
A Market Compliant with COVID-19 Regulations

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

Goals . s. 3
Initial model . s. 8
First refinement . s. 12
Second refinement . s. 31
Third refinement . s. 48

Scenario

We have to automate the checkout desk of a market.
We have to control when clients enter the checkout area.
Expected behavior:

Clients wait in front of a screen displaying a number or “WAIT”.
When a number appears, client walks to the corresponding counter.
As soon as it passes by the screen, “WAIT” is displayed.
When the client reaches the counter, either a new number is
displayed (if there are free counters) or “WAIT” (otherwise).
When a client leaves, a counter number is displayed.

Sensors register people movements.
People behave (no need for physical barriers).

Note: non-complete model. Focus on showing use of sets.

What we see

(Sizes not necessarily proportional)

mailto:manuel.carro@upm.es

Requirements

REQ 1 The market exit is divided in three areas: the waiting area, the checkout counters
and a checkout corridor that connects them.

REQ 2 At most one client can be in the corridor at any time.

REQ 3 At most one client can be in a checkout counter at any time.

REQ 4 A screen at the entrance of the tells clients to either wait for the corridor to be clear
or a counter to be free, or displays the identifier of an available counter.

Requirements

REQ 5 When the corridor is not empty, the screen displays “WAIT”.

REQ 6 When no counter is free, the screen displays “WAIT”.

REQ 7 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

REQ 8 There are sensors that register people passing at the entrance of the corredor and
at the entrance and exit of every counter.

Modeling approach

As usual: bird’s-eye view.
Include more requirements, details as we “get closer”.
Do not to overspecify early: refinement may become impossible.

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

High-level view, visible events

Clients arrive at the checkout desks.

Clients leave the checkout desks.

We only check that we do not have
more clients than counters.

Partial fullfillment of

REQ 9 At most one client can be in a
checkout counter at any time.

Model

Context c0

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS ∈ ??

Machine m0
VARIABLES nclients
INVARIANTS nclients ∈ 0..NCOUNTERS

Event arrive
when nclients < NCOUNTERS
then

nclients := nclients + 1
end

Event leave
when nclients > 0
then

nclients := nclients − 1
end

Model

Context c0

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS ∈ ??

Machine m0
VARIABLES nclients
INVARIANTS nclients ∈ 0..NCOUNTERS

Event arrive
when nclients < NCOUNTERS
then

nclients := nclients + 1
end

Event leave
when nclients > 0
then

nclients := nclients − 1
end

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

High-level view

Keep track of (non) available counters.

Fullfill

REQ 10 At most one client can be
in a checkout counter at any
time.

Do not follow people.

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Model state

Need to model which counter is available.
Possibility?

available ∈ 1..NCOUNTERS → BOOL

But a function A→ BOOL denotes a set S ⊆ A.
(it is the characteristic or indicator function of the set)
Why not using directly a set?
The set of busy counters is more useful than the set of available
counters (will see later why).
Do we need it to be 1..NCOUNTERS?

Actually no. We are not going to compare counters.
An abstract set will do.

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!

WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!

card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS ???

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

busy ⊆ COUNTERS

Model state: context and invariants

Context c1
EXTENDS c0
SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
WD PO not discharged!
card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Machine m1

Refine m0 to track busy counters,
create m1.

SEES c1

VARIABLES busy
INVARIANTS

busy ⊆ COUNTERS
card(busy) = nclients

Events

Initially, busy =

∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅

We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then
busy := busy\{c}

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Events

Initially, busy =∅
We see event arrive when some client goes to a free counter and
the counter becomes busy.
An event parameter is the easiest way to model this.

Event arrive
refines arrive
any c
where
c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

Event leave
refines leave
any c
where
c ∈ busy

then
busy := busy\{c}

Fill in the Rodin model. POs should become green (otherwise, lasso + P0/ML)

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

High-level view

Will introduce several components.
Screen: tells clients what to do
(controls entrance to corridor).

One-person, one-way corridor:
changes contents of screen.

Selection of available counter via
screen.

Difference with car semaphores: screen
goes “red” even if there are free counters
(when people in corridor), then may go
“green” again.

