Correctness by Construction First Event-B Exercise Sheet

Deadline: Tuesday, March $5^{\text {th }} 2024,23: 59$

Manuel Carro
manuel.carro@upm.es

Monday, February $26^{\text {th }}$, 2024

General Remarks

- This exercise sheet is individual.
- Please make sure you have read the course policy.
- Please turn in the answers to this exercise sheet no later than Tuesday, March $\mathbf{5}^{\text {th }} \mathbf{2 0 2 4}$, 23:59.
- If you experience problems with the assignment, please let me know as soon as possible. It may not be possible to implement last-minute changes / adaptations.
- To turn in the homework you can:
- Preferably send me a PDF file.
- Alternatively, send me a good scan of a (handwritten) solution, in PDF format. Please make sure that it is readable and, if you scanned the page, that it is not too dark, as this makes reading solutions difficult.
- Please do not send me Word, LibreOffice, Pages, etc. documents.

They may not be reproduced faithfully in all systems.

- Please make sure to include your name in the document you send!

```
Event INIT
    a, r = 0, b
end
```

```
Event Progress
    when
        r >= c
    then
        r, a := r - c, a + 1
    end
```

```
Event Finish
    when
        r < c
    then
        skip
    end
```

Axioms
$A_{1}: b \in \mathbb{N}$
$A_{2}: c>0$

Invariants

$I_{1}: a \in \mathbb{N}$
$I_{2}: r \in \mathbb{N}$
$I_{3}: b=a \times c+r$

Figure 1: Dividing by repeated subtraction

1 Variations on Integer Division Using Subtraction

We proved that the formulas we posited as invariants for the Event B model in Fig. 1 were indeed invariants. Your task is to determine which invariant preservation proofs (if any) would have failed in each of the following cases (every item below corresponds to a different, separate situation):

1. If we modify invariant I_{2} to be $I_{2}: r>0$.
2. If we modify invariant I_{3} to be $I_{3}: a \times c-r=b$.
3. If we do not include $c>0$ among the axioms.

You can either find out a counterexample (a scenario / variable valuation that is consistent with the hypotheses but makes the goal false) or redo the proofs and show where it would be obviously impossible to prove the goal.

```
Event INITIALISATION
    i := n
    r := 0
    a := 1
end
```

```
Event Finish
```

Event Finish

```
Event Finish
    when i = 0
    when i = 0
    when i = 0
    then
    then
    then
        skip
        skip
        skip
end
```

end

```
end
```

```
Event Progress
    when i > 0
    then
        r := r + a
        a := a + 2
        i := i - 1
end
```

Figure 2: Model of an algorithm to square a natural number.

2 An Odd Way to Calculate \mathbf{n}^{2}

Given a natural number $n \in \mathbb{N}$, we are asked to calculate its square r, i.e., $r=n^{2}$ (with the usual definition of square). The Event B model in Fig. 2 (hopefully) leaves in r the value n^{2} for a given n when the Finish event is enabled.

Your tasks are:

1. Identify the constants and variables.
2. Determine axioms and suitable invariants. Please take into account point 6, below, to determine invariants.
3. Prove that the INITIALISATION event establishes the invariants. You do not need to prove invariant establishment for the invariants related with the type of the variables, such as $i \in \mathbb{N}$.
4. Prove that the Progress event preserves the invariants. You do not need to prove invariant preservation for the invariants related with the type of the variables, such as $i \in \mathbb{N}$.
5. Prove that the Progress event eventually terminates.
6. The invariants and axioms you decided to use should make it possible to determine that the model is correct w.r.t. the initial specification, i.e., that the sequent

$$
A_{1 \ldots l}, I_{1 \ldots m}, G_{\text {Finish }} \vdash r=n^{2}
$$

is valid for the axioms $A_{1 \ldots l}$ and the invariants $I_{1 \ldots m}$. Prove it.
Use sequent calculus for the proofs, as we did with in the classroom slides.

