Sequential programs, refinement, and proof obligations ${ }^{1}$

Manuel Carro

manuel.carro@upm.es
Universidad Politécnica de Madrid \&
IMDEA Software Institute

Installing and using Rodin \qquad
Installing and using Rodin s, 3
sequential programs: specification and
properties pros

Specification of searching in arrays. 7
Refinement of search \qquad . s. 12
Termination and correctnesss. 21
Well-definedness and feasibilitys. 24

Refinement: the sorted array cases. 29
Guard strengthenings. s. 36
Simulation s. . 42
Rodin and refinement s. 44
Rodin proof of INV 46
Theorems \qquads. 61

Several slides, examples, borrowed from J. R. Abria

soltware dea ele

Sequential programs and Event B

- Sequential programs can be transpiled into Event B
- Correctness, termination, etc. proven with Event B tools.
- However, underuse of Event B.

Other approaches are very good at this.

- Better approach: design with Event B from the beginning.
- Apply to reactive and concurrent systems - strong points of Event B.
- For illustration: will develop several sequential programs.

Two types of components in a Rodin project:
Context(s) Contains constants and axioms.

Machine(s) Variables, invariants, and events (and some other things). Machines see Contexts.

Switching to Rodin. The example I will type is available as part of the course material.

Encoding a Hoare-triplet

- Sequential programs are usually specified by means of:
- A precondition
- And a postcondition
- Represented with a Hoare triple

$$
\{\text { Pre }\} \quad P \quad\{\text { Post }\}
$$

EVENT Finish

WHERE $r<c$ THEN skip
END

INITIALISATION
$a, r:=0, b$
END

EVENT Progress WHERE $r>=c$ THEN

$$
r, a:=r-c, a+1
$$

END

Preconditions	Program
$\left\{\begin{array}{l}n \in \mathbb{N} 1 \\ f \in 1 . . n \rightarrow \mathbb{N} \\ v \in \operatorname{ran}(f)\end{array}\right\}$	search
Axioms	$\left\{\begin{array}{c}r \in \operatorname{dom}(f) \\ f(r)=v\end{array}\right\}$
Input parameters, constants	

- Ensuring (total) correctness:
- post-condition implied by invariants and Guard of (unique) final event: Axioms, Invs, Guard \vdash Post.
- Non-final events terminate.
- Events are deterministic.
- Events do not deadlock.
- We will see later how to formally express the last two properties.
$\left\{\begin{array}{l}n \in \mathbb{N} 1 \\ f \in 1 . . n \rightarrow \mathbb{N} \\ v \in \operatorname{ran}(f)\end{array}\right\}$ search $\left\{\begin{array}{l}r \in \operatorname{dom}(f) \\ f(r)=v\end{array}\right\}$

```
Constants: \(n, f, v\)
Axiom 1: \(\quad n \in \mathbb{N} 1\)
Axiom 2: \(\quad f \in 1 . . n \rightarrow \mathbb{N}\)
Axiom 3: \(\quad v \in \operatorname{ran}(f)\)
```

$r: \in \operatorname{dom}(f)$ "assigns" to r a number randomly chosen from the set $\operatorname{dom}(f)$.
(Actually, it just states r is in $\operatorname{dom}(f)$. Operational approximation: random assignment. Better approximation: "represents all executions with all possible elements in $\operatorname{dom}(f)$. .")

VARIABLES r
 Encoding search (cont.)

INVARIANTS $r \in \operatorname{dom}(f)$
INIT
$r: \in \operatorname{dom}(f)$
END

EVENT Progress
WHERE $f(r) \neq v$
THEN
$r: \in \operatorname{dom}(f)$
END

EVENT Finish
WHERE $f(r)=v$
THEN
skip
END

soflware

- Proof naming:

EventName/Identifier/TypeOfProof

- FIS: prove operation can be applied (is there any element in $\operatorname{dom}(f)$?)
- WD: (sub)expression is well-defined (it can be evaluated)
- Some help from more powerful theorem provers may be needed.
- Note: (un)discharged proof obligations may differ across versions due to differences in theorem provers, and relative processor speed (timeouts involved). General ideas applicable, though.
- Does not capture a good computation method (Why?).

Let us write it in Rodin.

- Entering symbols:

	To enter...	type
	ϵ	:
	: \in	: :
	\mathbb{N}	NAT
	\rightarrow	-->
	\neq	/=
$f \in \mathbb{N} \rightarrow 1 . . n$	f : NA	-->

Open Rodin and let start typing it together.

