Correctness by Construction

Third Event-B Exercise:
A Doctor’s Office

[Deadline: Tuesday, April 30" 2024, 23:59]

Manuel Carro

manuel.carro@upm.es

April 8%, 2024

1 Problem Description

We have to design a system to control the
access to a doctor’s office, where only one
patient can be at a time. The office has an
external status light that can be red (mean-
ing that the office cannot be accessed) or
green (meaning the opposite). A sensor at
the entrance door can detect when someone
is waiting. A sensor at the exit detects when
a patient heading out of the office walks past
it. The doctor has a button to signal the s/he
is ready to accept a new patient.

The inside of the office cannot be seen
from the outside, and the other way around.
All communication takes place through the
external status light. Patients to be attended
should wait until the status light is green to
enter the office. When the light is red, pa-
tients waiting stand on the sensor. The per-
sons inside the office can leave at any time
through an exit door different from the en-
trance door.! Figure 1 shows a schematic
representation of the office.

Sensors

Exit door

N

“Doctor’s
ready”

button \

Entrance
door

\

Status light

Figure 1: Doctor’s Office.

!n real life, patients would wait for the doctor to examine them. To simplify, patients can leave whenever they

wish to do so.

https://wp.software.imdea.org/cbc/
mailto:manuel.carro@upm.es

Patients are expected to follow some common-sense rules, among which we can list:

e The status light is respected.

* Patients stand in front of the door waiting for the light to turn green.

* Only one patient stands in front of the door.

* Only one patient enters the office at a time, and only when the light is green.

* Anyone waiting at the entrance door does not walk away, but eventually enters the of-
fice when the status light indicates that this is possible.

The office has a button / web interface / ... that doctors press to let the controller know
that they are ready to accept another patient. This may happen when the patient is still in
the office and getting ready to leave, or any arbitrary amount of time after the patient has left
(the doctor may have to take care of administrative tasks). In any case, a new patient should
not be able to enter the office until the previous patient has left the office and the doctor has
signaled that they are ready to attend a new patient.

If necessary, you may introduce behavior that can be reasonable in a realistic environ-
ment. If so, you should explain and motivate it. If the rules you introduce simplify the prob-
lem too much, you may not get full marks, even if your model completely implements them.

2 Additional Information

2.1 The Sensors

The sensors work similarly to what
we presented in the One-Way Bridge

example. When a person steps Step on Leave
on the sensor, its state (which we sensor sensor .
. . e = ooooooc off
access through a variable in the @ — ------=--------- ro-===-=-
1

1 1= =
 Noone : Someone No one 1
1

model) goes from off to on. When istanding: standing standing:

someone standing on the sensor

walks away, the state returns to off
(see Figure 2). Figure 2: Behavior of the sensor when someone stands

on it. Time goes from left to right.

2.2 Separation of Concerns

In order to have a model that can be implemented, the controller cannot manipulate data
that models the environment. Likewise, the events that model the environment cannot (di-
rectly) read / change data that belongs to the controller. The final design should have a clear
separation between variables and events that model the behavior of the environment and
those that model the controller. Please state which events and variables pertain to the en-
vironment simulation and to the controller. It is advisable to adopt a naming scheme that
reflects this. Also, every variable needs to have a clear meaning in the model: what it repre-
sents and what it is used for. Respect this meaning idea throughout the development of the
model and it will help avoid mistakes.
The events that model the behavior of patients can:

https://wp.software.imdea.org/cbc/wp-content/uploads/sites/5/2021/03/05-cars-nup.pdf

* Change the sensor state, because that change is triggered by a patient standing on or
leaving the sensor.

* Read the sensor state, because that corresponds to physically seeing a patient standing
on it. You may also have a specific (environment) variable to denote a patient standing
on a sensor if you think that this is cleaner.

* See and react to the color of the status light, but not change it.

The events that model the controller can:

* Read the sensor status, because it would be (physically) connected to the controller.
* Read and set the light status.

* Read and write any additional variables necessary to keep an internal state.

However, they cannot:

» Set variables that respond to actions by patients (e.g., the sensor state).

* Read or set variables that are only necessary to model the behavior of the persons.

An exception to this division of concerns comes from the need to model that the hardware
/ software is fast enough to register and process signals from the sensors. See Section 2.3.

2.3 Processing Speed of Hardware Equipment

Real hardware / software takes some time to process signals and actuate on external devices.
But this is often so fast that it is safe to assume it is immediate from a human point of view.
In our case, we will assume the software and hardware is so fast that the signals generated by
the sensor are received and treated by the controller before they change, and they are not lost
(because, e.g., someone walks very fast past a sensor).

Since we are not representing (real) time in our models, a simple specification can allow
interleavings that would not take place when humans are involved, due to the huge speed
difference between persons and machines.” To prevent these unreal interleavings to be con-
sidered by the theorem provers, you can add additional variables to block / delay (environ-
ment) events that would not immediately take place in real life and disallow schedulings that
would not happen due to the aforementioned speed difference.