Initial model considerations

Two variables for display, one for corridor:
wait ∈ BOOL: clients need to wait?
next_counter ∈ COUNTERS : show free
counter / register client destination.
(can be used to open physical barrier?).

in_corridor ∈ BOOL

Relationship below.
Will be captured via invariants.

in_corridor wait meaning of next_counter
FALSE FALSE Destination of client (displayed)
FALSE TRUE Meaningless (all counters busy, not displayed)
TRUE FALSE IMPOSSIBLE
TRUE TRUE Destination of client (not displayed)

Initial model considerations

Introducing event enter.
Refining events arrive, leave.
Events & variables model both people,
controller.

Will be split in next refinement.

Handling the screen

Could be checked after every
state-changing event.

Repeated reasoning, models.
Specialize events for every situation.
(last and non-last car in bridge example)

Separate events handle screen
according to state variables.

But: additional interleavings, more
error possibilities!

Risky if not verified!

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor :=

0

wait :=

FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?

Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor :=

0

wait :=

FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait :=

FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait := FALSE

next_counter :∈

COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Introducing the model

Refine m1 into m2.
New variables and their types:

in_corridor ∈ {0, 1}
wait ∈ BOOL

next_counter ∈ COUNTERS

Initialization:

in_corridor := 0
wait := FALSE

next_counter :∈ COUNTERS

Why in_corridor ∈ {0, 1} instead of in_corridor ∈ BOOL ?
Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, an incorrect
in_corridor := in_corridor + 1 will be detected

Requirements and invariants

REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = TRUE ⇒ wait = TRUE

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Requirements and invariants

REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = TRUE ⇒ wait = TRUE

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Requirements and invariants

REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = TRUE ⇒ wait = TRUE

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

Requirements and invariants

REQ 0 When the corridor is not empty, the screen displays “WAIT”.

in_corridor = TRUE ⇒ wait = TRUE

REQ 0 When no counter is free, the screen displays “WAIT”.

busy = COUNTERS ⇒ wait = TRUE

REQ 0 When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE ⇒ next_counter ̸∈ busy

Enter them!

The new enter and refined arrive and leave

leave does not need to be changed.
A client (can) enters when there is no
need to wait.
The corridor has one more person.
Other clients have to wait

Event enter
when wait = FALSE
then

in_corridor := in_corridor + 1
wait := TRUE

end

Arrive at counter previously shown in
screen, counter becomes busy.
Event arrive

refines arrive
when in_corridor > 0

with c: c = next_counter
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}

end

Note “c:” in the label of “with”: it is
necessary (next slide)!
Type in “enter”, modify “arrive

Refining arrive

next_counter : see next slide. GRD not discharged.

Event arrive (abstract)
refines arrive
any c
where

c ∈ COUNTERS
c ̸∈ busy

then
busy := busy ∪ {c}

end

Event arrive (concrete)
refines arrive
when in_corridor > 0
with c: c = next_counter
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}

end

Parameter c disappeared: need to
state concrete value for it.
GRD needs to relate guards: prove
in_corridor > 0 ⇒ next_counter ̸∈ busy

If it was a gluing invariant, GRD would

be proven.

It is! Add it and GRD should be proven.

Not a requirement, but (a) necessary
lemma and (b) sensible.

Screen management

Display is set to “WAIT” when a client enters.
We only need to decide whether we allow more clients to enter.

Event screen_num
when

wait = TRUE
then

next_counter :∈ COUNTERS \ busy
wait := FALSE

end

Type them in
All POs should be fine now.

Screen management

Display is set to “WAIT” when a client enters.
We only need to decide whether we allow more clients to enter.

Event screen_num
when

COUNTERS ̸= busy
in_corridor = 0
wait = TRUE

then
next_counter :∈ COUNTERS \ busy
wait := FALSE

end

Type them in
All POs should be fine now.

Stages

1. Initial model: just number of clients
2. First refinement: distinguish checkout desks
3. Second refinement: entrance corridor and screen
4. Third refinement: sensors
5. Variant: sets instead of indicator functions

High-level view

Keep previous “logical” model.
Add physical model on top, connect
with logical model.

Separate environment and system
variables / events.

