@i dea
Synchronizing Processes on a Tree Network'

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

"Example and most slides borrowed from J. R. Abrial: see
http://wiki.event-b.org/index.php/Event-B_Language

Purpose of this lecture @i dea

@ Learning a few more modeling conventions.
@ Learning more about abstraction.

@ Formalizing and proving on an interesting structure: a tree.

o Will have an intermediate step to review functions, relations, data
structures.

@ Study a more complicated problem in distributed computing

@ Example studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a
Method of Multi-programming. Springer Verlag, 1999.

As usual:
@ Define the informal requirements
@ Define the refinement strategy
@ Construct the various more and more concrete models

)

@ Not a transformational system.
o Not supposed to finish.
@ No final result.

@ Not reactive.
@ No external world that reacts to
system changes.

@ Distributed.
o Different nodes act autonomously.
@ With limited information access.
@ However, communication assumed
to be reliable.

@ Internal concurrency.

@ Every node has concurrent
processes.

@ Small model: just three events in the
last refinement.

@ However, proofs and reasoning are
comparatively complex.

mi dea
[POLITECNICA]
G0AIS ottt e e s.3
ReqUIrEMENTS ... e s.5
Initial model ... e s. 10
Firstrefinement i e e s.22
Second refinement ...t e s. 50
Third refinementot e i s. 54
Fourth refinement oo i i s.79
Comparison with previous examples @i dea (%

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

Requirements @i dea (% Requirements (Cont.) @i dea
[PouéCNICA]
‘ ENV 1 ‘ We have a fixed set of processes forming a tree ‘
@ All processes are supposed to execute forever the same code.
® @ But processes must remain (somewhat) synchronized.
@ For this, each process has (initially) one counter.
'\< ‘ ENV 2 ‘ Each process has a counter, which is a natural number
O Q\\Q O @ A process counter represents its “phase”
/! '\((related to the work for which they have to synchronize).
@ Difference between any two counters < one.
e Each process is thus at most one phase ahead of the others
@ Note: they do not need to form a tree from the beginning.
@ A set of communicating processes can coordinate to form a tree.
Requirements (Cont.) mi dea (% Requirements (Cont.) mi dea (%

@ Reading the counters

®
\@ FUN 4 | Each process can read the counters of its immediate neigh-
@/(4 (5 \E) bors only
(1)
A
(1)

VAN (Immediate neighbors to be understood as connected by a link)

@{I \@ @ Modifying the counters

FUN 5 | The counter of a process can be modified by this process
only

‘ FUN 3 ‘ The difference between any two counters is at most one

é)

Refinement strategy @i

@ Construct abstract initial model dealing with FUN 3 and FUN 5
@ Improve design to (partially) take care of FUN 4

@ Improve design to better take care of FUN 4

@ (Simplify final design to obtain efficient implementation).

‘ FUN 3 ‘ The difference between any two counters is at most one

‘ FUN 4 ‘ Processes read counters of immediate neighbors only

‘ FUN 5 ‘ A process can modify only its counter(s)

Initial model: the state =i

@ Simplify situation: forget about tree

@ We just define the counters and express the main property: FUN 3

‘ FUN 3 ‘ The difference between any two counters is at most one

@ The initial model is always far more abstract than the final system
@ Other requirements are probably not fulfilled

dea

dea

é)

Steps

. [Initial model: all nodes access the state of all nodes.]
. First refinement: restrict access to a single node.

. Second refinement: local check, upwards wave.

. Third refinement: construct downwards wave.

ua b W N =

Abstract situation

. Fourth refinement: remove upwards and downwards counters.

dea

dea

é)

| FUN 3 | The difference between any two counters is at most 1

Suggest constants, axioms, variables,
invariants for an initial model!

Is that right?
@ inv0_2 may be surprising at first glance:
Vx,y - x EPAy €P=c(x)<c(y)+1

@ IsitthesameasVi,j - |c(i) — c(j)| £ 1?
@ Disprove it or convince us!