Some Rodin conventions

- Every line has an identifier, used to refer to the line.

```
Search: not extended ordinary
` END act1: r :e dom(f) >
```

- Rodin generated proof obligations (but we have seen only INV).
- Proof Obligations INITIALISATION/inv1/INV (8) INITIALISATION/act1/FIS © Search/inv1/INV Q Search/act1/FIS Finish/grd1/WD

Refinement

Idea for this case

- Add more requirements, and/or
- Have a realizable design, and/or
- Increase performance.
- Scan vector from left to right.

Refined events
 (四)
 Right click on machine, select Refine, enter new name, change events to non

 extended for INIT and Search, edit \Rightarrow SIM proof not discharged.Event INITIALISATION
$r:=1$
end

Event Progress
where $f(r) \neq v$
then
$r:=r+1$
end

Event Finish where $f(r)=v$
end

- We won't see SIM's formal definition at this moment.
- Intuitively:
- Histories of refined model must be subset of abstract model's.
- No new behavior introduced \Longrightarrow correctness preserved.

Refined events

witwdea (e)

Right click on machine, select Refine, enter new name, change events to non extended for INIT and Search, edit \Rightarrow SIM proof not discharged.

Event INITIALISATION

$$
r:=1
$$

end

Event Progress

where $f(r) \neq v$
then

$$
r:=r+1
$$

end
Event Finish
where $f(r)=v$
end

- Cannot prove SIM because $r \in \operatorname{dom}(f)$ cannot be proven.
- Can (refined) Progress transition to a state where (abstract) Progress cannot?

$$
\begin{array}{cccc}
& \text { Invariant } & \text { Guard } & \text { Action } \\
\hline \text { Abstract } & r \in \operatorname{dom}(f) & f(r) \neq v & r^{\prime}: \in \operatorname{dom}(f)
\end{array}
$$

- With that information, can we prove that $r^{\prime}: \in \operatorname{dom}(f)$ in the refined model?
- Simple update of the model?

INVARIANTS
 $$
? ? ? \mathrm{v} \in \mathrm{f}[\mathrm{r} . \mathrm{n}]
$$

Event INITIALISATION

$$
r:=1
$$

end

Event Progress where $f(r) \neq v$ then $r:=r+1$
end

Event Finish ...

- We know $v \in \operatorname{dom}(f)$.
- Express the idea that at some point we will find r.
- Hint: at all times, v is in position r or to "its right".

- Intuitively:
$v \in\{f(r), f(r+1), \ldots, f(n-1), f(n)\}$
- More formally: $\exists i \cdot r \leq i \leq n \wedge f(i)=v$
- Event B has a specific notation: $v \in f[r . . n]$

Refined events

Termination
INVARIANTS

$$
\mathrm{v} \in \mathrm{f}[\mathrm{r} . . \mathrm{n}]
$$

VARIANT

$$
n-r
$$

Event INITIALISATION

$$
\mathrm{r}:=1
$$

end
Event Progress <convergent> where $f(r) \neq v$
then

$$
r:=r+1
$$

end

- Termination is proven by defining an expression that.
- Has a measure.
- Has a lower bound.
- Is reduced every time a convergent event is fired.
- Used to:
- Prove termination (in our case).
- Prove absence of non-starvation / progress (concurrent systems).
- Which expression could we use as variant?

Formalized and proven

Adding invariants to Rodin

Refined events

- Add invariant to Rodin.
- Check Proof obligations.
- In my case, Search/inv1/INV and Search/act1/SIM are not discharged.
- YMMV: processor speed, tool version.
- Prover view. interact with theorem prover.
- Navigate proof \& applied inferences, add/remove hypotheses.
- Invoke ext. th. provers (better, black box).
- Check the Proving section of the web site.
- For INV: pp works.
- For SIM: simplify dom plus pp works.
Event INITIALISATION

$$
r:=1
$$

end

Event Progress
then
$r:=r+1$
end

Event Finish ...

```
    v f f[r..n]
```

 v f f[r..n]
 NTS

```
NTS
```

Event INITIALISATION
end

where $f(r) \neq v$
 where $f(r) \neq v$

$r:=r+1$
end

INVARIANTS	
$v \in \mathrm{f}[\mathrm{r} . \mathrm{n}]$	- Add invariant to Rodin.
	- Check Proof obligations.
Event INITIALISATION $r:=1$	- In my case, Search/inv1/INV and Search/act1/SIM are not discharged.
end	- YMMV: processor speed, tool version.
Event Progress where $f(r) \neq v$	- Prover view. interact with theorem prover. - Navigate proof \& applied inferences, add/remove hypotheses.
then	- Invoke ext. th. provers (better, black box).
$r:=r+1$	- Check the Proving section of the web site.
end	- For INV: pp works.
	- For SIM: simplify dom plus pp works.
Event Finish	

