

Event B: Modeling and Reasoning with Data Structures¹

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid & IMDEA Software Institute

¹Theory, text, examples borrowed from J. R. Abrial: see

nfinite Lists	.s.4
Finite Lists	s. 13
nfinite Trees	s. 14
Finite Trees	s. 15

Strategy

- Data structures involving pointers formalized with relations, functions.
- Specific axioms of these specific data structures give *properties* of the functions that model the data structures.
- These properties are necessary for theorem provers to discharge proofs on data structures.
- Specific forms of these axioms (capturing induction on the data structures) are well-suited to be used in automated proofs.
- We will focus on formalizing:
 - Infinite lists.
 - Finite lists.
 - Infinite trees.
 - Finite trees.

Infinite lists

- Set V of list nodes.
- Initial node f.
- Bijective *next* function

$$axm_1: f \in V$$

$$axm_2: n \in V \rightarrow V \setminus \{f\}$$

$$\stackrel{t}{\circ} \xrightarrow{n} \circ \longrightarrow \circ \longrightarrow \circ \longrightarrow \bullet \quad \bullet \quad \bullet$$

No cycles:

a b c d e f g
$$S = \{b, c, d\}$$
 $n[S] = \{c, d, e\}$ $S \nsubseteq n[S]$ (for almost any $S \subseteq V$)

Avoiding cycles

- If a list has a cycle, then there is a $S \subseteq V$ s.t. $S \subseteq n[S]$.
- On the other hand, it is always the case that $\varnothing \subseteq n[\varnothing]$.
- So we insist that this is the only case:

$$\mathsf{axm}_3: \forall S \cdot S \subseteq V \land S \subseteq \mathit{n}[S] \Rightarrow S = \varnothing$$

- It can be used to prove properties in infinite lists.
- We will derive from it an axiom scheme of induction.

- Abscense of cycles: $\forall S \cdot S \subseteq V \land S \subseteq n[S] \Rightarrow S = \emptyset$
- *S* can be written as $S = V \setminus T$, for some T
- Then:

$$\forall S \cdot S = V \setminus T \land \boxed{S \subseteq V} \land S \subseteq n[S] \Rightarrow S = \emptyset$$

$$\uparrow$$
Redundant

- Removing redundant subformula: $\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow S = \emptyset$
- Let us focus on $S = \emptyset$

Let us simplify
$$\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow S = \emptyset$$

- If $S = V \setminus T$, then $S = \emptyset \equiv V \setminus T = \emptyset \equiv V \subseteq T$
- The non-cycle condition then becomes $\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow V \subseteq T$
- Let us focus on *n*[*S*]
- Since $S = V \setminus T$, $n[S] = n[V \setminus T]$
- Since n is bijective, n[V\T] and n[T] don't intersect (see figure on the right)
- Therefore, $n[V \setminus T] = n[V] \setminus n[T]$

- Since $S = V \setminus T$ and $n[V \setminus T] = n[V] \setminus n[T]$, $S \subseteq n[S]$ becomes $V \setminus T \subseteq n[V] \setminus n[T]$
- Let us simplify that condition
- By definition: $f \in V$ and $f \notin n[V \setminus T]$ (f is not in the range of n)
- Since $V \setminus T \subseteq n[V \setminus T]$, $f \notin V \setminus T$ (because $f \notin n[V \setminus T]$ and $V \setminus T$ contains a subset of $n[V \setminus T]$)
- Therefore f must be *subtracted* from V by T, and then $f \in T$
- Also by definition, $n[V] = V \setminus \{f\}$.
- So we can rewrite $V \setminus T \subseteq n[V] \setminus n[T]$ as $V \setminus T \subseteq (V \setminus \{f\}) \setminus n[T]$

- Let us simplify $\underbrace{V}_{e} \stackrel{b}{\searrow} \subseteq \underbrace{(V \setminus \{f\})}_{f} \setminus \underbrace{n[T]}_{e}$
- We know that $f \in V$ and $f \in T$.
- *f* is not in set (f), and then it should not be in (e); it is removed by (b).
- Then we have to worry about how much is removed by (b) and (d).
- If (d) removes "too much", then (e) will be larger.
- I.e., if (d) contains an element that is not in (b), then (e) will contain an element that is not in (f).
- Therefore, (d) cannot contain elements that are not in (b).
- So the formula simplifies to $n[T] \subseteq T$.

Putting all together, the non-cycle condition becomes

$$\forall S \cdot S = V \backslash T \land f \in T \land n[T] \subseteq T \Rightarrow V \subseteq T$$

If we expand $n[T] \subseteq T$:

$$\mathsf{thm}_2: \forall T \cdot f \in T \land (\forall x \cdot x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T$$

- T the set of elements with some property P: $T = \{x | P(x)\}$
- So the meaning of thm_2 is:
 - If the initial node f has property P ($f \in T$), and
 - For every element with property P ($x \in T$), the next one has this property ($n(x) \in T$), then
 - All elements have property P ($V \subseteq T$).

Using thm_2 to prove list properties

- We want to prove P(x) for all $x \in V$.
- Elements for which P holds: $T = \{x | x \in V \land P(X)\}.$
 - We want to prove that T = V.

- Since by construction $T \subset V$, it is enough to prove $V \subseteq T$.
- We do that by instantiating T in thm_2.

$$f \in \{x | x \in V \land P(x)\} \qquad \land$$
$$\forall x \cdot x \in \{x | x \in V \land P(x)\} \Rightarrow n(x) \in \{x | x \in V \land P(x)\} \Rightarrow$$
$$V \subseteq \{x | x \in V \land P(x)\}$$

- $f \in \{x | x \in V \land P(x)\} \equiv P(f)$.
- Second part equivalent to $\forall x \cdot x \in V \land P(x) \Rightarrow P(n(x)).$

 The RHS is equivalent to $\forall x \cdot x \in V \Rightarrow P(x)$.

Finite lists

• Basically as infinite lists, but including a last (/) element and a different axiom 2:

 $axm_4: I \in V$

 axm_5 : finite(V)

 $axm_2': n \in V \setminus \{I\} \rightarrow V \setminus \{f\}$

induction : $\forall T \cdot T \subseteq V \land f \in T \land (\forall x \cdot x \in V \setminus \{I\} \land x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T$

Infinite trees

- *t* is the root.
- *p* links node with parent (surjection).
- No cycles.

$$\mathsf{axm}_1: t \in V$$

$$\mathsf{axm}_2: \quad p \in V \setminus \{t\} \twoheadrightarrow V$$

$$axm_3: \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \emptyset$$

Induction rule:

$$\forall T \cdot t \in T \wedge p^{-1}[T] \subseteq T \Rightarrow V \subseteq T$$

Instantiation to prove properties:

$$\forall T \cdot T \subseteq V \land t \in T \land (\forall x \cdot x \in V \setminus \{t\} \land p(x) \in T \Rightarrow x \in T)$$
$$\Rightarrow V \subseteq T$$

Note: placement of p in implication is opposite w.r.r. f for lists – "direction" of arrows reversed!

Finite trees

- t is the root.
- p relates every node with its parent.
- *L* is the set of tree leaves.
- There should not be cycles.

 $axm_1: t \in V$

 $axm_2: L \subseteq V$

 $axm_3: p \in V \setminus \{t\} \rightarrow V \setminus L$

 $axm_4: \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \emptyset$

The induction scheme is as in infinite trees.