=i dea

L]

Initial model: the state @i dea
carrier set: P axm0.1: finite(P)
inv01: ¢ € P—~>N
variable: ¢ ; g g
inv0 2: Va,y- g
c(z) <ec(y)+1
v Create project synch_tree
V' Create context c0 with set, axiom
v' Create machine mo with variable, invariants.
Is that right? @i dea

@ inv0_2 may be surprising at first glance:

Vx,y - x EPAy €P=c(x)<c(y)+1

@ IsitthesameasVi,j - |c(i) — c(j)| £ 1?
@ Disprove it or convince us!

Proof by double implication.
Let us choose two arbitrary nodes with counters a and b.

@ If the invariant holds, then a < b+ 1 and b < a + 1. From there,

a—b<1landb—a<1,therefore|a— b <1.

@ If |a— b| < 1,thenbotha—b<1land b— a<1. Then,inv0_2is

implied by the intended invariant.

E)

z
[roirecnical

Initial model: events

init
c := P x {0}

@ Note any n: itis logically3n-ne PA---
@ Process counter incremented only

when < to all other counters.

@ Intuition: IfI see I can increase
without breaking difference
constraint, I do it!

v’ Add initialization, event

ascending

any n where

n € P

Ym-m € P = c(n) < c¢(m)

then

c(n):=c(n)+1
end

=i dea (%

@ Non-determinism!

@ A specification of what should happen.

@ Not a final state (there is not one): a
procedure that (hopefully) respects
the invariant.

Note: x is entered with *#*, any with pull-down menu, “Add event pa-

rameter”.

Model so far

CONTEXT c0
SETS

P
AXIOMS

axml: finite(P)
END

=i dea (%
| POLITECNICA]
MACHINE m0
SEES c0
VARIABLES
C
INVARIANTS

invi: c€e P—N
inv2: Vz,y-x € PAye P=c(z) <1+c(y)
EVENTS
Initialisation
begin
actl: ¢:= P x {0}
end
Event ascending (ordinary) =
any
n
where
grdi2: neP
grdil: Vm-m € P = c(n) < ¢(m)
then
actll: ¢(n) :=c(n) +1
end

Proof of invariant preservation

c €eP—N
e P
P
V,y- :y>€
c(z) <c(y) +1
neP
Vm-(m € P = c(n) <c(m))
'_
x e P
P
V:c,y- :y>€

(ce{n—=cn)+1})(z) < (c =+ {n—c(n)+1}(y) +1

Modified invariant inv0_2

In Rodin: automatic; if not, repeatedly apply lassoing, pO or mO.

Problem with the current event

Guards of event

ascending

then

end

any n where
neP
vm-m € P = c(n) < c¢(m)

c(n):=c(n)+1

What requirement is this event breaking?

dea

i

Problem with the current event @i dea

ascending
any n where
n € P
Vm-m € P = c¢(n) < c(m)
then
c(n) :==c(n)+1
end

What requirement is this event breaking?

‘ FUN 2 ‘ Each node can read the counters of its immediate neighbors only ‘

First refinement: (partially) solving the problem @i dea

@ Introduce a designated process r.
@ We suppose that the counter of r is always minimal

Vm-me P = c(r) < c(m)
@ Rationale:
o We only synchronize with r — not compliant, but communication
restricted.
@ Helps ensure that difference between any two nodes < one.
@ Because: if for any m either c(m) = ¢(r) or ¢(m) = ¢(r) + 1, then
difference between any m,n < 1.

@ Treat this property as a new (temporary) invariant.

v' Extend co into c1 (left pane, right click, “Extend”), add constant r, axiom r € P
v Refine mo into m1 (left pane, right click, “Refine”), add new invariant
V'm0 should “see” c1

Steps

. Initial model: all nodes access the state of all nodes.

. [First refinement: restrict access to a single node.]

u A W N =

We simplify the guard

. Second refinement: local check, upwards wave.
. Third refinement: construct downwards wave.
. Fourth refinement: remove upwards and downwards counters.