- The refinement is correct (no bugs introduced).
- Events maintain invariants.
- $v \in \operatorname{ran}(f) \Rightarrow$ Progress will always reach a position that contains v \Rightarrow it is not enabled more than n times $\Rightarrow r$ won't be $>n \Rightarrow$ variant never becomes negative \Rightarrow it is a natural number.
- Since Progress decreases the variant and it has a lower bound, it will terminate.
- Since guards are the negation of each other:
- The model is deadlock free (Why?).
- The events exclude each other (the model is deterministic).
- Postcondition P must be true at the end of execution.
- End of execution associated to special event Finish:

$$
A_{1 \ldots I}(c), I_{1 \ldots m}(v, c), G_{\text {Finish }}(v, c) \vdash P(v, c)
$$

$$
\overbrace{b \in \mathbb{N}, c \in \mathbb{N}, c>0}^{\text {Axioms }}, \overbrace{a \in \mathbb{N}, r \in \mathbb{N}, b=a \times c+r}^{\text {Invariants }}, \overbrace{r<c}^{\text {Guard }} \vdash \underbrace{b=a \times c+r \wedge r<c}_{\text {Postcond }}
$$

- Note: in some cases there may be several Finish Events \Rightarrow one sequent per event.
- Not applicable to non-terminating systems (other proofs required).
- $I_{1 . . n}$ and $G_{\text {Finish }}$ related to P; not necessarily identical.
- $I_{1 \ldots n}$ need to be strong enough.

No deadlock, determinism

- "Postcondition P must be true at the end of execution"
- General strategy: look for a ranking function that measures progress
- In Event B lingo: a variant $V(v, c)$
- An expression V (with $V \in \mathbb{N}$ or $V \subseteq S$) that is reduced by each non-terminating event

$$
A_{1 \ldots I}(c), I_{1 \ldots m}, G_{i}(v, c) \vdash V(v, c)>V\left(E_{i}(v, c), c\right)
$$

- We do not say how it is reduced: it has to be proven

$$
\frac{\overline{c>0 \vdash r>r-c} \text { Arith }}{b \in \mathbb{N}, c \in \mathbb{N}, c>0, a \in \mathbb{N}, r \in \mathbb{N}, b=a \times c+r, r \geq c \vdash r>r-c} \text { Mon }
$$

At least one guard must be true at any moment:

$$
A_{1 \ldots I}(v), I_{1 \ldots m}(v, c) \vdash G_{1}(v, c) \vee G_{2}(v, c) \vee \ldots \vee G_{m}(v, c)
$$

No two events can be active at the same time:

$$
A_{1 \ldots I}(v), I_{1 \ldots m}(v, c) \vdash \bigwedge_{\substack{i j=1 \\ i \neq j}}^{n} \neg\left(G_{i}(v, c) \wedge G_{j}(v, c)\right)
$$

- In Rodin: add the RHS to the INVARIANTS
- Usually, mark them as "theorem".
- A formula marked as theorem uses only the formulas (axioms, invariants, guards) in its scope that appear before it
- Will see them with more detail later.

First machine (already seen)

VARIABLES r
INVARIANTS $r \in \operatorname{dom}(f)$
INIT
$r: \in \operatorname{dom}(f)$
END
EVENT Finish
WHERE $f(r)=v$
THEN
skip
END
EVENT Progress WHERE $f(r) \neq v$
THEN
$r: \in \operatorname{dom}(f)$
END

- Proof Obligations
© INITIALISATION/inv1/INV
(8) INITIALISATION/act1/FIS

Search/inv1/INV
(3) Search/act1/FIS
© Finish/grd1/WD

- We (formally) know INV.
- Let us see WD and FIS in more detail.

WD (Well-Definedness)

- Ensuring that axioms, theorems, invariants, guards, actions, variants. .. are well-defined.
- I.e., all of their arguments "can be used". For example:

Expression	WD to prove
$f(E)$	$E \in \operatorname{dom}(f)$
E / F	$F \neq 0$
$E \bmod F$	$F \neq 0$
$\operatorname{card}(S)$	finite (S)
$\min (S)$	$S \subseteq \mathbb{Z} \wedge \exists x \cdot x \in \mathbb{Z} \wedge(\forall n \cdot n \in S \Rightarrow x \leq n)$

- In our example: $v \neq f(r)$ needs $r \in \operatorname{dom}(f)$.
- Formulas traversed to require WD of their components (with some special cases).

