One-Way Bridge ${ }^{1}$

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid \&
IMDEA Software Institute

[^0]Goals s. 3
Requirements s. 6
Initial model s. 16
First refinement: one-way bridge s. 23
Second refinement: traffic lights s. 41
Third refinement: sensors s. 77

- Example of reactive system development.
- Including modeling the environment.
- Invariants: capture requirements.
- Invariant preservation will prove that requirements are respected.
- Increasingly accurate models (refinement).
- Refinements "zoom in", see more details.
- Models separately proved correct.
- Final system: correct by construction.
- Correctness criteria: proof obligations.
- Proofs: helped by theorem provers working on sequent calculus.

Difference with previous examples

- Previous examples were transformational.
- Input \Rightarrow transformation \Rightarrow output.
- Current example:
- Interaction with environment.
- Sensors and communication channels:
- Hardware sensors modeled with events.
- Channels modeled with variables.

- Control software reads sensor, raises barrier.
- If conditions allow it.
- Software behavior relies on environment:
- Cars stop on a closed barrier.
- Cars drive over sensor.
- ...
- Correctness proofs: take this behavior into account.
- Model external actions as events.
- E.g., sensor signal raised by event.
- Following expected behavior.
- Software control also events.
- Everything subject to proofs.
－Sequential systems specified through $\{$ Pre $\} P\{$ Post $\}$ ．
－Considerably more difficult in case of（a）large real－world and（b） reactive systems．
－Building it piece－wise，modeling（natural－language）requirements and ensuring they are respected：a way to ensure we have a detailed system specification that is provable correct．
－Two kinds of requirements：
－Concerned with the equipment（EQP）．
－Concerned with system functionality（FUN）．
－Objective：control cars on a narrow bridge．
－Bridge links the mainland to（small）island．

Requirements

The system is controlling cars on a bridge between the mainland and an island

FUN-1

- This can be illustrated as follows

Requirements

- The controller is equipped with two traffic lights with two colors.

The system has two traffic lights with two colors: green and red

EQP-1

Requirements

- One of the traffic lights is situated on the mainland and the other one on the island. Both are close to the bridge.
- This can be illustrated as follows

Requirements

The traffic lights control the entrance to the bridge at both ends of it
EQP-2
－Drivers are supposed to obey the traffic light by not passing when a traffic light is red．

Cars are not supposed to pass on a red traffic light，only on a green one

- There are also some car sensors situated at both ends of the bridge.
- These sensors are supposed to detect the presence of cars intending to enter or leave the bridge.
- There are four such sensors. Two of them are situated on the bridge and the other two are situated on the mainland and on the island.

Requirements

The sensors are used to detect the presence of cars entering or leaving the bridge

EQP-5

- The pieces of equipment can be illustrated as follows:

- This system has two main constraints: the number of cars on the bridge and the island is limited and the bridge is one way.

The number of cars on the bridge and the island is limited

The bridge is one way or the other, not both at the same time

satime

- Software controller has model of the world.
- In some sense, it partially simulates it.
- Knowledge of world through sensors.
- Incrementally adding requirements, proving they are implemented.
- When finished, an additional software layer (= more events) simulate the "real world".
- "Real world" simulation only interacts with controller through sensors, actuators.
- Proof that controller + simulation follow requirements.
- Real implementation: strip "Real world" layer, derive code from software controller.

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3)
Third refinement Introducing the sensors (EQP-4,5)

Initial model

- We ignore the equipment (traffic lights and sensors).
- We do not consider the bridge.
- We focus on the pair island + bridge.
- FUN-2: limit number of cars on island + bridge.

Formalization of state

\checkmark Create project Cars, context c0, machine m0, add constant, axiom, variable, invariants, initialization

Static part (context):
constant: d

$$
\text { axm0_1: } d \in \mathbb{N}
$$

d is the maximum number of cars allowed in island + bridge.

Dynamic part (machine):
variable: n
inv0_1: $n \in \mathbb{N}$
inv0_2: $n \leq d$
n number of cars in island + bridge
Always smaller than or equal to d (FUN_2)

- Labels axm0_1, inv0_1, chosen systematically.
- Label axm, inv recalls purpose.
- 0 (as in inv0_1): initial model.
- Later: inv1_1 for invariant 1 of refinement 1, etc.
- Any systematic convention is valid.

Situation from the sky

\checkmark Create events ML_out, ML_in. Add actions. Guards?

- This is the first transition (or event) that can be observed
- A car is leaving the mainland and entering the Island-Bridge

Before

After

INITIALISATION
 $$
n:=0
$$

Event ML_out
where

$$
n<d
$$

then

$$
\begin{aligned}
& n:=n+1 \\
& \text { end }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Event ML_in } \\
& \text { where } \\
& 0<n \\
& \text { then } \\
& \quad n:=n-1 \\
& \text { end }
\end{aligned}
$$

