
Event B: Modeling and Reasoning with Data Structures1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Theory, text, examples borrowed from J. R. Abrial: see
http://wiki.event-b.org/index.php/Event-B_Language

Infinite Lists . s. 4
Finite Lists . s. 14
Infinite Trees . s. 15
Finite Trees . s. 16

Strategy

Data structures involving pointers formalized with relations,
functions.
Specific axioms of these specific data structures give properties of
these functions that model the data structures.
Specific forms of these axioms (capturing induction on the data
structures) are well-suited to be used in automated proofs.

We will focus on formalizing:
Infinite lists.
Finite lists.
Infinite trees.
Finite trees.

Infinite lists

Set V of list nodes.

Initial node f .

Bijective next function
axm_1 : f ∈ V

axm_2 : n ∈ V ↣↠ V \{f }

Note: isomorphic to natural numbers with V = N, f = 0, n = succ .

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

Avoiding cycles Avoiding cycles

If a list has a cycle, then there is a S ⊆ V s.t. S ⊆ n[S].
On the other hand, it is always the case that ∅ ⊆ n[∅].
So we insist that this is the only case:

axm_3 :∀S · S ⊆ V ∧ S ⊆ n[S] ⇒ S = ∅

It can be used to prove properties in infinite lists.

From absence of cycles to induction From absence of cycles to induction

From absence of cycles to induction From absence of cycles to induction

From absence of cycles to induction From absence of cycles to induction

If we expand n[T] ⊆ T :

thm_2 : ∀T · f ∈ T ∧ (∀x · x ∈ T ⇒ n(x) ∈ T) ⇒ V ⊆ T

T the set of elements with some property P : T = {x |P(x)}
If:

Initial node f has the property (f ∈ T), and
For every element with the property (x ∈ T), the next one has this
property (n(x) ∈ T), then
All elements have the property (V ⊆ T).

Using thm_2 to prove list properties

We want to prove P(x) for all x ∈ V .
Elements for which P holds:
T = {x |x ∈ V ∧ p(X)}.
We want to prove that T = V .

Since clearly T ⊆ V , it is enough to
prove V ⊆ T .

We do that by instantiating T in thm_2.

f ∈ {x |x ∈ V ∧ P(x)} ∧
∀x · x ∈ {x |x ∈ V ∧ P(x)} ⇒ n(x) ∈ {x |x ∈ V ∧ P(x)} ⇒

V ⊆ {x |x ∈ V ∧ P(x)}

f ∈ {x |x ∈ V ∧ P(x)} ≡ P(f).
Second part equivalent to
∀x · x ∈ V ∧ P(x) ⇒ P(n(x)).

The RHS is equivalent to
∀x · x ∈ V ⇒ P(x).

Instantiating thm_2 gives a scheme to prove by induction in infinite lists.

Finite lists

Basically as infinite lists, but including a last (l) element and a
different axiom 2:

axm_4 : l ∈ V

axm_5 : finite(V)

axm_2′ : n ∈ V \{l}↣↠ V \{f }

Infinite trees

t is the root.
p relates every node with its parent (it
is a surjection).

There should not be cycles.

axm_1 : t ∈ V

axm_2 : p ∈ V \{t}↠ V

axm_3 : ∀S · S ⊆ p−1[S] ⇒ S = ∅

Induction rule:
∀T · t ∈ T ∧ p−1[T] ⊆ T ⇒ V ⊆ T

Instantiation to prove properties:
∀T · T ⊆ V ∧ t ∈ T ∧

(∀x · x ∈ V \{t} ∧ p(x) ∈ T ⇒ x ∈ T)

⇒ V ⊆ T

Finite trees

t is the root.

p relates every node with its parent.

L is the set of tree leaves.

There should not be cycles.

axm_1 : t ∈ V

axm_2 : L ⊆ V

axm_3 : p ∈ V \{t}↠ V \L
axm_4 : ∀S · S ⊆ p−1[S] ⇒ S = ∅

	Infinite Lists
	Finite Lists
	Infinite Trees
	Finite Trees