BAP and assignments

- Ensure that non-deterministic assignments $x: \in S$ are feasible.
- They are a particular case of Before-After predicates
- Relate values of variables before and after an action.

$$
A_{1}(c), \ldots, A_{m}(c), I_{1}(c, v), \ldots, I_{n}(c, v), G(c, v) \vdash \exists v^{\prime} \cdot B A P\left(v, c, v^{\prime}\right)
$$

- v^{\prime} becomes the next value of v after finishing the action
- BAP must be true for any admissible value of v and c.
- Examples:

$$
\begin{array}{lll}
x:=x-1 & \text { is } & \exists x^{\prime} \cdot x^{\prime}=x-1 \\
x: \in S \backslash\{x\} & \text { is } & \exists x^{\prime} \cdot x^{\prime} \in S \backslash\{x\}
\end{array}
$$

- Before-after predicate
- $x: \in\{x \mid P(v, c)\}$
$x: \in\{x \mid P(v, c)\}$
x one of the variables in v.
- $P(v, c)$ needs to be true for some x.
- Notation: v ' is the "next value".
$x: \mid x^{\prime}=x+7 \vee x^{\prime}=x-5$
- More general invariant proof obligation:
- Non-deterministic assignment:
- $x: \in S$ a shorthand for $x: \mid x^{\prime} \in S$
- S explicit, $S \neq \varnothing$
- Deterministic assignment:
- $x:=E(v, c)$ a shorthand for

For:
$x: \mid g\left(x^{\prime}\right)>0$
$x: \mid x^{\prime}=E(v, c)$

- E evaluates to a single value.

Refinement: the sorted array case

Variations on an invariant

We can write

$$
\begin{equation*}
\forall i, j \cdot i \in 1 . . n \wedge j \in 1 . . n \wedge i<j \Rightarrow f(i) \leq f(j) \tag{2}
\end{equation*}
$$

If $i=j$, of course $f(i)=f(j)$, so the $i=j$ case is superfluous. $i<j$ is stronger than $i \leq j$, because $i<j \Rightarrow i \leq j$. Which one is preferable?

Q: Which one should we prefer?
Both invariants are correct. But in general, we prefer stronger invariants.
And (1) is stronger than (2)! They follow, resp., the scheme $a \Rightarrow c$ and $b \Rightarrow c$, and it happens that $b \Rightarrow a$. But the formula $(b \Rightarrow a) \Rightarrow((a \Rightarrow c) \Rightarrow(b \Rightarrow c))$ is valid, while $(b \Rightarrow a) \Rightarrow((b \Rightarrow c) \Rightarrow(a \Rightarrow c))$ is not.

$$
\begin{equation*}
\forall i, j \cdot i \in 1 . . n \wedge j \in 1 . . n \wedge i \leq j \Rightarrow f(i) \leq f(j) \tag{1}
\end{equation*}
$$

But also

- A strictly positive number: $0<n$.
- A sorted array f of n elements built on $\mathbb{N}: f \in 1 . . n \rightarrow \mathbb{N}$
A value v in the array: $v \in \operatorname{ran}(f)$

$$
\begin{array}{r}
n \in \mathbb{N} 1 \\
f \in 1 . . n \rightarrow \mathbb{N} \\
v \in \operatorname{ran}(f)
\end{array}
$$

Postconditions

- r is an index of the array: $r \in \operatorname{dom}(f)$.
- Such that $f(r)=v$.

Q: Sorted invariant
$\forall i, j \cdot i \in 1 . . n \wedge j \in 1 . . n \wedge i \leq j \Rightarrow f(i) \leq f(j)$

Refinement

Add requirements (to the problem or how it is solved). The solution space shrinks. New models (rather, their states) must be contained in previous models.

- First version: r randomly selected.
- Second version: r scans left-to-right.
- Refinement: narrow range of r around the position of v
- Idea:
- p and $q(p \leq q)$ range so that $r \in p . . q$, always.
- r is chosen between p and $q: p \leq r \leq q$
- Depending on the position of $f(r)$ w.r.t. v, we update p or q.
- Therefore we always keep $f(p) \leq f(r) \leq f(q)$
(remember $\forall i, j \cdot i \in \operatorname{dom}(f) \wedge j \in \operatorname{dom}(f) \wedge i \leq j \Rightarrow f(i) \leq f(j)$

$f(p)$	\leq	$f(r)$	\leq	v	\leq	$f(q)$	
,						,	
,		-		-		!	
,		,				,	
p		'				,	
$1 \leq p$	\leq	r		\leq		q	\leq

```
```

