: }q\inP->{0,1
inv4_3: }\foralln.(n\inP=>p(n)=\operatorname{parity}(c(n))
inv4_4: }\foralln.(n\inP=>q(n)=\operatorname{parity}(d(n))
```

\checkmark Do it in m4. Note the gluing invariants! p and q really syntactic sugar.
\checkmark Remove variables c and d. Not accessed / updated in this refinement!
\checkmark Initialize p and q, remove initializations for c and d.
ascending
any n where
$n \in P$
$p(n)=q(n)$
$\forall m \cdot\left(m \in f^{-1}[\{n\}] \Rightarrow p(m) \neq p(n)\right)$
then
$p(n):=1-p(n)$
end
descending_1
any n where
$n \in P \backslash\{r\}$
$q(n) \neq q(f(n))$
then
$\underset{\text { end }}{q(n)}:=1-q(n)$
descending_2
when
$p(r) \neq q(r)$
then
$\underset{\text { nd }}{q(r)}:=1-q(r)$

$$
\text { GRD of } q(n)=p(n)
$$

- The essence of the pending GRD proof is

$$
\ldots, q(n)=p(n) \vdash c(n)=d(n) .
$$

- Depends on proving parity $(a)=\operatorname{parity}(b) \Rightarrow a=b$.
- Holds in specific cases (if $|a-b| \leq 1$).
- But theorem provers unable to apply / deduce that property.
- Needs to be stated explicitly:

$$
\begin{gathered}
\forall x, y \cdot y \in \mathbb{N} \wedge x \in y . . y+1 \\
(\operatorname{parity}(x)=\operatorname{parity}(y) \Leftrightarrow x=y)
\end{gathered}
$$

- We could make it axiom, but it can be proven as theorem (better!).
- We need to deal with Well Definedness and the theorem itself.

WD: Removing dom in goal + P0 takes care of it (if WD is to be discharged).
THM: Adding hypothesis + case distinction works. See below.

- \Longleftrightarrow : split in two implications. One is proven.
- For the other: introduce ah with possible values of $x: x=y \vee x=y+1$ (because $x \in y . . y+1$ among the hypotheses).
- Prove new hypothesis with ml .
- For the pending $x=y$ goal, bring hypotheses with lasso.
- New goal: $y=y+1$. We need to find contradiction in hypotheses.
- One hypothesis is $\operatorname{parity}(y+1)=\operatorname{parity}(y)$, which is false.
- Use dc with parity $(y)=0$. This causes two instantiations that make proving inconsistency easier.
- PO works for both branches.

$$
\text { GRD of } q(n)=p(n)
$$

- Do lasso.
- Instantiate theorem

$$
\begin{gathered}
\forall x, y \cdot y \in \mathbb{N} \wedge x \in y . . y+1 \\
(\operatorname{parity}(x)=\operatorname{parity}(y) \Leftrightarrow x=y)
\end{gathered} \Rightarrow
$$

with $c(n), d(n)$.
(Bring it from hypotheses if not among selected hypotheses).

- Note: instantiate the right variable with the right value!
- Invoke PO for the branches remaining to be proven.

$-\nabla$ simplification rewrites : $c(n)=d(n)$

- type rewrites: $c(n)=d(n)$
- (1) simplification rewrites: $c(n)=d(n)$
-() $\mathrm{sl} / \mathrm{ds}: c(n)=d(n)$
- ($\mathrm{sl} / \mathrm{ds}: c(n)=d(n)$
- $\bullet \forall$ hyp (inst $c(n), d(n)): c(n)=d(n)$
- () generalized MP: $(n \in \operatorname{dom}(d) \wedge d \in P \rightarrow \mathbb{Z}) \wedge(n \in \operatorname{dom}(c) \wedge c \in P \rightarrow \mathbb{Z})$
\rightarrow (1) simplification rewrites: $(T \wedge T) \wedge(T \wedge T)$
- T goal : T
- (1) generalized MP: $c(n)=d(n)$
- simplification rewrites: $c(n)=d(n)$ - PP: $c(n)=d(n)$

$$
\text { GRD of } \forall m \cdot m \in f^{\sim}[\{n\}] \Rightarrow p(n) \neq p(m)
$$

Idea: we have to prove that if $p(m) \neq p(f(m))$, then $c(n) \neq c(f(m))$. We have a theorem that says parity $(x)=\operatorname{parity}(y) \Leftrightarrow x=y$ when $x \in y . . y+1$. So we need $c(n) \in c(f(n)) . . c(f(n))+1$ to apply it. We add it as a theorem, which is immediately proven.

1. Add a new THM: $\forall n \cdot n \in P \backslash\{r\} \Rightarrow c(n) \in c(f(n)) . . c(f(n))+1$
2. Click on the PO for the undischarged GRD.
3. Introduce the hypothesis $n=f(m)$ (which comes from $m \in f^{-1}[\{n\}]$) with ah and use ML repeatedly.
4. If some subgoal is not proven, bring all the available hypotheses from the Search window and use ML.

- In my case, GRD for $q(n) \neq q(f(n))$ in descending_nr remains to be proven.
- It should imply $d(n) \neq d(f(n))$.
- Similar to the previous case.
- Add a symmetrical theorem $\forall n \cdot n \in P \backslash\{r\} \Rightarrow d(f(n)) \in d(n) . . d(n)+1$
- It is immediately proven and it also automatically discharges the pending GRD proof.
- With Rodin 3.8 it may be the case that the invariant

$$
\forall n \cdot n \in P \Rightarrow p(n)=\operatorname{parity}(c(n)))
$$

is unproven.

- The goal to be proven is

$$
1-p(n)=\operatorname{parity}(c(n)+1)
$$

which is immediate from the definition or parity and $c(n)$.

- Just apply lasso, instantiate the definition of parity with $c(n)$, and use ML or PO

At this point, all the POs should be discharged.

- Atelier B provers: developed for (Event-)B, integrated with Rodin.
- Not the most powerful provers.
- Additional provers: Install Software \rightarrow Work with "- All Available Sites -" \rightarrow Prover Extensions \rightarrow SMT Solvers.

```
Available Software
Check the items that you wish to install.
Work with: --All Available Sites--
type filter text
Name
- @unProgramming Languages
- EmoProver Extensions
    檕Isabelle for Rodin
    Ta,Revance Filter
~
-maneleng Tools
-amn Rodin Platform
1 item selected
```

- Can often discharge proofs without / with less manual intervention.
- Why not using them before?
- SMT solvers external \rightarrow stability not guaranteed?
- If using SMT Solvers, examples requiring interaction likely too complex for a first contact.
- Install and try the SMT solvers in the examples in this section of the course using less additional theorems / invariants.
- Plugin feeds SMT solvers with "Selected Hypothesis". Possible heuristics:
- Bring hypotheses to the "Selected" set with lasso, or
- Select all hypotheses in "Search" tab, add them to "Selected".

[^0]: ${ }^{1}$ Example and several slides from J. R. Abrial book Modeling in Event-B: system and software engineering.