First refinement: proposal for the event refinement

(abstract-)ascending
any n where
n€P
Vm-m € P = c(n) < c(m)
then
c(n) :=c(n)+1
end

(concrete-)ascending
any n where
neP
c(n) = c(r)
then
c(n) :==c(n)+1
end

@ Note: if ¢(r) minimal, c¢(n) < ¢(r) impossible; therefore c(n) = ¢(r)
v' Change “extended” to “not extended”, change guard

@ We have then to prove guard strengthening.

dea (%
[POLITECNICA]

dea

Guard strengthening

c €eP—N
x e P
ye P
Vx,y-
x,y —

inv0_1

inv0_2

c(z) <c(y) +1

Ym-(mé€eP = Sc(m))

neP
c(n) = ¢(r)
'_

nepP

‘v’m-(mEP=>§c(m))

new invariant
Guards of concrete
event ascending

Guards of abstract
event ascending

In Rodin: lasso + p0

v' Go to the proving perspective, discharge proof

Pending problems

ascending
any n where
nepP

c(n) = ¢(r)
then
c(n):=c(n)+1
end

vm-m € P = ¢(r) < c(m)

1. Prove that new “invariant” is preserved by the event.

2. The guard of the event still does not fulfill requirement FUN 4.

mi dea 2 Model so far
[POLITECNICA]
inv1 not discharged.
CONTEXT cl
EXTENDS c0
CONSTANTS
AXIOMS
axml: r € P
END
@i dea (% First refinement: defining the tree
[POLITECNICA|

@ Tree: root r and “pointer” f from each

nodein P\ {r} to every node’s parent.

@ Plus some additional properties and
inference rules.

@ Reminder: sets, relations, functions,
specific data structures and their
inference rules.

‘ FUN 4 ‘ Each node can read the counters of its immediate neighbors only ‘

@ Note: constructing a tree (= root /
leader + links) is a classical problem in

@ Problem 1 solved in this refinement

@ Problem 2 solved later

distributed systems.

@ Can also be tackled using Event B.

Invariant: we have a condition involving
nodes in pairs and we need a condition

=i dea

MACHINE ml
REFINES m0
SEES cl
VARIABLES
c
INVARIANTS
invi: Vmem € P = c(r) < c(m)
EVENTS
Initialisation (extended)
begin
actl: c¢:= P x {0}
end
Event ascending (ordinary) =
refines ascending
any
n
where
grdl: n€P
grd2: c(r) =c(n)
then
actl: ¢(n) :==c(n) +1
end

END

(g

=i dea

N ke

"

that relates a single node r with all the

others.

Update model

v Add to c1 (note f is —, written -»)
@ Constant f.
@ Axioms:

LCP
feP\{r}>P\L
VS.SCFlS|=S=2

o f~Liswritten f~.
@ —»: f defined for all P\ {r} and arrivesto every elementin P \ L.

Minimal counter at the root

@ We define a weaker, local invariant first.
@ The counter at every node is not greater than its descendants:

invl_1:Ym-me P\{r} = c(f(m)) < c(m)
v Add it to mt

@) Rationale (advancing the algorithm)
A

\ @ Assume we can update the tree
keeping a maximum difference
between neighbors.

@ Will be helpful to prove c(r) < c(m).

=i dea (%
[PoLTECNICA]

=i dea (%
| POLITECNICA

Minimal counter at the root

Minimal counter at the root: induction

We need to extend the local

VYm-m e P\{r} = c(f(m)) < c(m)

=i dea

@ Minimality of counter at the root
Vm-me P = c(r) < c(m)

relates c(r) with ¢(m) for every m.
@ Events change local values and consult neighbouring values.
@ We can (easily) prove properties relating neighbouring nodes.
@ How can we relate local properties with global properties?

=i dea

@ Start with leaves / € L.
@ Prove that for any /, ¢(f(/)) < ¢(/), then
c(F(F()) < c(f() < (), ...

@ Work upwards towards root r.

OR

property

to the whole tree.

@,
/ N\

O O O @

@ Start with r.

@ Prove that for all ms.t. r = f(m),
= c(r) < c(m).

/ \\ mis a child of r

@ Then, for all m’ s.t. m = f(m’),
c(m) < ¢(m')...
@ And so on towards the leaves.