MACHINE BS_M1

```
```

MACHINE BS_M1
refines bs mo
refines bs mo
SEES BS_C0
SEES BS_C0
VARIABLES
VARIABLES
r
r
p
q
p
q
INVARIANTS
INVARIANTS
inv1: $p \in 1 . . n$
inv1: $p \in 1 . . n$
inv2: $q \in 1 . . n$
inv2: $q \in 1 . . n$
inv3: $r \in p . . q$
inv3: $r \in p . . q$
inv4: $v \in f[p . . q]$
inv4: $v \in f[p . . q]$
VARIANT
VARIANT
$q-p$
ENTS
$q-p$
ENTS
Initialisation
Initialisation
begin
begin
act1: $p:=1$
act1: $p:=1$
act2: $q:=n$
act2: $q:=n$
end

```
    end
```

```
        act2: \(q:=n\)
act3: \(r: \in 1 \ldots n\)
```

```
        act2: \(q:=n\)
act3: \(r: \in 1 \ldots n\)
``` Doing refinement right
```

Event final 〈ordinary\rangle}
refines final
when grd2: f(r)=v convergent: VARIANT must
then
skip
end
skip
end
Event inc <convergent\ \
efines progress
when
grd1: f(r)<v
then
(a1. f(r)<v
act2: p:=r+1
act3: r:Er+1..q
end
Event dec \langleconvergent\rangle 气
efines progress
when
grd1: f(r)>v
then }\mp@subsup{}{}{g
act1:q:=r-1
act2: r:\inp···r-1
refines final

$$
\begin{aligned}
& \text { when } \\
& \operatorname{grd}: f(r)=v \quad \text { convergent: VARIANT must }
\end{aligned}
$$

rgent) $=$
when
then

$$
\begin{aligned}
& \text { act2: } p:=r+1 \\
& \text { act3: } r: \in r+1 \ldots q
\end{aligned}
$$

end
Event dec $\langle$ convergent $\rangle \hat{=}$
when
grd1: $f(r)>v$
act2: $r: \in p . . r-1$

```
decrease.

In RODIN: Do not mark events as "extended".

Q: Why does this model eventually find \(r\) ?

If \(r\) not yet found, \(q-p\) is decremented. Eventually, \(q-p=0\) and then \(r=p=q\). At this moment, if the invariants hold, \(f(r)=v\).
 end
\({ }^{\text {end }}\)

\section*{Proof Obligations}
\(\sigma^{A}\) inc/grd1/WD
© inc/inv1/INV
\(\sigma^{\text {a }}\) inc/inv3/INV
® inc/inv4/INV
\(\sigma^{a}\) inc/grd1/GRD
\(e^{A}\) inc/act3/FIS
\(\sigma^{a}\) inc/act1/SIM
\(\sigma^{A}\) inc/VAR
of inc/NAT
\(\sigma^{A}\) dec/grd1/WD - dec/inv2/INV
\(\sigma^{\circ}\) dec/inv3/INV
© \({ }^{\text {d }}\) dec/inv4/INV
of dec/grd1/GRD
® dec/act2/FIS
dec/act1/SIM
\(\sigma^{\wedge}\) dec/VAR
of dec/NAT

The concrete model behaves as specified by the abstract model (i.e., concrete model does not exhibit any new behaviors) To show this we have to prove that:
1. Transitions in the concrete model can not take place in states whose corresponding abstract state did not exhibit that transition (GRD).
2. Actions in concrete events cannot result in states that were not in the abstract model (SIM).

We will make these two conditions more precise and formalize them as proof obligations.

\section*{Abstract mode}
- Contains all correct states
- Guards keep model from drifting into wrong states.

Concrete model: more details / more variables / richer state
- Concrete and abstract states differ.
- A correspondence ("simulation") must exist.
- Additional constraints may make some abstract states invalid in the concrete model: they must not be reachable (they disappear).
- Some abstract states split into several concrete states

Initial model: \(r\) can move freely. Refinement: not all histories possible. But all states / transitions in refined model contained in abstract model.

Abstract model
 \(S_{i}^{\prime}\) simulate \(S_{i}\))

Key property: Whenever a concrete guard is enabled, the corresponding abstract guard must be enabled too, i.e., \(G^{\prime} \Rightarrow G\)

- (Concrete) Guards in refining event stronger than guards in abstract event.
- Ensures that when concrete event enabled, so is the corresponding abstract event.
- For concrete "evt" and abstract guard "grd" in corresponding abstract event: evt/grd/GRD
\begin{tabular}{|l|}
\hline \\
Axioms \\
Abstract Invariant \\
Concrete Invariant \\
Concrete Guard \\
\(\vdash\) \\
\\
Abstract Guard \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline & \\
\(A(c)\) & \\
\(I(c, v)\) & \\
\(J(c, v, w)\) & GRD \\
\(H(c, w)\) & \\
\(\vdash\) & \\
\(G_{i}(c, v)\) & \\
\hline
\end{tabular}