Keep interactions clear!
Guidelines:

Some events simulate environment
(clients).
They react to environment variables
and act on sensors.
Events that represent the controller.
They react to sensors and act on
environment variables.

How sensors work

Not necessarily real sensors.
Client presence activates sensor (a BOOL).

Stays on until deactivated by controller.
Modeling sensor arrays:

First idea: use booleans, functions.

S_E ∈ BOOL
S_A ∈ COUNTER → BOOL
S_L ∈ COUNTER → BOOL

S_E sensor entry; S_A sensor arrival; S_L sensor for leaving.
However, two last ones are indicator sets.
We can use the set of activated sensors.

S_A,S_L ⊆ COUNTER

Using sensors in refined model

enter, arrive, leave refined.
New events enter_s, arrive_s, leave_s.

Note: we will not show leave_s. It is of little interest.
*_s represent people; they react to environment variables, trigger
changes in sensors.
Modeling agent behavior: variables that represent what people
can see, do.

SCREEN_CNT ∈ {WAIT ,NOWAIT} What the screen displays (WAIT or a number)
CROSSING_E ∈ BOOL A person is crossing the corridor sensor
IN_CORRIDOR ∈ {0, 1} Number of people in the corridor

IN_CORRIDOR could be BOOL. We would then need a gluing
invariant with in_corridor . Keeping it in {0, 1} is easier.

Using sensors in refined model
Event enter (abstract)

refines enter
when wait = FALSE
then

in_corridor := TRUE
wait := TRUE

end

CROSSING_E in enter_s: a physical person is
crossing. Others can see it. We behave
correctly.
In enter: controller events should not update
environment variables. But we (exceptionally?)
model assumption that controllers so fast that
when a person has physically crossed,
controller has already updated state.

Event enter_s
when SCREEN_CNT = NOWAIT

CROSSING_E = FALSE
then

CROSSING_E := TRUE
S_E := TRUE
IN_CORRIDOR := IN_CORRIDOR + 1

end

Event enter
refines enter
when S_E = TRUE // Only look at sensor
then // abstract actions plus ...

S_E := FALSE;
CROSSING_E := FALSE // See explanation
SCREEN_CNT = WAIT

end

Using sensors in refined model

Event arrive (abstract)
refines arrive
when in_corridor > 0
with c: c = next_counter
then

in_corridor := FALSE
busy := busy ∪ {next_counter}

end

CROSSING_E is used here to ensure that a
person has actually crossed the entrance
and is in the corridor.

Event arrive_s
when IN_CORRIDOR > 0

CROSSING_E = FALSE // State updated
then

IN_CORRIDOR := IN_CORRIDOR − 1
S_A:= S_A ∪ {next_counter}

end

Event arrive
refines arrive
when next_counter ∈ S_A
then

in_corridor := in_corridor − 1
busy := busy ∪ {next_counter}
S_A:= S_A \ {next_counter}

end

Proof obligations

Some additional work regarding POs needs to be done.
IN_CORRIDOR ∈ {0,1} invariant for enter_s.
GRD for enter , arrive .
Plus we will introduce a sensible invariant: only one sensor is
active at a time:
inv_sens_arr: ???
Needs to be discharged for arrive_s

Proof obligations

Some additional work regarding POs needs to be done.
IN_CORRIDOR ∈ {0,1} invariant for enter_s.
GRD for enter , arrive .
Plus we will introduce a sensible invariant: only one sensor is
active at a time:
inv_sens_arr: card(S_A) ≤ 1
Needs to be discharged for arrive_s

card(S_A) ≤ 1

The (minimal) sequent to discharge (see proving perspective – goal
slightly simplified) is
card(S_A) ≤ 1, IN_CORRIDOR > 0,CROSSING_E = FALSE
⊢ card(S_A) ≤ card(S_A

⋂
{next_counter})

Can be proven if S_A = ∅. Note we have IN_CORRIDOR > 0 and it makes
sense that no one is entering the counter if there is a person in the
corridor (see arrive_s). Therefore the invariant

IN_CORRIDOR > 0 ⇒ S_A = ∅

(if provable) would be helpful. After adding it, proving cardinal-
ity is possible with lasso + “remove membership” in the hypothesis
IN_CORRIDOR ∈ {0, 1} (click on membership symbol).