(g

L]

Minimal counter at the root: induction @i dea (%
[PouéCNICA]
@ Induction: difficult for theorem provers to do on their own.
o Needs to identify base case, property to use for induction — i.e.,
the strategy.

@ Proving property for base case & inductive step within theorem

provers’ capabilities.
@ In Rodin: needs adding induction scheme:

v Add to c1:

VS-SCPAreSA(Nn-ne P\{r}Af(n)eS=neS)=PCS

v Tip: ctri-Enter breaks text in input box in separate lines.
@ Instantiating it with the property to prove expressed as a set:

{x | x € P A clx) < cx)}(nextslide)

v In m1: ensure you haveinvl_1: Vm-m € P\{r} = c(f(m)) < c(m)
v Ensurethml_1: Ym-m € P = c(r) < c(m) below invariant, marked as theorem

More local comparison @i dea (X
[POLITECNICA

@ Nodes with difference < one from r.

cm=clr) a2 ¥m- ”""Ef[&nﬂ =5 C(m) > cm)
@ When can we update looking locally? \

“TMO;LMMKL ZM‘M o] frean

ascending
any n where W&’L WV’J,L whose ‘W bave
nepP bt %WML
c(r) = c(n)

th ~m € f{n}] = c(n) # c(m)
then

c(n) :==c(n) +1
end

@
RO®

Yoo dd BOSOHE

L of, Theo, com b update]

Ensure invl_1 is preserved: double click, prover
view, lasso, p0 should do it.

Induction in Rodin: instantiation
@ Double click in the unproved

OV n[]-

theorem (left pane). Oat mite(?)
Oect feP \ {r} > P\ L

@ Switch to prover view, lasso. S

Oct ceP — N

@ Locate induction axiom. Oz s W

@ Enter
xlx€ePAc@ <cx}

@ Return and pO0.

@ The theorem should be
proved now.

Oa Y x

 Goal

meP \ {r} = c(f(m))sc(m)

Scf~[S] = S=o

-
neP \ {r} A f(n)es
-

nes)

Pcs
sy

c(x)=c(y)+1
Selected Hypotheses

et c(rsc(m)

=

Invariant inv1_1 not yet proved. Requires order between
parent and children c¢(f(m)) < c¢(m) that ascending cannot
guarantee: guard c(r) = c(n) allows updates in arbitrary
order. Will enforce through more local comparison.

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

Oa¥ n[]
meP \ {r} = c(f(m))sc(m)
Ot finite(P)
et fP\ {r} » P\ L
Oa V¥ S ‘ .
scf-[S] = S=o
et ceP — N
Oct ¥V ST{x | xePac(r) = cx} 7
res A
o
neP \ {r} A f(n)es
=
nes)
=
=
Oca¥ x[] v[]-
c(x)sc(y)+l
Selected Hypotheses
© Goal
¢t c(r)sc(m)

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than 5
all its descendants. -

@ Updates will go in waves towards the
root.

(2

_/

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants. -

@ Updates will go in waves towards the
root.

How it is expected to work @i dea m;m How it is expected to work
Update order restricted: - - Update order restricted: -

@ Before: any node whose counter is @ @ Before: any node whose counter is
equal to the root (the one with the / equal to the root (the one with the
minimum). (27 minimum).

@ Now: only those nodes whose /\4\ \ @ Now: only those nodes whose
counters are, in addition, smaller than D 7)) (29 (2) counters are, in addition, smaller than
all its descendants. — /x - \4” — all its descendants.

@ Updates will go in waves towards the >3 >) @ Updates will go in waves towards the
root. — — 3\ root.

N _/
How it is expected to work @i dea m;m How it is expected to work
Update order restricted: - - Update order restricted: -

@ Before: any node whose counter is :) @ Before: any node whose counter is
equal to the root (the one with the / \ equal to the root (the one with the
minimum). /;J 2> minimum).

@ Now: only thqse noQgs whose /A\ / @ Now: only thqse noQgs whose
counters are, in addition, smaller than)) 23 ') counters are, in addition, smaller than
all its descendants. — /&\ = \(- all its descendants.

@ Updates will go in waves towards the - >N i @ Updates will go in waves towards the
root. — — /x root.

