Event-B: Introduction and First Steps ${ }^{1}$
 Manuel Carro
 manuel.carro@upm.es
 Universidad Politécnica de Madrid \& IMDEA Software Institute sotwdea (i)

${ }^{1}$ Many slides borrowed from J. R. Abrial

Conventions

I will sometimes use boxes with different meanings.

- Quiz to do together during the lecture.

Q: What happens in this case?

solution

solution
solution

- Material / solutions that I want to develop during the lecture.

Something to complete here
aaaaaaaaaaaaaaaaaaa
ааааааааааaаaаaаaаa
aaaaaaaaaaaaaaaaaaa
Conventions s. 3
Landscape s. 4
Event B approach s. 8
Computation model s. 12
Integer division example s. 18
Invariants s. 23
Sequents and proofs s. 29
Inference rules s. 30
Basic constructs s. 38
First-order predicate calculus s. 48
Inductive invariants s. 55
dea (2)

Event B

An industry-oriented method, language, and set of supporting tools to describe systems of interacting, reactive software, hardware components, and their environment, and to reason about them.

Specification: remember sorting program.

Sequential vs. reactive software

Typical approaches and problems
(1)

$$
y_{0}=f\left(x_{0}\right), x_{1}=g\left(y_{0}\right), y_{1}=f\left(x_{1}\right), x_{2}=g\left(y_{1}\right), \ldots
$$

Effects of encinonment?

Usual approach

- Choose a platform.
- Write software specifications (which often neglect or under-represent the environment).
- Design by cutting in small pieces with well-defined communication.
- Code and test / verify units. - Integrate and test.

Pitfalls

- Often too many details / interactions / properties to take into account.
- Cutting in pieces: poor job in taming complexity.
- Small pieces: easy to prove them right.
- Additional relationships created!
- Overall complexity reduced?
- Modeling environment?
E.g., we expect a car driver to stop at a red light.
- Result: system as a whole seldom verified.

Complexity: Model Refinement

- System built incrementally, monotonically.
- Take into account subset of
requirements at each step.
- Build model of a partial system.
- Prove its correctness.
- Add requirements to the model, ensure correctness:

The requirements correctly captured by the new model.

- New model preserves properties of previous model.

Details: Tool Support

- Tool to edit Event B models (Rodin).
- Generates proof obligations: theorems to be proved to ensure correctness.
- Interfaced with (interactive) theorem provers.
- Extensible
- Model: formal description of a discrete system.
- Formal: sound mechanism to decide whether some properties hold
- Discrete: can be represented as a transition system
- Formalization contains models of:
- The future software components
- The future equipments surrounding these components
- Refinement allows us to build a model gradually.
- Ordered sequence of more precise partial models.
- Each model is a refinement of the one preceding it.
- Each model is proven:
- Correct.
- Respecting the boundaries of the previous one

Models and states

A discrete model is made of states

- States are represented by constants, variables, and their relationships

$$
S_{i}=\left\langle c_{1}, \ldots, c_{n}, v_{1}, \ldots, v_{m}\right\rangle
$$

- Relationships among constants and variables written using set-theoretic expressions

What is its relationship with a regular program?

- Transitions between states: triggered by events
- Events: guards and actions
- Guard $\left(G_{i}\right)$ denote enabling conditions of events
- Actions denote how states are modified by events
- Guards and actions written with set-theoretic expressions (e.g. first-order, classical logic).

Events

```
Event EventName
    when
        guard: \(G(v, c)\)
    then
        action: \(\mathrm{v}:=\mathrm{E}(\mathrm{v}, \mathrm{c})\)
    end
```


Examples:
$S_{i} \equiv x=0 \wedge y=7$
$S_{i} \equiv x, y \in \mathbb{N} \wedge x<4 \wedge y<5 \wedge x+y<7$
Write extensional definition for the latter

- Executing an event (normally) changes the system state.
- An event may ${ }^{2}$ fire when its guard evaluates to true.
- $G(v, c)$ predicate that enables

EventName

- $v:=E(v, c)$ is a state transformer.

A simple example - informal introduction!