IN_CORRIDOR > 0 ⇒ S_A = ∅

Invariant needs discharging now in enter_s.
We will delay it.

GRD POs

GRD POs for enter and arrive are pending.
They would be

next_counter ∈ S_A⇒ in_corridor > 0

for arrive and

S_E = TRUE ⇒ wait = FALSE

for enter. We will start with the latter.

GRD of enter

PO for guard strengthening:
S_E = TRUE ⇒ wait = FALSE .
After positing it as invariant, GRD is proven but the new invariant
remains to be proven.
SCREEN_CNT = NOWAIT ⇒ wait = FALSE as invariant can be
proven and helps prove the previous one.

GRD of arrive

PO for guard strengthening:
next_counter ∈ S_A⇒ in_corridor > 0.
Add as invariant. GRD is proven.
New invariant needs to be discharged for arrive_s .
Another, intermediate invariant helps prove it:
(IN_CORRIDOR = 1 ∧ CROSSING_E = FALSE)⇒ in_corridor = 1
At this point, all POs but one should be discharged.

Origin of (IN_CORRIDOR = 1 ∧ CROSSING_E = FALSE)⇒ in_corridor = 1

The PO in the prover view needs to discharge
S_A ̸= 0 ⇒ in_corridor = 1.
Inspecting the hypothesis we have S_A ̸= 0. So we need to deduce
that in_corridor = 1.
The rest of the “facts” that we have among the hypotheses are
IN_CORRIDOR = TRUE and CROSSING_E = FALSE .
Perhaps we can use them to infer in_corridor = 1.

Introducing Model Checking, ProB, and Animations

Origin of (IN_CORRIDOR = 1 ∧ CROSSING_E = FALSE)⇒ in_corridor = 1

Animating the model shows that it is,
fundamentally, an event sequence
that can fire either leave or

screen_num at the end.
We can make a chart of the state of
variables after every event.

INIT enter_s enter arrive_s arrive
SCREEN_CNT NOWAIT NOWAIT WAIT WAIT WAIT
IN_CORRIDOR ⊥ ⊤ ⊤ ⊥ ⊥
S_E, CROSSING_E ⊥ ⊤ ⊥ ⊥ ⊥
S_A ∅ ∅ ∅ {n_c} ∅
in_corridor 0 0 1 1 0
wait ⊥ ⊥ ⊤ ⊤ ⊤
busy ∅ ∅ ∅ ∅ {n_c}

The two facts we have in our hypotheses (IN_CORRIDOR = TRUE and
CROSSING_E = FALSE) are true only after enter (the state in which arrive_s is executed)
and in_corridor = 1. The implication is then a true invariant. Fortunately, it is also an
inductive invariant.

Last PO

Intermediate invariants helped prove
pending POs.

Pending: S_A ̸= ∅⇒ in_corridor > 0.
Simplifying, it requires proving:

in_corridor ∈ {0, 1}, next_counter ∈ S_A,¬S_A ⊆ {next_counter}, card(S_A) ≤ 1 ⊢ in_corridor > 1

I was not able to discharge it
automatically.
However, some Rodin user at the
Event-B mailing list stated he could.

But his (quite simple) strategy did not
work for me.
But it should be true – see why in the
next slide.

Last PO (Cont.)

To prove (abstracting variable names and adding additional axioms):
v ∈ {0, 1}, finite(S), c ∈ S ,¬S ⊆ {c}, card(S) ≤ 1 ⊢ v > 1

v > 1 cannot be inferred, as v ∈ {0, 1}.
Then: prove inconsistency in LHS.
Since card(S) ≤ 1, S has either zero or
one elements.
Since c ∈ S , S has at least one
element.
Then, card(S) = 1 and S = {c}.

But we have ¬(S ⊆ {c}).
That would mean that ¬({c} ⊆ {c}).
We have a contradiction in the LHS.
Therefore the sequent is proven.
I have left it as reviewed.
Model checking can’t find a
counterexample, either.

	Goals
	Initial model
	First refinement
	Second refinement
	Third refinement

