Event B : Modeling and Reasoning with Data Structures ${ }^{1}$

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid \&
IMDEA Software Institute

[^0]http://wiki.event-b.org/index.php/Event-B_Language
Infinite Lists s. 4
Finite Lists s. 13
Infinite Trees s. 14
Finite Trees s. 15

- Data structures involving pointers formalized with relations, functions.
- Specific axioms of these specific data structures give properties of the functions that model the data structures.
- These properties are necessary for theorem provers to discharge proofs on data structures.
- Specific forms of these axioms (capturing induction on the data structures) are well-suited to be used in automated proofs.
- We will focus on formalizing:
- Infinite lists.
- Finite lists.
- Infinite trees.
- Finite trees.

Infinite lists

- Set V of list nodes.
- Initial node f.
- Bijective next function

$$
\begin{array}{ll}
\text { axm_1: } & f \in V \\
\text { axm_2: } & n \in V \rightsquigarrow V \backslash\{f\}
\end{array}
$$

Characterizing (and avoiding) cycles

Cycles:

No cycles:

(for almost any $S \subseteq V$)

- If a list has a cycle, then there is a $S \subseteq V$ s.t. $S \subseteq n[S]$.
- On the other hand, it is always the case that $\varnothing \subseteq n[\varnothing]$.
- So we insist that this is the only case:

$$
\text { axm_3: } \forall S \cdot S \subseteq V \wedge S \subseteq n[S] \Rightarrow S=\varnothing
$$

- It can be used to prove properties in infinite lists.
- We will derive from it an axiom scheme of induction.
- Abscense of cycles: $\quad \forall S \cdot S \subseteq V \wedge S \subseteq n[S] \Rightarrow S=\varnothing$
- S can be written as $S=V \backslash T$, for some T
- Then:

$$
\forall S \cdot S=V \backslash T \wedge \frac{S \subseteq V}{\uparrow} \wedge S \subseteq n[S] \Rightarrow S=\varnothing
$$

- Removing redundant subformula:

$$
\forall S \cdot S=V \backslash T \wedge S \subseteq n[S] \Rightarrow S=\varnothing
$$

- Let us focus on $S=\varnothing$

From absence of cycles to induction

Let us simplify $\quad \forall S \cdot S=V \backslash T \wedge S \subseteq n[S] \Rightarrow S=\varnothing$

- If $S=V \backslash T$, then

$$
S=\varnothing \equiv V \backslash T=\varnothing \equiv V \subseteq T
$$

- The non-cycle condition then becomes $\forall S \cdot S=V \backslash T \wedge S \subseteq n[S] \Rightarrow V \subseteq T$
- Let us focus on n[S]
- Since $S=V \backslash T, n[S]=n[V \backslash T]$
- Since n is bijective, $n[V \backslash T]$ and $n[T]$ don't intersect (see figure on the right)

- Therefore, $n[V \backslash T]=n[V] \backslash n[T]$
- Since $S=V \backslash T$ and $n[V \backslash T]=n[V] \backslash n[T], S \subseteq n[S]$ becomes $V \backslash T \subseteq n[V] \backslash n[T]$
- Let us simplify that condition
- By definition: $f \in V$ and $f \notin n[V \backslash T]$ (f is not in the range of n)
- Since $V \backslash T \subseteq n[V \backslash T], f \notin V \backslash T$ (because $f \notin n[V \backslash T]$ and $V \backslash T$ contains a subset of $n[V \backslash T]$)
- Therefore f must be subtracted from V by T, and then $f \in T$
- Also by definition, $n[V]=V \backslash\{f\}$.
- So we can rewrite $V \backslash T \subseteq n[V] \backslash n[T]$ as $V \backslash T \subseteq(V \backslash\{f\}) \backslash n[T]$
- Let us simplify

- We know that $f \in V$ and $f \in T$.
- f is not in set (f), and then it should not be in (e); it is removed by (b).
- Then we have to worry about how much is removed by (b) and (d).
- If (d) removes "too much", then (e) will be larger.
- I.e., if (d) contains an element that is not in (b), then (e) will contain an element that is not in (f).
- Therefore, (d) cannot contain elements that are not in (b).
- So the formula simplifies to $n[T] \subseteq T$.