Search for element k in array f of length n, assuming k is in f

Constants / Axioms

$$
\begin{array}{r}
\text { CONST } \mathrm{n} \in \mathbb{N} \\
\text { CONST } \mathrm{f} \in 1 \ldots \mathrm{n} \longrightarrow \mathbb{N} \\
\text { CONST } \mathrm{k} \in \operatorname{ran}(\mathrm{f})
\end{array}
$$

Event Search

when
i_ <n_ \wedge f $(\mathrm{i}) \neq k$
then
i := i + 1
end

Variables / Invariants
VARIABLE $i \in 1 . . n$

Event Found
when
then
skip
end
(initialization of i not shown for brevity)

Intuitive operational interpretation

Initialize;
while (some events have true guards) \{
Choose one such event;
Modify the state accordingly
\}

Event EventName
when
guard: $G(v, c)$
then

$$
\text { action: } \mathrm{v} \text { := } \mathrm{E}(\mathrm{v}, \mathrm{c})
$$

nd

- Now: informal Event B semantics.
- Actual Event B semantics based on set theory and invariants - Later!

- An event execution takes no time.

- No two events occur simultaneously.
- If all guards false, system stops.
- Otherwise: choose one event with enabled guard, execute action, modify state.
- Repeat previous point if possible.

Fairness: what is it? What should we expect?

- Stopping is not necessary: a discrete system may run forever.
- This interpretation is just given here for informal understanding
- The meaning of such a discrete system will be given by the proofs which can be performed on it (next lectures).

On using sequential code

To help understanding, we will now write some sequential code first, translate it into Event B, and then proving correctness. This does not follow Event B workflow, which goes in the opposite direction: write Event B models and derive sequential / concurrent code from them.

Two Math Notes

widea

Zero

There is no universal agreement about whether to include zero in the set of natural numbers. Some authors begin the natural numbers with 0 , corresponding to the non-negative integers $0,1,2,3, \ldots$, whereas others start with 1 , corresponding to the positive integers $1,2,3, \ldots$ This distinction is of no fundamental concern for the natural numbers as such.

I will assume that $0 \in \mathbb{N}$. That is the convention in computer science.
If you write $\forall b \in \mathbb{N}, c \in \mathbb{N}, c>0 \cdot \exists a \in \mathbb{N}, r \in \mathbb{N}, r<c \cdot b=c \times a+r$ remember:

- Quantifier scope sometimes implicit. - $\forall x \in D \cdot P(x)$ means $\forall x[x \in D \Rightarrow P(x)]$
- Commas mean conjunction.
- Nesting may need disambiguation.
- $\exists x \in D \cdot P(x)$ means $\exists x[x \in D \wedge P(x)]$

See https://twitter.com/lorisdanto/status/1354128808740327425?s=20 and https://twitter.com/lorisdanto/status/1354214767590842369?s=20

$$
a=\left\lfloor\frac{b}{c}\right\rfloor
$$

- Characterize it: we want to define integer division, without using division.

Q: specification of division

$$
\forall b \forall c[b \in \mathbb{N} \wedge c \in \mathbb{N} \wedge c>0 \Rightarrow \exists a \exists r[a \in \mathbb{N} \wedge r \in \mathbb{N} \wedge r<c \wedge b=c \times a+r]]
$$

It is useful to categorize the specification as assumptions (preconditions)

$$
b \in \mathbb{N} \wedge c \in \mathbb{N} \wedge c>0
$$

and results (postconditions)

$$
a \in \mathbb{N} \wedge r \in \mathbb{N} \wedge r<c \wedge b=c \times a+r
$$

Input / output / variables / constants / types?

Programming integer division

We have addition and substracion

- We have a simple procedural language
- Variables, assignment, loops, if-then-else, + \& -, arith. operators, ...

Copy the code! We will need it!

This step is not taken in Event B. We are writing this code only for illustration purposes.

- Special initialization event (INIT).
- Sequential program (special case)
- Finish event, Progress events
- Determinism: guards exclude each other Prove!
- Non-deadlock: some guard always true Prove!
- Termination: a variable is always reduced Prove!

Event INIT

$a, r=0, b$
end

Event Progress
when
$r>=c$
then
$r, a:=r-c, a+1$
end

Q: integer division events
Event Finish
when
$r<c$
then
skip
end

Proving correctness

How do you prove your programs correct?