@ @

How it is expected to work

Update order restricted:

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work

Update order restricted:

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work @i dea m;m
Update order restricted:
@ Before: any node whose counter is f@
equal to the root (the one with the \
minimum). ’2>
@ Now: only those nodes whose 4 \b
counters are, in addition, smaller than
all its descendants. 4
@ Updates will go in waves towards the
root.
Neighborhood checking @i dea m'mﬂ

FUN 4 | Each process can read the counters of its immediate neighbors
only

@ Vm-m e f~1[{n}] = c(n) # c(m) uses only local comparisons.
@ ¢(r) = c(n) uses non-local comparisons.
@ We will tackle that in the next refinement.

Model so far

Note: c¢(n) < ¢(m) in ascending should be ¢(n) # c(m)

CONTEXT cl
EXTENDS c0
CONSTANTS
r
f
L
AXIOMS
axml: r € P
Lcp
Leaves
FeP\{}->P\L
axmd: VS-SC flS]=S=0
axmb:
VS-SCPA
reSA
(Vn-ne P\{r}Af(n)e S=neS)
=
pPCS

axm3:

axm2:

END

Second refinement

@ Replace the guard c(r) = ¢(n).

-]
MACHINE ml
REFINES m0
SEES cl
VARIABLES
c
INVARIANTS
invi: Vme-m € P\ {r} = c(f(m)) < c(m)
inv2: (theorem) Vm-m € P = ¢(r) < ¢(m)
EVENTS
Initialisation (extended)
begin
actl: ¢:= P x {0}
end
Event ascending (ordinary) =
refines ascending
any
n
where
grdl: neP
grd2: c(r) =c(n)
grd3: Ym-m € f~'[{n}] = c(n) < c(m)
then
actl: ¢(n):=c(n) +1
end
END
&l

@ Processes must be aware when this situation does occur.
@ Add second counter d(-) to each node to capture value of ¢(r).

2 (2
2X2

JOSEE 2 \1}@

dea

é)

Steps @i dea &
[PouECNICA]
1. Initial model: all nodes access the state of all nodes.
2. First refinement: restrict access to a single node.
3. [Second refinement: local check, upwards wave.|
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.
Second refinement: the state @i dea (%
[POLITECNICA|

. d has an overall property similar
carrier set: P p p y

to c:
Invariant inv2_2
constants: 7, f . invo.2
1S as Inva- Vx,y-x €EPAy€eP=c(x)<
variables: c¢,d c(y) +1
@ d will capture the value of
c(r).
inv21: d € P—N @ It will be updated in a
JR downward wave.
inv22: va,y. | YEF v Refine m1 into m2
= v Add variable d and invari
d(z) < d(y) + 1 Add variable d and invariants

Updating d @i dea

This refinement captures:
@ The existence of d.
@ How its update can proceed not to break its invariant.

Event descending
any n where

neP
Vm-me P = d(n) <d(m)
then
d(n) :=d(n)+1
end

v Add event to m2
v Initialize d to 0 (copy the initialization of c)

Third refinement =i dea

@ We extend the invariant of counter d.
@ We establish the relationship between both counters ¢ and d.
@ This will allow us to refine event ascending

@ We construct the descending wave (by refining event descending).
@ Remark: this is the most difficult refinement.

v' Refine m2 into m3

)

Steps @i dea (2
[PouTEcnicA]

. Initial model: all nodes access the state of all nodes.

. First refinement: restrict access to a single node.

. Second refinement: local check, upwards wave.

. [Third refinement: construct downwards wave.]