Putting all together, the non-cycle condition becomes

$$
\forall S \cdot S=V \backslash T \wedge f \in T \wedge n[T] \subseteq T \Rightarrow V \subseteq T
$$

If we expand $n[T] \subseteq T$:

$$
\text { thm_2 }: \forall T \cdot f \in T \wedge(\forall x \cdot x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T
$$

- T the set of elements with some property $P: T=\{x \mid P(x)\}$
- So the meaning of thm_2 is:
- If the initial node f has property $P(f \in T)$, and
- For every element with property $P(x \in T)$, the next one has this property $(n(x) \in T)$, then
- All elements have property $P(V \subseteq T)$.

Using thm_2 to prove list properties

- We want to prove $P(x)$ for all $x \in V$.
- Elements for which P holds:

$$
T=\{x \mid x \in V \wedge P(X)\}
$$

- We want to prove that $T=V$.
- Since by construction $T \subseteq V$, it is enough to prove $V \subseteq T$.
- We do that by instantiating T in thm_2.

$$
\begin{array}{cl}
f \in\{x \mid x \in V \wedge P(x)\} & \wedge \\
\forall x \cdot x \in\{x \mid x \in V \wedge P(x)\} \Rightarrow n(x) \in\{x \mid x \in V \wedge P(x)\} & \Rightarrow \\
V \subseteq\{x \mid x \in V \wedge P(x)\} &
\end{array}
$$

- $f \in\{x \mid x \in V \wedge P(x)\} \equiv P(f)$.
- Second part equivalent to $\forall x \cdot x \in V \wedge P(x) \Rightarrow P(n(x))$.
- Instantiating thm_2 gives a scheme to prove by induction in infinite lists.

Finite lists

mi dea

- Basically as infinite lists, but including a last ($/$) element and a different axiom 2:

$$
\begin{aligned}
\text { axm_4: } & l \in V \\
\text { axm_5: } & \text { finite }(V) \\
\text { axm_2': } & n \in V \backslash\{I\} \nrightarrow V \backslash\{f\} \\
\text { induction: } & \forall T \cdot T \subseteq V \wedge f \in T \wedge(\forall x \cdot x \in V \backslash\{I\} \wedge x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T
\end{aligned}
$$

- t is the root.
- p links node with parent (surjection).
- No cycles.

$$
\begin{array}{ll}
\text { axm_1: } & t \in V \\
\text { axm_2: } & p \in V \backslash\{t\} \rightarrow V \\
\text { axm_3: } & \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S=\varnothing
\end{array}
$$

Induction rule:

$$
\forall T \cdot t \in T \wedge p^{-1}[T] \subseteq T \Rightarrow V \subseteq T
$$

Instantiation to prove properties:

$$
\begin{array}{ll}
\forall T . & T \subseteq V \wedge t \in T \wedge \\
& (\forall x \cdot x \in V \backslash\{t\} \wedge p(x) \in T \Rightarrow x \in T) \\
& \Rightarrow V \subseteq T
\end{array}
$$

Note: placement of p in implication is opposite w.r.r. f for lists - "direction" of arrows reversed!

- t is the root.
- prelates every node with its parent.
- L is the set of tree leaves.
- There should not be cycles.

$$
\begin{array}{ll}
\text { axm_1: } & t \in V \\
\text { axm_2: } & L \subseteq V \\
\text { axm_3: } & p \in V \backslash\{t\} \rightarrow V \backslash L \\
\text { axm_4: } & \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S=\varnothing
\end{array}
$$

The induction scheme is as in infinite trees.

[^0]: ${ }^{1}$ Theory, text, examples borrowed from J. R. Abrial: see