Event progress 〈anticipated〉 \(\widehat{=}\) when
grd1：\(\quad f(r) \neq v\)
then act1：\(r: \in \operatorname{dom}(f)\)
end

Event inc 〈convergent〉 \(\widehat{=}\)
refines progress
when
grd1：\(f(r)<v\)
then
act2：\(p:=r+1\)
act3：\(r: \in r+1 . . q\)
end
－Is \(f(r)<v\) more restrictive than \(f(r) \neq v\) ？
－Yes：there are cases where \(f(r) \neq v\) is true but \(f(r)<v\) is not， and
－Whenever \(f(r)<v\) is true，\(f(r) \neq v\) is true as well．
－Therefore，\(f(r)<v \Rightarrow f(r) \neq v\) ．

\section*{SIM Example}

Event inc 〈convergent〉 \(\widehat{=}\)

Event progress 〈anticipated〉 \(\widehat{=}\) when
grd1：\(\quad f(r) \neq v\)
then
act1：\(r: \in \operatorname{dom}(f)\)
end
refines progress
when
then
grd1：\(f\left(r^{\prime}\right)<v\)
act2：\(p:=r^{\prime}+1\)
act3：\(r^{\prime}: \in r^{\prime}+1 . . q\)
end
Are the states created by \(r^{\prime}: \in r^{\prime}+1 . . q\) inside the states created by \(r: \in \operatorname{dom}(f)\) ？
－Yes．Intuitively：\(p . . q \subseteq \operatorname{dom}(f)\) deduced from invariant．Any choice made by \(r^{\prime}: \in p . . q\) could also be done by \(r \in \operatorname{dom}(f)\) ．
－Ensure that actions in concrete events simulate the corresponding abstract actions．
－Ensures that when the concrete event fires，it does not contradict the action of the corresponding abstract event．
（Ignore witness predicate \(\mathrm{W} 1, \mathrm{~W} 2\) ）
\begin{tabular}{|c|c|c|}
\hline Axioms & & \(A(s, c)\) \\
\hline Abstract invariants and thms． & & A \((s, c)\)
\(I(s, c, v)\) \\
\hline Concrete invariants and thms． Concrete event guards & evt／act／SIM & \(\boldsymbol{J}(s, \boldsymbol{c}, \boldsymbol{v}, \boldsymbol{w})\) \\
\hline witness predicate & evt／act／SIM & \(\boldsymbol{H}(\boldsymbol{y}, s, c, w)\) \\
\hline witness predicate & & \(W 1(x, y, s, c, w)\) \\
\hline Concrete before－after predicate & & \[
W 2\left(y, v^{\prime}, s, c, w\right)
\]
\[
B A 2\left(w, w^{\prime}\right.
\] \\
\hline & & A2（ \(w\), \\
\hline Abstract before－after predicate & & \(B A 1\left(v, v^{\prime}, \ldots\right)\) \\
\hline
\end{tabular}

\section*{Rodin and the Second Refinement}

Create new machine，input previous refinement，check what proofs are automatically discharged

\section*{What theorem provers did（last time I tried ：－）：}
\begin{tabular}{ll}
\hline inc／inv1／INV & PP，ML timeout：needs interaction \\
inc／inv4／INV & Automatically discharged by PP \\
inc／act3／FIS & Needs interaction \\
dec／inv2／INV & Needs interaction \\
dec／inv4／INV & Needs interaction \\
dec／act2／FIS & Needs interaction \\
\hline
\end{tabular}

inv1 \(p \in 1\)..n
Action \(p:=r+1, r: \in r+1 . . q\)

\section*{Goal (inv. after) \(r+1 \in 1 . . n\) (with \(r\) the value before the action)}
- We had \(r \in 1 . . n\) before; just prove \(r<n\).

Strategy \(v \in \operatorname{ran}(f) ; \operatorname{say} f(x)=v\). As \(\operatorname{dom}(f)=1 . . n, 1 \leq x \leq n\). Since \(f(r)<v=f(x)\), \(r<x\) (monotonically sorted array). Therefore \(r<x \leq n\) and \(r<n\).