ML_out/inv0_1/INV $\quad d \in \mathbb{N}, n \in \mathbb{N}, n \leq d, n<d \vdash n+1 \in \mathbb{N}$
ML_out/inv0_2/INV $\quad d \in \mathbb{N}, n \in \mathbb{N}, n \leq d, n<d \vdash n+1 \leq d$
ML_in/inv0_1/INV $\quad d \in \mathbb{N}, n \in \mathbb{N}, n \leq d, 0<n \vdash n-1 \in \mathbb{N}$
ML_in/inv0_2/INV $\quad d \in \mathbb{N}, n \in \mathbb{N}, n \leq d, n<d \vdash n-1<d$

- It is common to require that physical systems progress.
- We want cars to be able to either enter or exit.
- Therefore, (some) event(s) have to always be enabled.
- Depends on guards: deadlock freedom.

$$
A_{1 \ldots I}, l_{1 \ldots m} \vdash \bigvee_{i=1}^{n} G_{i}(v, c)
$$

- In our case:

$$
d \in \mathbb{N}, n \in \mathbb{N}, n \leq d \vdash n<d \vee 0<n
$$

- \checkmark Add invariant at the end, mark as theorem.
- Cannot be proven!
- Why? Let us find out in which cases events may be in deadlock.
- Solve $\neg(n>0 \vee n<d)$.
- If $d=0$, no car can enter! Missing axiom: $0<d$. Add it.
- Note that we are calculating the model.

Initial model Limiting the number of cars (FUN-2). First refinement Introducing the one-way bridge (FUN-3). Second refinement Introducing the traffic lights (EQP-1,2,3) Third refinement Introducing the sensors (EQP-4,5)

One-way bridge

- We introduce the bridge.
- We refine the state and the events.
- We also add two new events: IL_in and IL_out.
- We are focusing on FUN-3: one-way bridge.

One－way bridge

－a denotes the number of cars on bridge going to island
－b denotes the number of cars on island
－c denotes the number of cars on bridge going to mainland
－ $\boldsymbol{a}, \boldsymbol{b}$ ，and \boldsymbol{c} are the concrete variables

Cars on bridge going to island Cars on island Cars on bridge to mainland Linking new variables to previous model Formalization of one-way bridge (FUN-3)

inv1_1	$a \in \mathbb{N}$
inv1_2	$b \in \mathbb{N}$
inv1_3	$c \in \mathbb{N}$
inv1_4	$a+b+c=n$
inv1_5	$a=0 \vee c=0$

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant

Note that we are not finding an invariant to justify the correctness (= postcondition) of a loop. We are establishing an invariant to capture a requirement and we want the model to preserve the invariant, therefore implementing the requirement.

Event refinement proposal

Event ML_in
where

$$
? ? ? ? 0<c
$$

then
????c:=c-1
end

- Right-click on m0.
- Select Refine.
- Name it (m1).
- Remove variable n.
- Introduce variables, invariants.
- Edit existing events by changing them from "extended" to "not extended" (mouse click).

$$
\begin{array}{r}
a \in \mathbb{N} \\
b \in \mathbb{N} \\
c \in \mathbb{N} \\
a+b+c=n \\
a=0 \vee c=0
\end{array}
$$

> Event ML_out

> $$
> \begin{array}{l}\text { where } \\ \qquad a+b<d \\ c=0\end{array}
>
$$

then

$$
a:=a+1
$$

Event ML_in
where $0<c$ then

$$
c:=c-1
$$

end
end

- Every concrete guard is stronger than abstract guard.
- Every concrete action is simulated by abstract action.

ML_out / GRD:

$$
\begin{aligned}
& d \in \mathbb{N}, 0<d, n \in \mathbb{N}, n \leq d, a \in \mathbb{N}, b \in \mathbb{N}, c \in \\
& \mathbb{N}, a+b+c=n, a=0 \vee c=0, a+b<d, c=0 \quad \vdash n<d
\end{aligned}
$$

ML_in / GRD:

$$
\begin{aligned}
& d \in \mathbb{N}, 0<d, n \in \mathbb{N}, n \leq d, a \in \mathbb{N}, b \in \\
& \mathbb{N}, c \in \mathbb{N}, a+b+c=n, a=0 \vee c=0,0<c \vdash 0<n
\end{aligned}
$$

- Gluing invariant needed to relate variables in different models!
- Gluing invariant $J(c, v, w)$ has to be preserved for every transition.
- Defined in terms of concrete and abstract variables.

INV: $A(c), I(c, v), J(c, v, w), H(c, w) \vdash J_{j}(c, E(c, v), F(c, w))$

POLTEECNICA

- New events add transitions without abstract counterpart.
- Refining skip.
- Can be seen as internal steps (w.r.t. abstract model).
- Only perceived by observer who is zooming in.

Proposal for new events

Event IL_in
where

$$
? ? ? ? 0<a
$$

then

$$
\begin{aligned}
& \quad \begin{array}{l}
? ? ? ? a:=a-1 \\
b \\
\text { end }
\end{array} \text { :=b+1}
\end{aligned}
$$

Event IL_out
where

$$
\begin{aligned}
& ? ? ? ? 0<b \\
& a=0
\end{aligned}
$$

then

$$
\begin{aligned}
& ? ? ? ? c:=c+1 \\
& b:=b-1
\end{aligned}
$$

end

- New events refine implicit "void" event
- skip action: $n^{\prime}=n$.
- No previous history to respect.
- True guards.
- Guard strengthening (GR): trivial (implicit event has true guards).
- Simulation (SIM) trivial: the updates to a, b, c do not change $n \Rightarrow$ no new abstract states introduced.
- Need to prove invariants.
- Termination: meaningful events are eventually not eligible any more.
- Finish event: artifact to mark when computation is successful.
- Convergence: a generalization of termination.
- Events from a subset of (convergent) events are eligible for a bounded time.
- Right after this, only events outside this subset are eligible.
- Then, convergent events can be eligible again.
- Avoid lifelocks \Rightarrow computation progress.

