

Event B: Modeling and Reasoning with Data Structures¹

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid & IMDEA Software Institute

Infinite Lists	s. 4
Finite Lists	s. 14
Infinite Trees	s. 15
Finite Trees	s. 16

¹Theory, text, examples borrowed from J. R. Abrial: see http://wiki.event-b.org/index.php/Event-B_Language

・ロト・(部・・ミト・ミー・)のへの

▲□▶▲舂▶▲≧▶▲≧▶ ≧ のへで

wi Mdea

Strategy

software

- Data structures involving pointers formalized with relations, functions.
- Specific axioms of these specific data structures give *properties* of these functions that model the data structures.
- Specific forms of these axioms (capturing induction on the data structures) are well-suited to be used in automated proofs.
- We will focus on formalizing:
 - Infinite lists.
 - Finite lists.
 - Infinite trees.
 - Finite trees.

- Initial node f. axm 1 :
- Bijective *next* function

 $\begin{array}{ll} \mathsf{axm_1:} & f \in V \\ \mathsf{axm_2:} & n \in V \rightarrowtail V \setminus \{f\} \end{array}$

Note: isomorphic to natural numbers with $V = \mathbb{N}$, f = 0, n = succ.

Avoiding cycles

Avoiding cycles

- If a list has a cycle, then there is a $S \subseteq V$ s.t. $S \subseteq n[S]$.
- On the other hand, it is always the case that $\emptyset \subseteq n[\emptyset]$.
- So we insist that this is the only case:

 $\mathsf{axm}_3: \forall S \cdot S \subseteq V \land S \subseteq \mathsf{n}[S] \Rightarrow S = \emptyset$

• It can be used to prove properties in infinite lists.

・ロト・雪ト・ヨト・ヨー わへの

From absence of cycles to induction

software

・ロト・(部)・(日)・(日)・(日)・(の)への

From absence of cycles to induction

software POLITECNICA

 $\forall S \cdot S \leq \forall \land S \leq m[S] \Longrightarrow S = \emptyset$

s¢n[s]

S can be written $S = V \setminus T$ (for some T), Then: **Redundant** $\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow S = \emptyset$ $\forall S \cdot S = V \setminus T \land S \subseteq n[S] \Rightarrow S = \emptyset$

$$\forall S \cdot S = V \setminus T \land S \leq m[S] \Rightarrow S = \emptyset$$

$$V \setminus T = \emptyset \equiv V \leq T$$

From absence of cycles to induction

V

0

3

T

VNT

From absence of cycles to induction

$$S \subseteq m[S] \rightarrow V \setminus T \subseteq m[V \setminus T] = m[V] \setminus m[T]$$

By definition: $f \in V$, $f \notin m[V \setminus T]$
Since $V \setminus T \subseteq m[V \setminus T]$, $f \notin V \setminus T$
Therefore $f \in T$ so that $f \notin V \setminus T$
And $m[V] = V \setminus \{g\}$

<□> < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2) < (2)

From absence of cycles to induction

(日) (個) (目) (日) (日) (の)

$$V \setminus T \subseteq m[V] \setminus m[T]$$

 $V \setminus T \subseteq (V \setminus \{ \} \}) \setminus m[T]_{T}$
... we will have If we remove
no elements here too much from here...
Condition: $m[T] \subseteq T$

 $\forall S \cdot S = V \setminus T \land S \subseteq \overline{m[S]} \Rightarrow V \subseteq T$

n bijective: n[V\T]=n[V]\n[T] (because n[S] and n[T] don't intersect)

-

-

V\{{}}

·n[t]

--m[V\T]=

MEV]\MET]

From absence of cycles to induction

If we expand $n[T] \subseteq T$:

thm_2:
$$\forall T \cdot f \in T \land (\forall x \cdot x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T$$

• *T* the set of elements with some property *P*: $T = \{x | P(x)\}$

If:

- Initial node f has the property ($f \in T$), and
- For every element with the property (x ∈ T), the next one has this property (n(x) ∈ T), then
- All elements have the property ($V \subseteq T$).

Using thm_2 to prove list properties		Finite lists	
 We want to prove P(x) for all x ∈ V. Elements for which P holds: T = {x x ∈ V ∧ p(X)}. We want to prove that T = V. 	 Since clearly T ⊆ V, it is enough to prove V ⊆ T. We do that by instantiating T in thm 2 		
	• We do that by instantiating 7 in thin_2.	 Basically as infinite lists, bu different axiom 2: 	t including a last (/) element and a
$f \in \{x x \in V \land P(x)\} = V \subseteq \{x x \in V \land P(x)\} = V \subseteq \{x x \in V \land P(x)\} \equiv P(f).$	$V \land P(x) \} \land$ ⇒ $n(x) \in \{x x \in V \land P(x)\} \Rightarrow$ $V \land P(x) \}$ • The RHS is equivalent to	axm_4 : axm_5 : axm_2' :	$l \in V$ finite(V) $n \in V \setminus \{l\} ightarrow V \setminus \{f\}$
• Second part equivalent to $\forall x \cdot x \in V \land P(x) \Rightarrow P(n(x)).$	$\forall x \cdot x \in V \Rightarrow P(x).$		
 Instantiating thm_2 gives a scheme to p Infinite trees 	rove by induction in infinite lists. אום אופאו איצא איצא צי איפא שוווולפא נו	Finite trees	<ロト・ター・モン・モン き つくぐ ■IMICEA ISSUE
t p	• There should not be cycles.		
 <i>t</i> is the root. <i>p</i> relates every node with its parent (it is a surjection). 	$\begin{array}{ll} \operatorname{axm}_{-}1 : & t \in V \\ \operatorname{axm}_{-}2 : & p \in V \setminus \{t\} \twoheadrightarrow V \\ \operatorname{axm}_{-}3 : & \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \varnothing \end{array}$ Induction rule: $\forall T \cdot t \in T \land p^{-1}[T] \subseteq T \Rightarrow V \subseteq T$ Instantiation to prove properties: $\forall T \cdot & T \subseteq V \land t \in T \land \\ (\forall x \cdot x \in V \setminus \{t\} \land p(x) \in T \Rightarrow x \in T) \\ \Rightarrow V \subseteq T \end{array}$	 <i>t</i> is the root. <i>p</i> relates every node with its parent. <i>L</i> is the set of tree leaves. There should not be cycles. 	$\begin{array}{ll} \operatorname{axm}_{1}: & t \in V\\ \operatorname{axm}_{2}: & L \subseteq V\\ \operatorname{axm}_{3}: & p \in V \setminus \{t\} \twoheadrightarrow V \setminus L\\ \operatorname{axm}_{4}: & \forall S \cdot S \subseteq p^{-1}[S] \Rightarrow S = \varnothing \end{array}$
	< □ > < 图 > < 图 > < 图 > < 图 > 目 > の < の		・ロト・(語・・思・・思・・)ののの