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goal

LHS of sequent
\[
\begin{aligned}
& \quad r \in \operatorname{dom}(f) \quad \forall i, j \cdot f(i)>f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i>j) \\
& \forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
& \operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
& \\
& f(r)<v \\
& \\
& v \in \operatorname{ran}(f) \\
& f \in 1 . . n \rightarrow \mathbb{N} \\
& \\
& \quad \vdash r<n
\end{aligned}
\]

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goal
\[
\begin{gathered}
r \in \operatorname{dom}(f) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
f(r)<v \\
v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} \\
\vdash r<n
\end{gathered}
\]

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goal

\section*{siludea (i)}

LHS of sequent
\[
\begin{gathered}
r \in \operatorname{dom}(f) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
f(r)<v \\
v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} \\
\vdash r<n
\end{gathered}
\]

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goal

\section*{LHS of sequent}
\[
\begin{gathered}
r \in \operatorname{dom}(f) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
f(r)<v \\
v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} \\
\vdash r<n
\end{gathered}
\]

Available hypotheses and goal

\section*{LHS of sequent}
\[
\begin{array}{cr}
r \in \operatorname{dom}(f) & \forall i, j \cdot f(i)>f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i>j) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in & \forall i \cdot f(i)>f(r) \Rightarrow(i \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee i>r) \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) & \exists a \cdot a \in \operatorname{dom}(f) \wedge f(a)=v \\
f(r)<v & f(a)>f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r) \\
& v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} & \\
& \vdash r<n
\end{array}
\]

Instantiate \(i\) in universally quantified formula with a

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goal

LHS of sequent
\[
\begin{gathered}
r \in \operatorname{dom}(f) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
f(r)<v \\
v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} \\
\vdash r<n
\end{gathered}
\]
\begin{tabular}{|c|c|}
\hline Sketch of a Proof for inc/inv1 & lidea
\(\qquad\) \\
\hline Available hypotheses and goal & LHS of sequent \\
\hline \(r \in \operatorname{dom}(f)\) & \(\forall i, j \cdot f(i)>f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i>j)\) \\
\hline \[
\begin{aligned}
& \forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
& \operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j)
\end{aligned}
\] & \[
\begin{gathered}
\forall i \cdot f(i)>f(r) \Rightarrow(i \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee i>r) \\
\exists a \cdot a \in \operatorname{dom}(f) \wedge f(a)=v
\end{gathered}
\] \\
\hline \(f(r)<v\) & \[
\begin{aligned}
f(a) & >f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r) \\
& \vee>f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r)
\end{aligned}
\] \\
\hline \(v \in \operatorname{ran}(f)\) & \(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r\) \\
\hline & \(r \notin \operatorname{dom}(f) \vee a>r\) \\
\hline \(f \in 1 . . n \rightarrow \mathbb{N}\) & \\
\hline
\end{tabular}

\section*{\(a \notin \operatorname{dom}(f)\) is not true by definition}

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goal
LHS of sequent
\[
\begin{gathered}
r \in \operatorname{dom}(f) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
f(r)<v \\
v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} \\
\vdash r<n
\end{gathered}
\]

Available hypotheses and goal
LHS of sequent
\[
\begin{array}{cc}
r \in \operatorname{dom}(f) & \forall i, j \cdot f(i)>f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i>j) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in & \forall i \cdot f(i)>f(r) \Rightarrow(i \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee i>r) \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) & \exists a \cdot a \in \operatorname{dom}(f) \wedge f(a)=v \\
f(r)<v & f(a)>f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r) \\
v \in \operatorname{ran}(f) & v>f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r) \\
f \in 1 . . n \rightarrow \mathbb{N} & a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r \\
r \notin \operatorname{dom}(f) \vee a>r \\
\vdash r<n & a>r
\end{array}
\]
\(r \notin \operatorname{dom}(f)\) is not true by definition

\section*{Sketch of a Proof for inc/inv1/INV}

Available hypotheses and goa

LHS of sequent
\[
\begin{gathered}
r \in \operatorname{dom}(f) \\
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \\
\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j) \\
f(r)<v \\
v \in \operatorname{ran}(f) \\
f \in 1 . . n \rightarrow \mathbb{N} \\
\vdash r<n
\end{gathered}
\]

Available hypotheses and goal
LHS of sequent
\[
r \in \operatorname{dom}(f)
\]
\(\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in\)
\(\operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j)\)
\(f(r)<v\)
\(v \in \operatorname{ran}(f)\)
\[
\begin{aligned}
f & \in 1 . . n \rightarrow \mathbb{N} \\
& \vdash r<n
\end{aligned}
\]
\(\forall i, j \cdot f(i)>f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i>j)\)
\(\forall i \cdot f(i)>f(r) \Rightarrow(i \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee i>r)\)
\(\exists a \cdot a \in \operatorname{dom}(f) \wedge f(a)=v\)
\(f(a)>f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r)\)
\(v>f(r) \Rightarrow(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r)\)
\(a \notin \operatorname{dom}(f) \vee r \notin \operatorname{dom}(f) \vee a>r\)
\(r \notin \operatorname{dom}(f) \vee a>r\)
\(a>r\)
\(a \leq n\)
\(r<n\)