Convergence of new events

- ML_in, ML_out should not alternate forever (see guards / actions).
- IL_in, IL_out should not alternate forever (ensure we model real world).
- New events must not diverge:
- IL_in, IL_out not continuously enabled.
- Not physically observable.
- It should not happen in our model.
- Ensure that without forcing scheduling restrictions.
- Create variant that proves that IL_in, IL_out are not indefinitely enabled.
- Reminder:

$$
\begin{array}{cl}
\underline{\text { IL_in }} & \underline{\text { IL_out }} \\
\mathrm{a}:=\mathrm{a}-1 & \mathrm{c}:=\mathrm{c}+1 \\
\mathrm{~b}:=\mathrm{b}+1 & \mathrm{~b}:=\mathrm{b}-1
\end{array}
$$

- We need an f s.t.:

$$
\begin{aligned}
& f(a, b, c)>f(a-1, b+1, c) \\
& f(a, b, c)>f(a, b-1, c+1)
\end{aligned}
$$

Any proposal?

- Calculate it! \checkmark Add variant! (sketch of calculation in next slide)

Note: ignoring guards here - not necessary.
Other cases may need them. See PO scheme in Search slides.

Calculating a variant

- In general, convergent variants cannot be automatically determined.
- Making some educated guesses help.
- Let us suppose that f is a linear function of the variables involved:

$$
f(a, b, c)=k_{1} a+k_{2} b+k_{3} c
$$

- Therefore:

$$
\begin{aligned}
& k_{1} a+k_{2} b+k_{3} c>k_{1}(a-1)+k_{2}(b+1)+k_{3} c \\
& \left.k_{1} a+k_{2} b+k_{3} c>k_{1} a\right)+k_{2}(b-1)+k_{3}(c+1)
\end{aligned}
$$

- Simplifying and solving:

$$
k_{1}>k_{2}>k_{3}
$$

- The simplest selection:

$$
k_{1}=2, k_{2}=1, k_{3}=0
$$

- VAR: $2 a+b$
- Moreover: if $a \in \mathbb{N}, b \in \mathbb{N}$, then $2 a+b \in \mathbb{N}$.

- Ensure no new deadlocks introduced.
- If concrete model deadlocks, it is because abstract model already did.
- $G_{i}(c, v)$ abstract guards, $H_{i}(c, v)$ concrete guards:
$A_{1 \ldots I}(c), I_{1 \ldots m}(c, v), \bigvee_{i=1}^{n} G_{i}(c, v) \vdash \bigvee_{i=1}^{p} H_{i}(c, v)$
- Optional PO (depends on system).
- \checkmark Add invariant:

$$
\bigvee_{i=1}^{n} G_{i}(c, v) \Rightarrow \bigvee_{i=1}^{p} H_{i}(c, v)
$$

- \checkmark Mark as theorem. No need to check per event.
- Invariant preservation will generate the right PO.

Complete sequent

$$
\begin{array}{ll}
d \in \mathbb{N}, 0<d, n \in \mathbb{N}, n \leq d, a \in \mathbb{N}, b \in \mathbb{N}, c \in \mathbb{N}, a+b+ & \\
c=n, a=0 \vee c=0,0<n \vee n<d r & \vdash(a+b<d \wedge c=0) \vee c> \\
& 0 \vee a>0 \vee(b>0 \wedge a=0)
\end{array}
$$

Discharged POs

© Proof Obligations
© ${ }^{\text {athm }} 1 / \mathrm{THM}$
－thm2／THM
σ^{A} INITIALISATION／inv1／INV
\circledR^{\wedge} INITIALISATION／inv2／INV
$\mathfrak{\sigma}^{\wedge}$ INITIALISATION／inv3／INV
\bigotimes^{A} INITIALISATION／inv4／INV
\bigotimes_{\circledR} INITIALISATION／inv5／INV
が ML＿out／inv1／INV
が ML＿out／inv4／INV
がML＿out／inv5／INV
σ^{\wedge} ML＿out／grd1／GRD
$\boldsymbol{\sigma}^{A}$ IL＿in／inv1／INV
$\overbrace{}^{A} I L _i n / i n v 2 / I N V$

```
\sigmaAIL_in/inv4/INV
`^IL_in/inv5/INV
\sigma^IL_in/VAR
\sigmaAIL_in/NAT
がIL_out/inv2/INV
\circlearrowleft^IL_out/inv3/INV
~ALL_out/inv4/INV
๙^IL_out/inv5/INV
囚^IL_out/VAR
\circlearrowleft^IL_out/NAT
* ML_in/inv3/INV
『^ML_in/inv4/INV
`^ML_in/inv5/INV
* ML_in/grd1/GRD
```

Initial model Limiting the number of cars (FUN-2). First refinement Introducing the one-way bridge (FUN-3). Second refinement Introducing the traffic lights (EQP-1,2,3) Third refinement Introducing the sensors (EQP-4,5)

Introducing traffic lights

Cars cannot magically know the state of the system

- For pedagogical reasons: this is where we will end in this refinement.