. Fourth refinement: remove upwards and downwards counters.

u b~ W N =

Idea behind third refinement @i dea
N
/22/
1027)
;\ 1l2)
5 N N\ 5 \’\
1) L K\ 12) 1 \;/ 1)
) N)
1(2) 12 1(2)

Idea behind third refinement mi dea (% Idea behind third refinement @i dea 2

1\2) T 2\2) T 2/
- - f&/\ - - j/g\/\
2) 1(2) 2) 1(2)
Idea behind third refinement @i dea (% Idea behind third refinement @i dea
2(2)

2(27 2(5) 2(2) 2(2) 2(2) 2(2] 2(5) 2(2) 2(2) 2(2)
4 AN A
N f&\’\ - N ﬂ

Idea behind third refinement

Idea behind third refinement

=i dea

=i dea

Z

| POLITECNICA]

i

Idea behind third refinement

Idea behind third refinement

=i dea

=i dea

i

Idea behind third refinement =i dea (%
[Folrccnical

2 2 2
2 2
Proving theorem and invariant @mi dea (%
[POLITECNICA
v Add to m3:
inv3.1: VYm-me P\ {r} = d(m) < d(f(m))
thm3_1 : VYn-née P=d(n)<d(r)

v' Mark the latter as theorem

v' Double click on the PO for THM

v' Go to proving perspective; locate induction axiom

v’ Instantiate with {x|x € P A d(x) < d(r)}, invoke p0
v That should prove thm3_1

v inv3_1 cannot be proved yet - reasons similar to c.

We will deal with that later

State and invariants =i dea

(g

@ Recall local condition for c:

invl_1:Ym-me P\{r} = c(f(m)) < c(m)
Every node’s counter is smaller than or equal to its children’s.
@ Local condition for d is similar:

inv3_1:Ym-me P\{r} = d(m) < d(f(m))

Every node’s counter is smaller than or equal to its parent (if it has
a parent). This is what makes the wave descending.

@ inv3_1 and tree induction proves that the root has the highest
value of d(-):

thm3_1:Vn-ne P = d(n) < d(r)

(remember: root had the smallest value of c(-))

Refining ascending @i dea (X

EENY

Event (abstract—)ascending Event (concrete—)ascending

any n where any n where

neP neP

c(n) = ¢(r) c(n) = d(n)

Vm-m € f[{n}] = c(n) # c(m) Vm-m € f[{n}] = c(n) # c(m)
then then

c(n):==c(n)+1 c(n) =c(n)+1

end end
@ Downward wave d will eventually

propagate d(r).

v' Change event guard in m3

ascending: only local comparisons now!

Refining ascending

Event (abstract—)ascending
any n where
neP
c(n) = c(r)
Vm-m € f[{n}] = c(n) # c(m)
then
c(n):=c(n)+1
end

@ Downward wave d will eventually
propagate d(r).
v' Change event guard in m3

@ Need to prove guard strengthening.

Refining descending

@ A different case.

=i dea (%
[PoLTECNICA]

Event (concrete—)ascending
any n where
neP
c(n) = d(n)
Vm-m € f[{n}] = c(n) # c(m)
then
c(n):=c(n)+1
end

ascending: only local comparisons now!

=i dea (%
| POLITECNICA

@ Two situations raise a change of d:

1. For a non-root node: parent’s d change.
2. For the root node: ¢(r) changes.

o Different guards.

@ We will prepare the events to be edited.

v' Change (concrete) descending event to non-extended
v Left click on circle to left of name to select

Ctrl-Cto copy, Ctrl-V to paste

v' Rename first event as descending nr.
v' Rename second event as descending_r.

Refining ascending

Event (abstract—)ascending
any n where
neP
c(n) = c(r)
Vm-m € f[{n}] = c(n) # c(m)
then
c(n):=c(n)+1
end

@ Downward wave d will eventually
propagate d(r).
v' Change event guard in m3

@ Need to prove guard strengthening.

@ We cannot. ¢ and d unrelated so far!
v Relate c and d:inv3_2 : d(r) < c(r)

@ If needed: proving perspective, lasso +
pO proves strengthening.

Refining descending: the non-root case

Event (abstract —)descending
any n where
neP
Vm-me N = d(n) <d(m)
then
d(n):=d(n)+1
end

v' Update guards

ol

=i dea (2

Event (concrete—)ascending
any n where
neP
c(n) = d(n)
Vm-m e f[{n}] = c(n) # c(m)
then
c(n):=c(n)+1
end

ascending: only local comparisons now!