- Correctness in sequential programs: post-condition holds.
- Easy if no (or statically bound) loops.
- Prove that this code swaps x and y :

$$
\begin{aligned}
& \{x=a, y=b\} \\
& \mathrm{x}:=\mathrm{x}+\mathrm{y} ;\{x=a+b, y=b\} \\
& \mathrm{y}:=\mathrm{x}-\mathrm{y} ;\{x=a+b, y=a\} \\
& \mathrm{x}:=\mathrm{x}-\mathrm{y} ;\{\mathrm{x}=b, y=a\} \\
& \{x=b, y=a\}
\end{aligned}
$$

Proving correctness: invariants in a nutshell

Loops: much more difficult

- \# iterations unknown.
(remember Collatz's conjecture)

$$
\begin{aligned}
& \{I(a, r)\} \\
& \text { while } r>=c \text { do } \\
& \quad\{I(a, r)\} \\
& \quad r:=r-c \\
& \quad a:=a+1 \\
& \quad\{I(a, r)\} \\
& \text { end } \\
& \left\{I(a, r) \wedge r<c \Rightarrow a=\left\lfloor\frac{b}{c}\right\rfloor\right\}
\end{aligned}
$$

Note: we should prove termination as well!

Invariant: formula that is "always" true

- Procedural code: beginning and end of every loop iteration.
- Event-B: after initialization, after every event (essentially same idea).

Intuitition:

- If invariant and negation of loop condition implies postcondition, the postcondition is proved.
- Nobody gives us invariants.
- We have to find them.
- We have to prove they are invariants.

Finding invariants

Which assertions are invariant in our model?

	Q: model invariants	
$I_{1}: a \in \mathbb{N}$	// Type invariant	Q: trivial invariant
$I_{2}: r \in \mathbb{N}$	// Type invariant	
$I_{3}: b=a \times c+r$		

Event INIT
$a, r=0, b$

Event Finish
when $r<c$
then
skip

Copy invariants somewhere else - we will need to have them handy

Invariant preservation proofs

- Invariant preservation proven using model and math axioms.
- Three invariants \& three events: nine
$\mathrm{E}_{\text {INIT }} / \mathrm{I}_{1} /$ INV
$\frac{\text { INIT I1 invariant proof }^{\vdash 0 \in \mathbb{N}} \mathrm{PO}}{b \in \mathbb{N}, c \in \mathbb{N}, c>0 \vdash 0 \in \mathbb{N}} \mathrm{MON}$

Event INIT
$\mathrm{a}, \mathrm{r}=0, \mathrm{~b}$ end
proofs

- Named as e.g. $\mathrm{E}_{\text {Progress }} / \mathrm{I}_{2} /$ INV
- Other proofs will be necessary later
$\mathrm{E}_{\text {INIT }} / \mathrm{I}_{2} / \mathrm{INV}$
$\frac{b \in \mathbb{N} \vdash b \in \mathbb{N}}{b Y P}$ MON

Invariant preservation in Event B

- Invariants must be true before and after event execution.
- For all event i, invariant j :

Establishment
 $$
A(c) \vdash I_{j}\left(E_{\text {init }}(v, c), c\right)
$$

Preservation:
$A(c), G_{i}(v, c), I_{1 \ldots n}(v, c) \vdash I_{j}\left(E_{i}(v, c), c\right)$

- $A(c)$ axioms
- $G_{i}(v, c)$ guard of event
- $I_{j}(v, c)$ invariant j
- $I_{1 \ldots n}(v, c)$ all the invariants
- $E_{i}(v, c)$ result of action i

Sequent

$\Gamma \vdash \Delta$
Show that Δ can be proved using assumptions 「

Invariant preservation

If an invariant holds and the guards of an event are true and we execute the event's action, the invariant should hold.

Invariant preservation proofs

$\mathrm{E}_{\text {INIT }} / \mathrm{I}_{3} / \mathrm{INV}$

$$
\begin{gathered}
\frac{\stackrel{\vdash b=b}{\vdash b=0+b} \text { Arith }}{\frac{\vdash b=}{\vdash b=0 \times c+b} \text { Arith }} \\
b \in \mathbb{N}, c \in \mathbb{N}, c>0 \vdash b=0 \times c+b \\
M O N
\end{gathered}
$$

Eprogress $/ \mathrm{I}_{1} / \mathrm{INV}$

$$
\frac{}{\substack{ \\a \in \mathbb{N} \vdash a+1 \in \mathbb{N}}} \mathrm{P} 1 \quad \text { Progress I1 invariant proof }
$$