In particular, it is admissible to include the variables and logic necessary to reflect that
events corresponding to a patient leaving the sensor can only be enabled after the on signal
has been registered by the controller. In the real world we cannot enforce this, but if we
assume that it is what happens in reality, enforcing it in the model does not violate reality.

However, this logic must not unnecessarily serialize the design, which has to be concur-
rent by nature. For example, a person may be standing at the entrance of the office while
another person is inside and/or exiting and the doctor is pressing the “next patient” button.
These events may take place in any order, and none of these orders should to be removed.

2This is not bad, as if we were modeling a system purely based on software, these interleavings might very well
happen and, if they are problematic, they would need to be detected.

2.4 Some Recommendations

The system can be designed using a single Event-B model. However, progressive re-
finements may help separate concerns and consider requirements incrementally.

You can follow an approach similar to that of the One-Way Bridge. However, the be-
havior of the office is simpler (there is only one area to control and a maximum of one
person) and considerable simplifications can be made.

Use invariants / guards to capture the problem requirements. In the model, please add
comments stating which requirement in Section 3 each guard / invariant is supposed
to address, when they address requirements directly.’

Since at most one patient can be in the office at any time, it is tempting to use a BOOL to
model this. That may not be a good choice, because controlling a violation of the maxi-
mum occupancy requirement will not be straightforward then. A number with suitable
bounds will be more appropriate (and less error-prone) to capture these violations, and
easier to modify if the requirements of the problem change.

The proofs are likely to be rather easy. Some of them may need invoking directly the
PP predicate prover. However, coming up with the right model may be delicate. The
interplay of events makes it necessary to think carefully the role of each variable, and
stick to it.

3 Requirements

’ FUN 1 ‘ This system deals with the access control of a doctor’s office. ‘

’ FUN 2 ‘ The system must not deadlock. ‘

’ SAF 3 \ At most one patient can be in the office at any given time. ‘

EQP 4 | Doctors have a device which is used to signal the controller when they are ready

to attend a new patient.

FUN 5 | After a patient has entered the office, doctors can signal at any time that they

are ready to see a new patient.

’ EQP 6 ‘ There is a status light outside the office with two colors: green and red. ‘

FUN 7 | When the status light is red, patients cannot enter. When the status light is

green, patients can enter.

3You will surely need auxiliary invariants to help prove some of the invariants / refinements that are used to
capture the requirements.

FUN 8 | The status light can be green only when there is no patient in the office and the
doctor has signaled that they are ready to see a new patient.

| ENV 9 | People obey the status light. ‘

] EQP 10 \ There is a sensor at the entrance of the office that detects when a person enters. ‘

EQP 11 | There is a sensor at the exit of the office that detects when a person leaves.
The exit of the office is different from and independent of the entrance of the
office.

FUN 12 | The sensors produce an on signal when a person is standing on / in front of
them and an off signal otherwise.

FUN 13 | Anyone wishing to enter the office must step on the sensor, and wait there until
the status light is green, if it is not already.

ENV 14 | Anyone who stands on the sensor will wait there for the status light to turn
green and enter the office.

FUN 15 ‘ A patient inside the office can leave at any moment. ‘

ENV 16 \ The inside of the office cannot be seen from its outside and vice-versa. ‘

4 Tasks
You have to:

1. Develop an Event-B model that captures the requirements in Section 3 and the general
description in Section 1. Make sure that the events and variables are clearly identified
as belonging to the environment or to the controller (Section 2.2).

2. If you have made any changes or additions to the behavior rules, write a short docu-
ment stating them and the motivation to propose these changes. Make sure that your
model takes care of them. If you have new requirements, give them a number/name to
identify them and make it easier to refer to them in the comments of the model.

5 To Be Turned In

The documents / files mentioned below must be sent to manuel.carro@upm.es by Tuesday,
April 30" 2024, 23:59:

mailto:manuel.carro@upm.es

* The Event-B model mentioned in point 1 of Section 4, developed using Rodin. Ideally,
all the proof obligations should be discharged.

- Name the model DoctorOffice XYZ, where XYZ are your initials. If you have two
family names, please use the initials for both.

— Export it to a zip file and send me that zip file as a mail attachment.

* If you suggested changes to the problem description, please submit the document
mentioned in point 2 of Section 4 in PDF format. You can hand-write it very clearly and
scan it or take a good picture and convert it to a PDF document. Please do not store it as
part of the zip file where you pack the Event-B model; send it as a separate attachment
instead. Similarly to the model, please name it DoctorOffice NewReqs XYZ.pdf.

https://wp.software.imdea.org/cbc/rodin-installation-and-tips/

	Problem Description
	Additional Information
	The Sensors
	Separation of Concerns
	Processing Speed of Hardware Equipment
	Some Recommendations

	Requirements
	Tasks
	To Be Turned In