=i dea (%
| POLITECNICA]

Event (concrete—)descending
any n where
ne P\{r}
d(n) # d(F(n))
then
d(n):=d(n)+1
end

(Note: Rodin > 3.6 seems to prove strengthening automatically; previ-
ous versions needed additional steps [in next slide])

Proving guard strengthening @i

dea £

Event (abstract—)descending

Refining descending (Cont. — the root case.)

Event (concrete—)descending

Note: the steps below do not seem to be necessary in Rodin 3.6 with any n where refines
the Atelier B provers installed. Strengthening is proven automatically. necPkP descending
Vm-me P = d(n) <d(m) when
then d(r) # c(r)
ne€ P\{r},d(n) =d(f(n)),me P F d(n) <d(m) d(n) == d(n) + 1 with
) end nnn=r
We need some magic mushrooms to help the provers: then

thm3_2: Vn-ne P\{r} = d(f(n)) € d(n)..d(n) + 1
thm3_3 : Vn-ne P=d(r) € d(n)..d(n)+1

thm3_2 downward wave, parent is at most one more than
children (when it has just been increased)

thm3_3 special case for root (the first one to be increased)

Finishing proofs

seems that it is not necessary. Skip to the next slide.
I needed two more magic pills:

@i dea (X
The technique in this slide was necessary for Rodin versions previous to 3.6. For Rodin 3.6 onwarﬁs, it

d(r):=d(r)+1
end

=i dea %

v’ Click on circle left of param. n, delete
@ Parameter n disappeared!
@ Substitute (witness) for GRD, SIM.
@ We are particularizing for r.

Finishing proofs

This strategy is necessary with Rodin 3.6 and 3.7.

@ Similar to gluing invariant!
@ Note with label: specific Rodin idiom.

@ Need to prove
d(r)#c(r), me P Fd(r) < d(m)

=i dea (%
[FouTECNICA]

1 An additional invariant is necessary to prove GRD of descending_r:
inv3_3: Vn-ne P = c(n)€d(n).d(n)+1 To prove GRD -

thm3_4: Vn-n€ P= ¢(r) € d(n)..d(n)+1 To proveinv3_3 inv3_.3: Vn-né€ P = c(n)€d(n).d(n) +1
Plus, if not added before:
thm3_2: Vn-ne P\{r} = d(f(n)) € d(n)..d(n)+1

thm3_3: Yn-née P=d(r) €d(n).d(n)+1

After this, the invariant can be proved with a combination of several steps:

After adding it, GRD is immediately proven. However, the invariant remains unproven. It
can be proved with the following steps:

@ Apply lasso. c(n) <d(n)+1+1.

@ Apply lasso.
@ Instantiate Vn - c(r) € d(n)..d(n) + 1
(which relates c and d) with n.

d(n) = c(n).

@ Do POinc(n) <d(n)+1+1goal.
@ Note that only possibility to prove is

@ Remove € in goal
c(n)ed(n)+1l.d(n)+1+1to

be proven separately.

transform it into inequalities that can

@ Remove € in goal
(c(n) € d(n)+1..d(n) + 1+ 1) to create
inequalities.

@ Do case distinction with d(n) = c(n), @ Use mlor pO for the goal

@ Apply ML to the subgoals.

@ For d(n) +1 < ¢(n), do case
distinction:
e Either with d(n) = c(n), or
e with d(n)+1 = c(n)
and ML to the subgoals.

Third refinement: invariants

=i dea

inv3.1: Vm - (m € P\ {r} = d(m) < d(f(m)))

inv32: d(r) < ¢(r)

invd3: Vn-(neP = c(n) € dn)..dn)+1)

thm31: Vm-(m € P = d(m) < d(r))

thm32: Vn-(n € P\ {r} = d(f(n)) € d(n)..d(n)+1)
thm33: Vn.-(nc€ P = d(r) € d(n)..d(n)+1)

thm34: vn:-(n€ P = c(r) € d(n)..d(n)+1)

Steps

u b~ W N =

=i dea
[FouTECNICA]

. Initial model: all nodes access the state of all nodes.
. First refinement: restrict access to a single node.

. Second refinement: local check, upwards wave.

. Third refinement: construct downwards wave.