Goal achieved
- Double click on undischarged proof, switch to proving perspective.
- Show all hypothesis (click on search button).
- Select the hypothesis in the previous slide.
- Click on the + button in the tab of the 'Search hypotheses' window. They should now appear under 'Selected hypotheses'.
- Invert implication inside universal quantifier.
- Instantiate \(j\) to be \(r\).
- Click on the P0 button (proof on selected hypothesis) in the 'Proof Control' window.
- This will try to prove the goal using only the selected hypotheses; it can then explore much deeper, since we are using only a subset of the existing hypotheses and we have fixed a value in the universal quantifier.
- Almost immediately, a green face should appear.
- Save the proof status (Ctrl-s) to update the proof status.
- Labels (act2, inv1, etc.) depend on how model is written.
- From Atelier B: NewPP, PP, ML.
- Other theorem provers available.
- Do not use NewPP: it's unsound.
- PP weak with WD: \(\vdash b \in f^{-1}[\{f(b)\}]\) not discharged.
- It may not discharge easy proofs if unneeded hypothesis present.
- ML useful for arithmetic-based reasoning, weaker with sets.
- To test: copy project, work on copied project.
- Removing project: select Delete from hard disk.
- POs can be accepted with B. Flagged reviewed to temporarily continue or because they were manually proved.

For more, useful information, please check:
- The Rodin and Proving sections of the course web site.
- https://www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html
- https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html
- Reusing formulas deducible from axioms is sometimes handy.
- In our examples we very often transformed
\[
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \operatorname{dom}(f) \wedge i \leq j) \Rightarrow f(i) \leq f(j)
\]
into the logically equivalent
\[
\forall i, j \cdot f(i)<f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i<j)
\]
- We can add the latter to the model to save clicks.
- It could be an axiom.
- But axioms should not be redundant.
- If we update one axioms, but not one of its versions, the model could be inconsistent.

\section*{Proving theorems}
- For a theorem "thm", the name of its PO is thm/THM.
- Proved as usual.
\begin{tabular}{|c|c|c|}
\hline \(\stackrel{\text { Axioms }}{\stackrel{+}{\text { Theorem }}}\) & thm/THM & \[
\begin{array}{r}
\quad A(s, c) \\
\vdash \\
P(s, c)
\end{array}
\] \\
\hline
\end{tabular}
- For a theorem that requires an invariant: Axioms + Invariants
- Has to be placed after the axioms / invariants needed.
- Rodin offers theorems: a formula that can be proven from others in the same class.

AXIOMS
- axm1: \(\quad \forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \operatorname{dom}(f) \wedge i \leq j \Rightarrow f(i) \leq f(j))\) not theorem

。 axm2: \(\quad \forall i, j \cdot(f(i)>f(j) \Rightarrow(i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i>j))\) theorem
```

invariants
inv1: \foralln.n\inN^ n\not=r }=>d(n)\leqd(f(n)) not theorem
inv2: \foralln\cdotn\in\mathbb{N}=>c(n)\ind(n).d(n)+1 not theorem
: thm1: d(r)\leqc(r) theorem,

```
- Simplify proofs.
- Similar to lemmas in maths.
- Help provers (sometimes necessary).
- They need to be proved!

The strange case of the un-(well-defined) theorem
\[
\begin{aligned}
\operatorname{axm} 2: & \forall i, j \cdot f(i)<f(j) \Rightarrow \\
& (i \notin \operatorname{dom}(f) \vee j \notin \operatorname{dom}(f) \vee i<j)
\end{aligned}
\]
- - Proof Obligations
© axm1/WD
- \(\mathrm{axm} 2 / \mathrm{WD}\)
© \(\mathrm{axm} 2 / \mathrm{THM}\)
- Why? It is equivalent! Any idea?
- Proof explorer: is \(f(i)\) valid?
- WD for implications (ordered WD):
\(W D(P \Rightarrow Q) \equiv W D(P) \wedge P \Rightarrow W D(Q)\)
- Treats \(P\) as a "domain" property.
- Workaround: instead of
\[
\begin{aligned}
& \forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \operatorname{dom}(f) \wedge i \leq j) \\
& \Rightarrow f(i) \leq f(j)
\end{aligned}
\]
use
\[
\forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \operatorname{dom}(f)) \Rightarrow
\]
\[
(i \leq j \Rightarrow f(i) \leq f(j))
\]

Will that be equivalent?
- Contrapositive:
\[
\begin{aligned}
& \forall i, j \cdot(i \in \operatorname{dom}(f) \wedge j \in \operatorname{dom}(f)) \Rightarrow \\
& (f(i)>f(j) \Rightarrow i>j)
\end{aligned}
\]```