Event Progress
when $r>=c$
then

$$
r, a:=r-c, a+1
$$

Event INIT

 $\mathrm{a}, \mathrm{r}=0, \mathrm{~b}$ endEvent Progress
when $r>=c$
then
$r, a \quad:=r-c, a+1$

- Mechanize proofs
- Humans "understand"; proving is tiresome and error-prone
- Computers manipulate symbols
- How can we mechanically construct correct proofs?
- Every step crystal clear
- For a computer to perform
- Several approaches
- For Event B: sequent calculus
- To read: [Pau] (available at course web page), at least Sect. 3.3 to
$3.5,5.4$, and 5.5. Note: when we use $\Gamma \vdash \Delta$, Paulson uses $\Gamma \Rightarrow \Delta$.
- Also: [Orib, Oria], available at the course web page.
- Admissible deductions: inference rules.

An example of inference rule

Note: not exactly the inference rules we will use
Only an intuitive example.

- $A($ lice $)$ and $B(o b)$ are siblings:
$\frac{C \text { is mother of } A}{A \text { and } B \text { are siblings mother of } B}$ Sibling-M
$\frac{C \text { is father of } A}{A \text { and } B \text { are siblings } \quad \text { is father of } B}$ Sibling-F
- Note: we do not consider the case that, e.g., C is a father and a mother.
- An inference rule is a tool to build a formal proof.
- It not only tells you whether $\Gamma \vdash \Delta$: it tells you how.
- It is denoted by:

$$
\frac{A}{C} R
$$

- A is a (possibly empty) collection of sequents: the antecedents.
- C is a sequent: the consequent.
- R is the name of the rule.

The proofs of each sequent of A
__ together give you

$$
\text { a proof of sequent } \mathrm{C}
$$

Recording the Proof of Sequent $S 1$

$$
\overline{S 2}^{\mathrm{r} 1} \quad \frac{S 7}{S 4} \mathrm{r} 2 \quad \frac{S 2 S 3 S 4}{S 1} \mathrm{r} 3 \quad \overline{S 5}^{\mathrm{r} 4} \quad \frac{S 5 S 6}{S 3} \mathrm{r} 5 \quad \overline{S 6}^{\mathrm{r} 6} \quad \overline{S 7}^{\mathrm{r} 7}
$$

	r 3	
	$\uparrow \nwarrow$	
$S 2$	$S 3$	$S 4$
r 1	r 5	r 2
	$\nearrow \uparrow$	\uparrow
$S 5$	$S 6$	$S 7$
r 4	r 6	r 7

- The proof is a tree
- There are many formal deduction systems [Ben12, Sect. 3.9].
- We will use a variant of the so-called Gentzen deduction systems.

Sequent $\Gamma \vdash \Delta$ in a Gentzen system

- Γ : (possibly empty) collection of formulas (the hypotheses)
- Δ : collection of formulas (the goal)

$\Gamma \equiv P_{1}, P_{2}, \ldots, P_{n}$ stands for $P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n}$	$\frac{P_{1}, P_{2}, \ldots, P_{n} \vdash Q_{1}, Q_{2}, \ldots, Q_{m}}{\text { is }}$
$\Delta \equiv Q_{1}, Q_{2}, \ldots, Q_{m}$ s.f. $Q_{1} \vee Q_{2} \vee \ldots \vee Q_{m}$	$P_{1} \wedge P_{2} \wedge \ldots \wedge P_{n} \vdash Q_{1} \vee Q_{2} \vee \ldots \vee Q_{m}$

- We will use a proof calculus where the goal is a single formula.
- More constructive proofs - but see [Oria, Section 11.2] for interesting remarks.

Logic and inference rules

Objective: show that, under hypotheses Γ, some formula(s) in Δ can be proven.

Structural inference rules

- Three structural inference rules, independent of the logic used.

\[

\]

If the goal is among the hypothesis, we are done.

- We need a language to express hypothesis and goals.
- Not formally defined yet
- We will assume it is first-order, classical logic
- Recommended references: [Pau, HR04, Ben12]
- We need a way to determine if (and how) Δ can prove Γ.
- Inference rules.

If goal is proved without
hypothesis P, then it can be proven with P.

A goal can be proven with an intermediate deduction P. Nobody tells us what is P or how to come up with it. It cuts the proof into smaller pieces. (Cut Elimination Theorem)

- There are many other inference rules for:
- Logic itself (propositional / predicate logic)
- Look at the slides / documents in the course web page
- reasoning on arithmetic (Peano axioms),
- reasoning on sets,
- reasoning on functions,
- ...
- We will not list all of them here (see online documentation).
- We may need to explain them as they appear
- But a mechanical prover has them as "inside knowledge" (plus tactics, strategies)

Rules for conjunction

A conjunction on the RHS needs both branches of the conjunction to be proven independently of each other.
$x \in \mathbb{N} 1, y \in \mathbb{N} 1, x+y<5 \vdash x<4 \wedge y<4$
$\frac{H, P, Q \vdash R}{H, P \wedge Q \vdash R}$ AND-L

$$
\frac{H \vdash Q \quad H \vdash P}{H \vdash P \wedge Q} \text { AND-R }
$$

$$
H, P \wedge Q \vdash R
$$

By definition of sequent.

Given predicates P and \boldsymbol{Q}, we can construct:

- NEGATION: $\neg \boldsymbol{P}$
- CONJUNCTION: $P \wedge Q$

IMPLICATION: $\quad \boldsymbol{P} \Rightarrow \boldsymbol{Q}$

- Precedence: $\neg, \wedge, \Rightarrow$.
- Examples
- Parenthesis added when needed.
- If in doubt: add parentheses!
- Can you build the truth tables?
- \vee, \Leftrightarrow are defined based on them.
- Define them

Can we use a single connective?

Rules for disjunction

$$
\frac{H, Q \vdash R \quad H, P \vdash R}{H, P \vee Q \vdash R} \text { OR-L }
$$

LHS: all conditions in which RHS has to hold Removing part of disjunction makes "condition space" smaller (removing part of conjunction makes the "condition space" larger, more general). Proofs with more general assumptions are valid for less general assumptions, not the other way around.

A disjunction on the LHS needs both branches of the disjunction be discharged separately. $(x<0 \wedge y<0) \vee x+y>0 \vdash x \times y>0$ Counterxample?

$$
\frac{H \vdash P}{H \vdash P \vee Q} \text { OR-R1 } \quad \frac{H \vdash Q}{H \vdash P \vee Q} \text { OR-R2 }
$$

A disjunction on the RHS only needs one of the branches to be proven. There is a rule for each branch

$$
\frac{H, \neg P \vdash Q}{H \vdash P \vee Q} \text { NEG }
$$

Part of a disjunctive goal can be negated, moved to the hypotheses, and used to discharge the proof. Related to $\neg P \vee Q$ being $P \Rightarrow Q$

$$
x \in \mathbb{N}, y \in \mathbb{N}, x+y>1, y>x \vdash x>0 \vee y>1
$$

$$
\begin{gathered}
\frac{\overline{\perp \vdash Q} \text { CNTR }}{\frac{P}{P, \neg P \vdash Q} \text { NOT-L }} \\
\frac{H, \neg P \vdash \neg Q \quad H, \neg P \vdash Q}{H \vdash P} \text { NOT-R }
\end{gathered}
$$

Reductio ad absurdum: assume the negation of what we want to prove and reach a contradiction. Similarly with $H \vdash \neg P$.

$P \wedge \neg P \equiv \perp$ (False)

$P \vee \neg P \equiv \top$ (True)
$\top=\neg \perp$

Additional rules

$$
\frac{H, P \vdash Q}{H \vdash P \Rightarrow Q} \text { IMP-R }
$$

If we want to use $P \Rightarrow Q$, we show that P is deducible from H and that, assuming Q, we can infer R.

We move the LHS P to the hypotheses. Note that since $P \Rightarrow Q$ is $\neg P \vee Q$, we are applying the NEG rule in disguise.

$$
x \in \mathbb{N}, y \in \mathbb{N}, x+y>k \vdash x=k \Rightarrow y>0
$$

(1)

मomienc

Equality axiom

$$
\overline{\vdash E=E} \mathrm{EQL}
$$

Equality propagation

$$
\frac{H(F), E=F \vdash P(F)}{H(E), E=F \vdash P(E)} \text { EQL-LR }
$$

Forthcoming proofs and propositional rules

The following proofs feature variables. Strictly speaking, they are not propositional. We will however not use quantifiers, so we will treat formulas as propositions when applying the previous rules.
We will assume the existence of simple, well-known arithmetic rules.

Invariant preservation proofs	lidea \qquad software \square
$\mathrm{E}_{\text {Progress }} / \mathrm{I}_{2} / \mathrm{INV}$	
$\begin{gathered} \frac{\frac{\vdash^{\vdash 0 \in \mathbb{N}}}{\vdash-c-c \in \mathbb{N}} \text { Arith }}{\frac{c \in \mathbb{N}, c \in \mathbb{N} \vdash c-c \in \mathbb{N}}{} \mathrm{MON}} \\ \frac{c \in \mathbb{N}, r=c, r \in \mathbb{N} \vdash r-c \in \mathbb{N}}{} \mathrm{EQ}-\mathrm{LR} \\ \frac{c \in \mathbb{N}, r=c \vee r>c,}{c \in \mathbb{N}, r \geq c, r \in} \\ \frac{b \in \mathbb{N}, c \in \mathbb{N}, c>0, r \geq c, a \in \mathbb{N}, b}{} \end{gathered}$	

$\mathrm{I}_{2}: r \in \mathbb{N}$
Event Progress
when $r>=c$
then
$r, a:=r-c, a+1$ end

Invariant preservation proofs

Proofs for Finish

- $\mathrm{E}_{\text {Finish }} / \mathrm{I}_{1} / \mathrm{INV}$
- $\mathrm{E}_{\text {Finish }} / \mathrm{I}_{2} / \mathrm{INV}$
- $\mathrm{E}_{\text {Finish }} / \mathrm{I}_{3} / \mathrm{INV}$
are trivial (Finish does not change anything)
Correctness: when Finish is executed, $I_{3} \wedge G_{\text {Finish }} \Rightarrow a=\left\lfloor\frac{b}{c}\right\rfloor$ (with the definition given for integer division),

Invariant preservation proofs
(i)

Progress 13 invariant proof

$$
\begin{aligned}
& \frac{b=a \times c+r \vdash b=a \times c+r}{} \text { HYP } \\
& \frac{b=a \times c+r \vdash b=a \times c+c+r-c}{} \text { Arith-M-PI-Dist } \\
& \frac{b=a \times c+r \vdash b=(a+1) \times c+r-c}{} \text { Arith-M-PI-Dist } \\
& \hline b=a \times c+r \vdash b=(a+1) \times c+(r-c)
\end{aligned}
$$

$$
b \in \mathbb{N}, c \in \mathbb{N}, c>0, r \geq c, a \in \mathbb{N}, r \in \mathbb{N}, b=a \times c+r \vdash b=(a+1) \times c+(r-c)
$$

```
I
when r >= c
    then
        r, a := r - c, a + 1
    end
```

The first-order predicate calculus and its rules

- Handling of variables, expressions, quantifiers, instantiation.
- There is a universe of objects.
- An expression is a formal text denoting an object: apple, adam, father(adam), 3, $8+3^{2}$, \{adam, apple, $\left.3^{2}\right\}$.
- Expressions include set-theoretic and arithmetic notation.
- Predicates state properties of objects through the expressions that denote them.
- A predicate denotes nothing.
- An expression cannot be proved.
- A predicate cannot be evaluated.
- Predicates and expressions are not interchangeable.

First-order predicate calculus: informal

We have a universe of objects. We make statements about these objects. Some examples follow.

$P(a)$: property P is true for object a

$P(a) \wedge \neg Q(b)$: property P is true for object a and property Q is false for object b

$$
\begin{aligned}
& R(a, b) \Longrightarrow P(a) \vee P(b) \text { : if property } R \\
& \text { is true for } a \text { and } b \text {, then } P \text { is true for } a \text {, } \\
& \text { for } b \text {, or for both. }
\end{aligned}
$$

$\forall x \cdot P(x)$: For all elements x, P is true. P can be arbitrarily complex.