Introducing traffic lights

```
set: COLOR
constants: red,green
```

```
axm2_1: COLOR = {green,red}
axm2_2: green #= red
```

- \checkmark Create context COLORS
- \checkmark Introduce in context: set, constants, axioms.
- \checkmark Refine machine m1, create m2
- \checkmark Make m2 see COLORS

Introducing traffic lights: leaving mainland

- A green mainland traffic light implies safe access to the bridge

Invariant?Invariant: $m l_{_} t /=$ green $\Rightarrow c=0 \wedge a+b<d$

- ML_out was enabled depending on \# of cars in system.
- But in reality a car cannot now that.
- It will now depend on state of traffic light.

Abstract

Event ML_out
where

$$
\begin{aligned}
& c=0 \\
& a+b<d
\end{aligned}
$$

then

$$
a:=a+1
$$

Concrete

Event ML_out where
??????mt_t/ = green
then

$$
\text { ??????a }:=a+1
$$

end

- A green island traffic light implies safe access to the bridge Invariant?Invariant: $i l_{-} t l=$ green $\Rightarrow a=0 \wedge b>0$

A note on $b>0$: il_tl green signals cars in island they may pass. It does not make sense to let them pass if there is no car in the island; it would not align with intention of IL_out. The invariant helps check / guarantee that the light does not turn green if the island is empty.

Refining IL_out

Abstract

Event IL_out
where

$$
\begin{aligned}
& a=0 \\
& b>0
\end{aligned}
$$

then

$$
\begin{aligned}
& b:=b-1 \\
& c:=c+1
\end{aligned}
$$

end

Concrete

Event IL_out
where
??????il_tl = green
then

$$
\begin{array}{rl}
? ? ? ? ? ? & b \\
c & :=b-1 \\
c & =c+1
\end{array}
$$

end

$$
\begin{aligned}
& i I_{t} t \mid \in C O L O R \\
& m l_{-} t \in C O L O R \\
& i I_{\text {_ }}=\text { green } \Rightarrow a=0 \wedge b>0 \\
& m l_{-} t l=\text { green } \Rightarrow c=0 \wedge a+b<d
\end{aligned}
$$

\checkmark Add invariants.
\checkmark Change initialization, ML_out, IL_out to "non extended".
\checkmark INITIALIZE variables, change guards.

- Several INV not proven.
- We will come back to them.

Event ML_out where

$$
\mathrm{ml} _\mathrm{tl}=\text { green }
$$

then

$$
a:=a+1
$$

end

Event IL_out where

$$
\text { il_tl }=\text { green }
$$

then

$$
b:=b-1
$$

$$
c:=c+1
$$

end

Changing traffic lights

- Car entering event visible when traffic light so allows.
- We will eventually control traffic lights.
- When do traffic lights change?
- First approximation: correct simulation.
- Traffic lights may change at any moment it is not wrong to do so.
- We are removing wrong behaviors.
- We can observe traffic light changes with associated events.
- \checkmark Add new events.

$$
\begin{aligned}
& \text { Event ML_t_green } \\
& \text { where // Mainland traf. light } \\
& \text { ????? } m / \quad t l=\text { red } \\
& c=0 \\
& \quad a+b<d \\
& \text { then } m / _t l:=\text { green } \\
& \text { end } \\
& \text { Event IL_tI_green } \\
& \text { where // Island traf. light } \\
& \text { ?????il_tl = red } \\
& \quad a=0 \\
& \quad b>0 \\
& \text { then } \\
& \text { iI_tl }:=\text { green } \\
& \text { end }
\end{aligned}
$$

Variables, invariants

$$
\begin{aligned}
\text { variables: } & a, b, c, m l_{-} t l, i I_{-} t l \\
\text { inv2_1: } & m I_{-} t l \in C O L O R \\
\text { inv2_2: } & i I_{-} t l \in \operatorname{COLOR} \\
\text { inv2_3: } & i I_{-} t l=\text { green } \Rightarrow a=0 \wedge b>0 \\
\text { inv2_4: } & m I_{_} t l=g r e e n ~ \\
& c=0 \wedge a+b<d
\end{aligned}
$$

Pending refinement proofs

- Simulation (SIM).
- Nothing to do: refined events have same actions.
- Guard strengthening (GRD).
- Guards have changed.
- Easy: invariants directly imply GRD.
- Invariant establishment and preservation (INV).
- New invariants, new events.
- Some INV POs were not discharged.
- Some look like

$$
H \vdash \perp
$$

- Would be discharged if H was inconsistent.
- Further examination:
- Some H contains $m l=t l=$ green and $i I_{-} t l=$ green.
- I.e., both traffic lights are green.
- That should not be allowed.
- Or require inferring $m l_{-} t l=$ green when il_tl = green (equivalent).
- We are missing an invariant

$$
\text { inv2_5 : ml_tl = red } \vee \text { il_tl = red }
$$

(FUN-3 and EQP-3)