. [Fourth refinement: remove upwards and downwards counters.

afg

] Third refinement: events
[FoUTECNICAY
Event descending_r Event descending nr
when any n where
d(r) # c(r) ne P\{r}
e d(n) # d(F(n)
then then
d(r) = d(r)+1 d(n) = d(n)+1

end end

Event ascending
any n where
neP
c(n) =d(n)
Vm-m e f{n}] = c(n) # c(m)
then
c(n):=c(n)+1
end

L] Observation

@ The difference among counters is at most one.
o That has been proven by construction.

@ In the guards, we only care whether they are equal or not.
@ For this, we only need parity!

a,beNAlJa—b| <1= (a=b< parity(a) = parity(b))

@ We will prove that this is a valid refinement.
v' Extend context c1 into c2
v Refine m3 into m4
v' m4 should see c2

=i dea

=i dea

5

(.

Formalizing parity
- We replace the counters by their parities

- we add the constant parity

carrier set: P

constants: r, f, parity

axm4_1: parity € N— {0,1}
axm4 2: parity(0) =0

axm4.2: Vz.(z €N = parity(z + 1) = 1 — parity(x))

v' Add parity and axioms to c2. Note: parity is a function!
v' Need some clicking (dom to N + ML) to prove WD

New events: counters replaced by parity

ascending
any n where
nepP
p(n) = q(n)
vm' (m € f~[{n}] = p(m) # p(n))
then
p(n) :=1—p(n)
end

descending._1 .
any n where descending 2

ne P\ {r} when
00 # a(f(m) P 7 a()

en%(7“) =1—q(r)

eng‘(n) i=1—q(n)

@i dea (2 The definitions that replace c(-) and d(-)

=i dea %
[POLITECNICA]

[POLITECNICA]
- We replace cand d by p and ¢
variables: p,q

invd1: pe P— {0,1}

invd2: g€ P— {0,1}

invd 3: Vn.(n € P = p(n) = parity(c(n)))

invd4: Vn.(n € P = q(n) = parity(d(n)))

v' Do it in m4. Note the gluing invariants! p and q really syntactic sugar.
@mi dea (® i ini i i
Proving remaining POs (in ascending)

GRD of g(n) = p(n)

@ The essence of the pending GRD proof
is...,q(n)=p(n) F c(n)=d(n).

@ Depends on proving
parity(a) = parity(b) = a = b.

@ Holds in specific cases (if |a — b| < 1).

@ But theorem provers unable to apply /
deduce that property.

@ Needs to be stated explicitly:

Vx,y-ye NAxey.y+1 =
(parity(x) = parity(y) < x = y)

@ We could make it axiom, but it can be
proven as theorem (better!).

=i dea (%
| POLITECNICA

@ Proving it is not difficult.
WD: PO takes care of it (if WD is to
be discharged).
THM: Adding hypothesis + case
distinction works.
@ < rewrite in two implications.

@ Introduce ah with possible values of x:
xX=yVx=y+1

@ One branch proven; prove ah with ml.

@ Goal y =y + 1: use dc with
parity(y) = 0.
@ PO works for both branches.

Proving remaining POs (in ascending) gti;v}]‘flcea i

_ ~ @simplification rewrites : c(n)=d(n)
GRD Of q(n) = P(n) ~ Wtype rewrites : c(n)=d(n)
~ @wsimplification rewrites : c(n)=d(n)

~@sl/ds : c(n)=d(n)
@ Do lasso. - @sifds : c(n)=d(n)
° Instantiate theorem ~ @Y hyp (inst ¢(n),d(n)) : c(n)=d(n)

~wgeneralized MP : (n€Edom(d)Ad€EP + Z)A(nEdom(c)AcEP + Z)
~ @ simplification rewrites : (TAT)A(TAT)

Vx,y-yeNAxey.y+1 = oT goal : T
. . ~@generalized MP : c¢(n)=d(n)
(parity(x) = parity(y) < x = y) - simplification rewites : c(n)=d(n)

@PP : c(n)=d(n)
with ¢(n), d(n).
@ Invoke PO.

	Goals
	Requirements
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement

