Event B: Sets, Relations, Functions, Arithmetic ${ }^{1}$

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid \&
IMDEA Software Institute

[^0]Sets s． 3
Relations s． 8
Functions s． 13
Strict societies s． 14
Arithmetic s． 17

- Event-B formal reasoning is built based on:
- First-order logic inference rules (seen).
- Set theory (to be touched upon).
- Set theory as a foundation for relations, functions (and, therefore, data structures).
- Proofs often reduced to proving goals on sets.
- We will briefly see how this is intuitively done.
- A set is a well-defined collection of distinct objects.
- Set theory is based on the membership predicate

$$
E \in S
$$

- E is an expression, S is a set.

Set theory: basic constructs

Definitions

There are three basic constructs in set theory, defined by equivalences. S and T are sets, x is a variable, P is a predicate, F is an expression.

Cartesian product: $S \times T$

$$
E \mapsto F \in S \times T \equiv E \in S \wedge F \in T
$$

Powerset: $\mathbb{P}(T)$

$$
S \in \mathbb{P}(T) \equiv \forall x \cdot x \in S \Rightarrow x \in T
$$

Comprehension:

$$
\begin{aligned}
\text { Version 1: } & \{x \mid x \in S \wedge P(x)\} \\
& E \in\{x \mid x \in S \wedge P(x)\} \equiv E \in S \wedge P(E) \\
\text { Version 2: } & \{x \cdot x \in S \wedge P(x) \mid F(x)\} \\
& E \in\{x \cdot x \in S \wedge P(x) \mid F(x)\} \equiv \exists x \cdot x \in S \wedge P(x) \wedge E=F(x)
\end{aligned}
$$

Set theory: basic constructs

Examples

$$
\begin{aligned}
\{1,2,3\} \times\{a, b\} & =\{1 \mapsto a, 1 \mapsto b, 2 \mapsto a, 2 \mapsto b, 3 \mapsto a, 3 \mapsto b\} \\
\mathbb{P}(\{1,2,3\}) & =\{\{1,2,3\},\{1,2\},\{1,3\},\{2,3\},\{1\},\{2\},\{3\}, \varnothing\}
\end{aligned}
$$

$$
\{x \mid x \in\{2,3,4,5\} \wedge x \bmod 2=0\}=\{2,4\}
$$

$$
\left\{x \cdot x \in\{2,3,4,5\} \wedge x \bmod 2=1 \mid x^{2}\right\}=\{25,9\}
$$

Reminder: $A \mapsto B$ is a tuple.
It is sometimes written as (A, B) in other formalisms.
Shortcut: $m . . n \equiv\{x \in \mathbb{Z} \mid m \leq x \wedge x \leq n\}$

- $\{x \mid x \in \mathbb{N} \wedge x<2\} \times 8 . .10$
- $\{n \cdot n \in \mathbb{N} \mid(0 . . n) \mapsto n\}$
- $\{x \cdot x \in 3 . .5 \mid x \mapsto x * x\}$

Operations on sets

- Operators based on membership and

$$
\begin{aligned}
S \subseteq T & \equiv S \in \mathbb{P}(T) \\
S=T & \equiv S \subseteq T \wedge T \subseteq S \\
S \cup T & \equiv\{x \mid x \in S \vee x \in T\} \\
S \cap T & \equiv\{x \mid x \in S \wedge x \in T\} \\
S \backslash T & \equiv\{x \mid x \in S \wedge x \notin T\} \\
E \in\{a, \ldots, z\} & \equiv E=a \vee \ldots \vee E=z \\
E \in \varnothing & \equiv \perp
\end{aligned}
$$ logic operations.

- Note: $E \notin T \equiv \neg(E \in T)$.
- Also: generalized / conditional union and intersection (see reference cards).
- A binary relation $r \in S \leftrightarrow T$ is a subset of their Cartesian product: $r \subseteq S \times T$
- Different syntax to highlight structure.
- $S \leftrightarrow T$: all (= the set of) the possible relations between S and T.
- r would be one of them.
- $r \in 1 . .3 \leftrightarrow 7 . .11$

$$
\begin{aligned}
& \text { - } r=\{1 \mapsto 10,2 \mapsto 7,2 \mapsto 11\} \\
& \text { - } 4 \mapsto 10 \notin r
\end{aligned}
$$

$$
\begin{aligned}
x \in \operatorname{dom}(r) & \equiv \exists y \cdot x \mapsto y \in r \\
y \in \operatorname{ran}(r) & \equiv \exists x \cdot x \mapsto y \in r \\
r^{-1} & \equiv\{y \mapsto x \mid x \mapsto y \in r\}
\end{aligned}
$$

- $r \in\{$ meat, fish, pasta, bacon $\} \leftrightarrow\{$ carbs, protein, fat $\}$ - write a couple of relations.
- $\operatorname{dom}(r), r a n(r)$, relation with S and T
- How many different r may there be?

Types of relations

$\begin{array}{lll}\text { Total } & S \leftrightarrow T & r \in S \leftrightarrow T \wedge \operatorname{dom}(r)=S \\ \text { Surjective } & S \leftrightarrow T & r \in S \leftrightarrow T \wedge r a n(r)=T \\ \text { Both } & S \leftrightarrow \leftrightarrow T & r \in S \leftrightarrow T \wedge r \in S \leftrightarrow T\end{array}$

Hint: sets and relations are very useful modeling tools!

Operations on relations

Domain restriction	$S \triangleleft r$	$\{x \mapsto y \in r \mid x \in S\}$
Domain subtraction	$S \notin r$	$\{x \mapsto y \in r \mid x \notin S\}$
Range restriction	$r \triangleright T$	$\{x \mapsto y \in r \mid y \in T\}$
Range subtraction	$r \triangleright T$	$\{x \mapsto y \in r \mid y \notin T\}$

Assume Prey \in Animal \leftrightarrow Animal.
We mean hunter \mapsto hunted. The syntax of the relation does not reveal its intended semantics.

- Mammal \triangleleft Prey
- Mammal \notin Prey
- Prey \triangleright Spiders
- Fish $\triangleleft($ Prey \triangleright Spiders)
- Spiders \triangleleft (Prey \triangleright Spiders)

Image	$r[S]$	$\{y \mid x \mapsto y \in r \wedge x \in S\}$
Composition	$p ; q$	$\{x \mapsto z \mid x \mapsto y \in p \wedge y \mapsto z \in q\}$
Overriding	$p \& q$	$q \cup(d o m(q) \& p)$
Identity	$i d(S)$	$\{x \mapsto x \mid x \in S\}$

Overriding:

- Take q, and add the tuples from p whose Ihs are not already in q.
- Or, take p and add q, overriding the tuples with the same Ihs.

$$
\begin{aligned}
\left(r^{-1}\right)^{-1} & =r \\
\operatorname{dom}\left(r^{-1}\right) & =\operatorname{ran}(r) \\
(S \triangleleft r)^{-1} & =r^{-1} \triangleright S \\
(p ; q)^{-1} & =q^{-1} ; p^{-1} \\
p ;(q ; r) & =(p ; q) ; r \\
p ;(q \cup r) & =(p ; q) \cup(p ; r) \\
(p ; q)[S] & =q[p[S]] \\
r[S \cup T] & =r[S] \cup r[T]
\end{aligned}
$$

$$
\begin{array}{cl}
r=r^{-1} & \text { symmetric } \\
r \cap r^{-1}=\varnothing & \text { asymmetric } \\
\operatorname{id}(S) \subseteq r & \text { reflexive } \\
r ; r \subseteq r & \text { transitive }
\end{array}
$$

Set-theoretic notation more readable than predicate calculus

$$
r=r^{-1} \equiv \forall x, y \cdot x \in S \wedge y \in S \Rightarrow(x \mapsto y \in r \Leftrightarrow y \mapsto x \in r)
$$

- Functions: one type of relations.
- Notation: $f(x)=y \equiv x \mapsto y \in f$.

Total function $(\operatorname{dom}(f)=S) \quad S \rightarrow T$
Partial function $S \rightarrow T$

- Every element in domain relates only to one element in range.

$$
x \mapsto y \in f \wedge x \mapsto z \in f \Rightarrow y=z
$$

- WD conditions:
- $f \in S \rightarrow T$
- $x \in \operatorname{dom}(f)$
- Using right type of function allows different proofs.

Injection: if $f(x)=f(y)$, then $x=y$.
Partial injection $S \leftrightarrow T$
Total injection
$S \mapsto T$

Surjection: $f \in S \leftrightarrow T, r a n(f)=T$.
Partial surjection $S \rightarrow T$
Total surjection
$S \rightarrow T$

Bijection $S \hookrightarrow T$

- Every person is either a man or a woman.
- No person is man and woman at the same time.
- Only women have husbands, who must be men.
- Woman have at most one husband.
- Men have at most one wife.
- Mother are married women.

Every person is man or woman No person is man and woman Women have husbands (men) At most one husband per woman Men at most one wife Mother are married women \quad mother $\in P E R S O N \rightarrow$ dom (husband)

Let us derive some relations (Double check with Rodin)

```
wife = husband }\mp@subsup{}{}{-1
spouse = husband \cup wife
father = mother; husband
children =(mother \cup father )}\mp@subsup{)}{}{-1
```

$$
\begin{gathered}
\text { men } \subseteq P E R S O N \\
\text { women }=P E R S O N \backslash \text { men } \\
\text { husband } \in \text { women } \mapsto \text { men }
\end{gathered}
$$

$$
\text { mother } \in P E R S O N \rightarrow \operatorname{dom}(\text { husband })
$$

Properties

$$
\begin{aligned}
& \text { mother }=\text { father; wife } \\
& \text { spouse }=\text { spouse }^{-1} \\
& \text { father; father }{ }^{-1}=\text { mother; mother }^{-1} \\
& \text { father; } \text { mother }^{-1}=\varnothing \\
& \text { mother; father }{ }^{-1}=\varnothing \\
& \text { father; children }=\text { mother; children } \\
& \text { sibling }=\text { sibling }^{-1} \\
& \text { cousin }=\text { cousin }^{-1}
\end{aligned}
$$

Arithmetic

- The usual (+, -, *, \div) plus: mod, ^ (power).
- card(set), min(set), max(set)

[^0]: ${ }^{1}$ Many slides borrowed from J. R. Abrial: see http://wiki. event-b.org/index.php/Event-BミLanguagea