- This allows some proofs to be completed.
\checkmark Add it

Status of proofs

Done	Pending
ML_out / inv2_4 / INV	ML_out / inv2_3 / INV
IL_out / inv2_3 / INV	IL_out / inv2_4 / INV
	ML_tl_green / inv2_5 / INV
	IL_t_green / inv2_5 / INV

Issues in POs

Event ML_out
where

$$
\mathrm{ml} _\mathrm{tl}=\text { green }
$$

then

$$
a:=a+1
$$

end

- Preservation of
$a+b<d, m l_{-} t l=$ green $\vdash a+1+b<d$ fails.
- The $n^{\text {th }}$ car to enter the island should force traffic light to become red.
\checkmark Split event corresponding to car entering bridge into two different cases: last car and non-last car.

Event ML_out_1
where

$$
m^{\prime} _t l=\text { green }
$$

$$
a+1+b<d
$$

then
$a:=a+1$
end
Event ML_out_2
where

$$
m l_{-} t l=\text { green }
$$

$$
a+1+b=d
$$

then
$a:=a+1$
$m l_{-} t /=$ red
end

Issues in POs

```
Event IL_out
    where
        il_tl \(=\) green
    then
        \(\mathrm{b}:=\mathrm{b}-1\)
        c \(:=c+1\)
    end
```

- IL_out / inv2_4 / INV fails.
- $0<b \vdash 0<b-1$.
- The last car to leave the island should turn the island traffic light red.
- Again, two different cases.
\checkmark Add to the model.

Event IL_out_1
where

$$
\begin{aligned}
& i l_{\mathrm{t}}^{\mathrm{t}}=\text { green } \\
& \mathrm{b} \neq 1
\end{aligned}
$$

then
$b, c:=b-1, c+1$
end

Event IL_out_2
where
il_tl $=$ green
$b=1$
then
$b, c:=b-1, c+1$
il_tl := red
end

Status of proofs

Done	Pending
ML_out / inv2_4 / INV	ML__tI_green / inv2_5 / INV
IL_out / inv2_3 / INV	IL_tl_green / inv2_5 / INV
ML_out_\{1,2\} / inv2_3 / INV	
IL_out_\{1,2\} / inv2_4 / INV	

Proving inv2_5
inv2_5: $m l_{-} t l=r e d \vee i l _t l=r e d$

- Not preserved by ML_tl_green, IL_tl_green.
- There is an state where ML_tl_green and IL_t_green can fire sequentially.

Event ML_tl_green where

$$
\begin{aligned}
& m l _t l=r e d \\
& a+b<d \\
& c=0
\end{aligned}
$$

then

$$
\begin{aligned}
& m l _t l:=\text { green } \\
& \text { ??????il_tl }:=\text { red }
\end{aligned}
$$

end

Event IL_tl_green where
il_tl $=$ red
$0<b$
$a=0$
then
il_tl := green
?????? ml _tl := red
end

At this point，all invariants for requirements in this refinement are preserved（safety）．We can think about liveness．
－Event firing may happen without leading to system progress．
－Other（necessary）events may not take place．
－Called＂livelock＂in concurrent programming．
－Events that do not clearly change a bounded expression or variable ${ }^{a}$ are suspicious．
－New events in particular－remember we already proved convergence of IL＿in and IL＿out
${ }^{\text {a＂Clearly＂does not ensure；properties should anyway be proven．}}$

$$
\begin{aligned}
& \text { Event } \mathrm{ML} _\mathrm{tl} \text { _green } \\
& \text { where } \\
& \quad m l _t l=\text { red } \\
& a+b<d \\
& c=0
\end{aligned}
$$

 then
 \(m l_{_} t l:=\) green
 il_tl \(:=\) red
 end
 - Guards depend on a, b, c and traffic lights.
- $m l_{-} t l=$ red and $i I_{-} t l=$ red (in guards) alternatively set by the other event.

Event IL_tl_green
where

$$
\begin{aligned}
& i l _t l=r e d \\
& 0<b \\
& a=0
\end{aligned}
$$

then

$$
\text { il_tl }:=\text { green }
$$

$$
m \bar{l} _t l:=\text { red }
$$

end

- The rest of the guards are simultaneously true when $a=c=0,0<b<d$.
- Traffic lights could alternatively change colors w.o. control.

Alternating traffic lights
mi dea

Alternating traffic lights

Alternating traffic lights
mi dea

Alternating traffic lights

Alternating traffic lights
mi dea

Alternating traffic lights

- We have seen that there is divergence.
- Adding a variant does not help: it does not change behavior (just checks it!).
- We need to add a way to control when events are enabled.
- Allow lights to turn green only when a car has passed in the other direction since it turned red.
- Two additional variables: inv2_6: ml_pass $\in\{0,1\}$ inv2_7: II_pass $\in\{0,1\}$
- We update them when cars go out of mainland and out of the island.

Concerns:

- Is it safe?
- Yes. We are not letting traffic lights be green when inadequate. Other invariants will be not provable otherwise.
- Won't traffic stop circulating?
- Assuming that the system progresses (there are cars going in and out), it should not. At the moment, since we do not have sensors yet, we cannot do anything better.

Modifications to avoid divergence

Event ML_out_1
where

$$
\mathrm{ml} _\mathrm{tl}=\text { green }
$$

$$
a+1+b<d
$$

then
$a:=a+1$
ml_pass := 1
end

Event ML_out_2
where
ml tl $=$ green
$a+1+b=d$
then
$a:=a+1$
ml tl := red
ml _pass :=1
end

Event IL_out_2
where
il_tl $=$ green
$b=1$
then
$\mathrm{b}:=\mathrm{b}-1$
c : $=\mathrm{c}+1$
il_t| $:=$ red
il_pass :=1
end

Event ML_tl_green
where
$\mathrm{ml} _\mathrm{tl}=$ red
$a+b<d$
$c=0$
il_pass = 1
then
ml _tl := green
il_tl $:=$ red ml _pass $:=0$
end

Event IL_tl_green
where
il_tl $=$ red
$0<b$
$a=0$
ml _pass $=1$
then
il_tl := green
$\mathrm{ml} _\mathrm{tl}:=$ red
il_pass :=0
end
－Proving non－divergence（ \checkmark Add VARIANT to model ）：
variant_2 :ml_pass + il_pass
－Convergence proofs（for ML＿tl＿green and IL＿tl＿green）：

$$
\begin{aligned}
& m l _t l=r e d, \text { il_pass }=1, \ldots \vdash \text { il_pass }+0<m l _p a s s+i l _p a s s \\
& i l _t l=r e d, m l _p a s s=1, \ldots \vdash m l_{1}=p a s s+0<m l _p a s s+i l _p a s s
\end{aligned}
$$

－Cannot be proven as they are．
－Suggestion：posit the invariants（ \checkmark Add them ）

$$
\begin{aligned}
& \text { inv2_8: } \quad m l _t l=r e d \Rightarrow m l _p a s s=1 \\
& \text { inv2_9: il_tl }=\text { red } \Rightarrow \text { il_pass }=1
\end{aligned}
$$

－Note：we are not forcing $m l_{-}$pass $=1$ when $m l_{-} t l=$ red．
－But if it is true（ \Rightarrow invariant preservation），then we can prove non－divergence．

No-deadlock

All axioms, invariants, theorems

$$
\begin{aligned}
& \left(m I_{-} t l=\text { green } \wedge a+b+1<d\right) \\
& \left(m I_{_} t l=\text { green } \wedge a+b+1=d\right) \\
& \left(i I_{_} t l=\text { green } \wedge b>1\right) \vee\left(i I_{_} t l=\text { green } \wedge b=1\right) \\
& \left(m I_{_} t l=r e d \wedge a+b<d \wedge c=0 \wedge i I_{_} p a s s=1\right) \\
& \left(i I_{_} t l=r e d \wedge 0<b \wedge a=0 \wedge m I_{-} p a s s=1\right) \\
& 0<a \vee 0<c
\end{aligned}
$$

- Lengthy, but mechanical.
- Copy and paste from guards, add invariant, mark as theorem.
- Left as exercise! (but use the guards in your model, in case they differ from the ones above)

Conclusion of second refinement

- We discovered four errors.
- We introduced several additional invariants.
- We corrected four events.
- We introduced two more variables to model the system.
- An two additional variables to control divergence.

Analysis of second refinement

ML_in Car leaves bridge to mainland.
IL_in Car bridge leaves to island.
ML_t__green Controls ML traffic light.
\{M,I\}L_out_\{1,2\} Cars enter bridge.

- Depending on traffic light.
- Traffic light, turn changes depending on \# of cars.
- Dep. on \# of cars, turn.

IL_t_green Same for island traffic light.

- How do we know \# of cars?
- Sensors!

Possible colors .
Possible colors.
If TL to enter island is green, there is space in the island and no car is leaving.
If TL to exit island is green, at least on car is in the island and no car is coming in through the bridge. Both traffic lights cannot be green at the same time. A car entered bridge from ML since ML TL turned green.
A car entered bridge from IL since IL TL turned green.
Captures technical invariant Captures technical invariant
To ensure that traffic lights do not alternate forever.

Event ML_out_1
where

$$
\mathrm{ml} _\mathrm{tl}=\text { green }
$$

$$
a+1+b<d
$$

then

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{a}+1 \\
& \mathrm{ml} \text { _pass }:=1
\end{aligned}
$$

end

Event ML_out_2
where

$$
\begin{aligned}
& \mathrm{ml} \quad \mathrm{tl}=\text { green } \\
& \mathrm{a}+1+\mathrm{b}=\mathrm{d}
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{a}+1 \\
& \mathrm{ml} \text { pass }:=1 \\
& \mathrm{ml} \text { _tl }:=\text { red }
\end{aligned}
$$

end

Event IL_out_1
where

$$
\begin{aligned}
& \text { il_tl }=\text { green } \\
& \text { b } \neq 1
\end{aligned}
$$

then

$$
\mathrm{b}:=\mathrm{b}-1
$$

$$
c:=c+1
$$

il_pass :=1
end

Event IL_out_2

$$
\begin{aligned}
& \text { where } \\
& \qquad \begin{array}{l}
\text { il_tl }=\text { green } \\
b=1
\end{array} \\
& \text { then } \\
& \qquad b:=b-1 \\
& c:=c+1 \\
& \text { il_pass }:=1 \\
& \text { il_tl }:=\text { red } \\
& \text { end }
\end{aligned}
$$

Summary of events (3)

Event ML_tl_green
where

$$
\begin{aligned}
& m l _t l=r e d \\
& a+b<d \\
& c=0 \\
& \text { il_pass }=1
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathrm{ml} \text { tl }:=\text { green } \\
& \mathrm{il} \text { _tl }:=\text { red } \\
& \mathrm{ml} \text { _pass }:=0
\end{aligned}
$$

end

Event IL_tl_green where

$$
\begin{aligned}
& \mathrm{il} \text { tl }=\text { red } \\
& 0<\mathrm{b} \\
& \mathrm{a}=0 \\
& \mathrm{ml} \text { _pass }=1
\end{aligned}
$$

then
il_tl := green
ml tl := red
il_pass :=0
end

Summary of events (4)

These are identical to their abstract versions

Event $M L_{\text {_ }}$ in
where
$0<c$
then \quad
$\quad c:=c-1$
end

Event IL_in
where
$0<a$
then
$a:=a-1$
$b:=b+1$
end

Initial model Limiting the number of cars (FUN-2). First refinement Introducing the one-way bridge (FUN-3). Second refinement Introducing the traffic lights (EQP-1,2,3).
Third refinement Introducing the sensors (EQP-4,5).

We need to identify:

- The controller.
- The environment.
- The communication channels.
- Environment: deals with physical cars.
- Controller: deals with logical cars.
- Communication channels: keep relationship among them.
- Physical reality / logical view not always in sync!

Controller and environment variables

Controller variables (used to decide traffic light colors)

Environment variables (denote physical objects):
a, A,
b,
c,
ml_pass,
il_pass
B,
C,

ML_OUT_SR,
ML_IN_SR,
IL_OUT_SR, IL_IN_SR

- A, B, C : physical cars.
- *_ *_SR: state of physical sensors.

Channels

> Output channels (send state / signal to traffic lights)

> Input channels
> (receive signals from sensors):

$$
\begin{aligned}
& m l_{1} t \text {, } \\
& i I_{-} t
\end{aligned}
$$

$$
\begin{aligned}
& \text { ml_out_10, } \\
& \text { ml_in_10, } \\
& \text { il_out_10, } \\
& \text { il_in_10 }
\end{aligned}
$$

Summary

- The possible states of a sensor:

Carrier sets: ..., SENSOR.
Constants: on, off.
axm3_1: SENSOR $=\{$ on, off $\}$
axm3_2: on \neq off

- Type invariants:
inv3_1: ML_OUT_SR \in SENSOR
inv3_2: ML_IN_SR $\in \operatorname{SENSOR}$
inv3_3: IL_OUT_SR \in SENSOR inv3_4: IL_IN_SR \in SENSOR inv3_5: $A \in \mathbb{N}$ inv3_6: $B \in \mathbb{N}$ inv3_7: $C \in \mathbb{N}$ inv3_8: ml_out_10 \in BOOL inv3_9: ml_in_10 \in BOOL inv3_10: il_out_10 \in BOOL inv3_11: il_in_10 \in BOOL

BOOL is a built-in set: BOOL $=\{$ TRUE, FALSE $\}$.

When sensors are on, there are cars on them:

$$
\begin{aligned}
& \text { inv3_12: } I L_{-} I N_{-} S R=\text { on } \Rightarrow A>0 \\
& \text { inv3_13: } I L_{-} O U T_{-} S R=\text { on } \Rightarrow B>0 \\
& \text { inv3_14: } M L_{-} I N_{-} S R=\text { on } \Rightarrow C>0
\end{aligned}
$$

> | The sensors are used to detect the presence of cars en- | EQP-5 |
| :--- | :--- |
| tering or leaving the bridge | |

(We do not count / control cars in mainland)

Drivers obey traffic lights (e.g., they cross with green traffic light):
inv3_15: $m l_{-}$out_10 $=$TRUE $\Rightarrow m l_{-} t l=$ green inv3_16: il_out_1 $=$ TRUE \Rightarrow il_tl $=$ green

Cars are supposed to pass only on a green traffic light
EQP-3

When sensor on, its logical representation should have been updated. Note: this does not update variables - it only checks they were.
inv3_17: $I L_{-} I N_{-} S R=$ on \Rightarrow il_in_10 = FALSE
inv3_18: IL_OUT_SR = on \Rightarrow il_out_10 = FALSE
inv3_19: $M L _I N_{-} S R=$ on $\Rightarrow m l_{\text {_ }}$ in_10 $=$ FALSE

inv3_20: ML_OUT_SR = on \Rightarrow ml_out_10 = FALSE

The controller must be fast enough so as to be able to treat all the in- FUN-5 formation coming from the environment
inv3_21: il_in_10 $=$ TRUE $\wedge m l_{-}$out_10 $=$TRUE $\Rightarrow A=a$
inv3_22: il_in_10 = FALSE $\wedge m l_{-} o u t _10=\mathrm{TRUE} \Rightarrow A=a+1$
inv3_23: il_in_10 = TRUE $\wedge m l_{-}$out_10 = FALSE $\Rightarrow A=a-1$
inv3_24: il_in_10 $=$ FALSE $\wedge m l_{-}$out_10 $=$FALSE $\Rightarrow A=a$
inv3_25: il_in_10 = TRUE \wedge il_out_10 $=$ TRUE $\Rightarrow B=b$
inv3_26: il_in_10 = TRUE \wedge il_out_10 = FALSE $\Rightarrow B=b+1$
inv3_27: $i I_{\text {_in_1 }}=$ FALSE $\wedge i l_{\text {_out_1 }} 10=$ TRUE $\Rightarrow B=b-1$
inv3_28: il_in_10 = FALSE \wedge il_out_10 $=$ FALSE $\Rightarrow B=b$
inv3_29: il_out_10 = TRUE \wedge ml_out_10 = TRUE $\Rightarrow C=c$
inv3_30: il_out_10 $=$ TRUE $\wedge m l_{\text {_out_1 }}=$ FALSE $\Rightarrow C=c+1$
inv3_31: il_out_10 = FALSE $\wedge m l_{-}$out_10 $=$TRUE $\Rightarrow C=c-1$
inv3_32: il_out_10 $=$ FALSE \wedge ml_out_10 $=$ FALSE $\Rightarrow C=c$
inv3_21: il_in_10 = TRUE \wedge ml_out_10 = TRUE $\Rightarrow A=a$ inv3_22: il_in_10 = FALSE \wedge ml_out_10 $=$ TRUE $\Rightarrow A=a+1$
inv3_23: il_in_10 = TRUE \wedge ml_out_10 $=$ FALSE $\Rightarrow A=a-1$ inv3_24: $i I_{-} i n_{-} 10=$ FALSE \wedge ml_out_10 $=$ FALSE $\Rightarrow A=a$

- A: physical \# cars. Updated by events representing cars entering.
- a: controller (logical) view.
- When ml_out_10 = TRUE: other
events will update logical \# of cars, set ml_out_10 = FALSE.
- In the meantime, logical and physical \# cars may be out of sync.

One event represents car entering bridge. Increases A. Simulates sensor ML_OUT going from off to on. Another even registers change. Sets logical ml_out_10 to TRUE. Here, $A=a+1$ Then another event sees ml_out_10=FALSE and updates a. Here $A=a$.
When ml_out_10 = TRUE \wedge il_out_10 = TRUE, they balance each other.

New (physical) events (examples)

Event ML_out_arr
where // No car on sensor
ML_OUT_SR = off
ml_out_10 = FALSE
then
ML_OUT_SR :=on
end
Event ML_out_dep

$$
\begin{aligned}
& \text { where } \\
& \mathrm{ML} _ \text {OUT_SR }=\text { on } \\
& \mathrm{ml} _\mathrm{tl}=\text { green } \\
& \text { then } \\
& \mathrm{ML} _O U T _S R:=\text { off } \\
& \mathrm{ml} \text { _out_10 }:=\text { TRUE } \\
& \mathrm{A}:=\mathrm{A}+1 \\
& \text { end }
\end{aligned}
$$

Event IL_in_arr
where
IL_IN_SR = off
il_in_10 = FALSE
$A>0$
then
IL_IN_SR:= on
end

Event IL_in_dep
where
IL_IN_SR = on
then
IL_IN_SR := off
il_in_10 := TRUE
$A:=A-1$
$B:=B+1$
end

Refining abstract events (example)

```
Event ML_out_1 (abstract)
    where
    \(\mathrm{ml} \_\mathrm{tl}=\) green
    \(a+b+1 \neq d\)
    then
        \(a:=a+1\)
    ml_pass := 1
    end
```

Event ML_out_1
where

$$
\begin{aligned}
& \text { ml_out_10= TRUE } \\
& \mathrm{a}+\mathrm{b}+1 \neq \mathrm{d}
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathrm{a}:=\mathrm{a}+1 \\
& \mathrm{ml} \text { _pass }:=1 \\
& \mathrm{ml} \text { _out_10 }:=\text { FALSE }
\end{aligned}
$$

end

Basic properties

inv3＿33：$A=0 \vee C=0$
inv3＿34：$A+B+C \leq d$

The number of cars on the bridge and the island is limited
FUN－2

The bridge is one－way
FUN－3

- Ensure new events converge.
- The (somewhat surprising) variant expression is

$$
\begin{aligned}
& 12-\left(M L_{-} O U T_{-} S R+M L_{-} I N_{-} S R+I L_{-} O U T_{-} S R+I L_{-} I N_{-} S R+\right. \\
& 2 \times(\text { ml_out_10 }+ \text { ml_in_10 }+ \text { il_out_10 }+10))
\end{aligned}
$$

- Note: formally incorrect. Booleans have to be converted to integers in the usual way.

[^0]: ${ }^{1}$ Example and several slides from J. R. Abrial book Modeling in Event-B: system and software engineering.