$\exists x \cdot P(x)$: For some element x, P is true. P can be arbitrarily complex

Sweet Reason: A Field Guide to Modern Logic [HGTA11] is a delightful introduction to logic with many examples.

$$
\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)
$$

$\forall x \cdot(P(x) \wedge Q(x)) \equiv \forall x \cdot P(x) \wedge \forall x \cdot Q(x)$
(definition of existential quantifier)

$$
\begin{aligned}
& \exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y) \\
& \forall y \cdot \exists x \cdot P(x, y) \nRightarrow \exists x \cdot \forall y \cdot P(x, y)
\end{aligned}
$$

$$
\forall x \cdot(P(x) \vee Q(x)) \not \equiv \forall x \cdot P(x) \vee \forall x \cdot Q(x)
$$

(Counterexample?)

$$
P(a) \Rightarrow \exists x \cdot P(x)
$$

$\forall x \cdot(P(x) \underset{(x \notin \operatorname{vars}(B))}{B} \underset{\underset{\sim}{*})}{\equiv(\exists x \cdot P(x) \Rightarrow B)}$

$$
\exists x \cdot(P(x) \vee Q(x)) \equiv \exists x \cdot P(x) \vee \exists x \cdot Q(x)
$$

(Counterexample?)

$$
\exists x \cdot(P(x) \wedge Q(x)) \not \equiv \exists x \cdot P(x) \wedge \exists x \cdot Q(x)
$$

(Counterexample?)

First-order predicate calculus: informal

$I(x, y) \quad x$ loves y
$\forall x \cdot \forall y \cdot I(x, y) \quad$ everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot I(x, y) \quad$ at least a person loves someone
$\forall x \cdot \exists y \cdot I(x, y) \quad$ everybody loves someone (not necessarily the same person)
$\exists y \cdot \forall x \cdot I(x, y) \quad$ there is someone who is loved by everybody
$\forall y \cdot \exists x \cdot I(x, y) \quad$ everybody is loved by someone
$\exists x \cdot \forall y \cdot I(x, y) \quad$ there is someone who loves everybody
$\forall x \cdot \neg /(x, x) \quad$ no one loves themself
$\forall x \cdot \forall y \cdot[I(x, y) \wedge \exists z \cdot I(y, z) \Rightarrow \neg I(x, z)]$
What happens if we don't want someone loving him/herself to be taken into account?
"If there is someone who is loved by everybody, then it is not the case that no one loves themself." We usually want to prove statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: inference rules

$\mathrm{H}, \forall \mathrm{x} \cdot \mathrm{P}(\mathrm{x}), \mathrm{P}(\mathrm{E}) \quad \mathrm{Q}$

$\mathbf{H}, \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}$
where \mathbf{E} is an expression

$$
\frac{\mathbf{H} \vdash \mathbf{P}(\mathbf{x})}{\mathbf{H} \vdash \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x})} \quad \text { ALL_R }
$$

- In rule ALL_R, variable \mathbf{x} is not free in \mathbf{H}

$$
\frac{\mathbf{H}, \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}}{\mathbf{H}, \exists \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}} \quad \text { XST_L }
$$

- In rule XST_L, variable \mathbf{x} is not free in \mathbf{H} and \mathbf{Q}

$$
\frac{H \vdash P(E)}{H \vdash \exists \mathbf{x} \cdot \mathrm{P}(\mathrm{x})} \quad \text { XST_R }
$$

where E is an expression

Inductive and non-inductive invariants

- We want to prove

$$
A(c) \vdash l_{j}\left(E_{\text {init }}(v, c), c\right)
$$

$A(c), G_{i}(v, c), I_{1 \ldots n}(v, c) \vdash I_{j}\left(E_{i}(v, c), c\right)$

- l_{j} : inductive invariant (base case + inductive case)
- Invariants can be true but non-inductive if they cannot be proved from program

> Event INIT
> $\mathrm{a}: \mathrm{x}:=1$
end

$$
\begin{aligned}
& \text { Event Loop } \\
& \text { a: } \mathrm{x}:=2 * \mathrm{x}-1 \\
& \text { end }
\end{aligned}
$$

- $x \geq 0$ looks like an invariant. Prove it is preserved.
- It is not inductive (Loop:
$x \geq 0 \vdash 2 * x-1 \geq 0$?)
- $x>0$ is inductive (Prove it!)
- $x>0$ is stronger than $x \geq 0$ (if $A \Rightarrow B, A$ stronger than B.)
- Stronger invariants are preferred - as long as they are still invariants!

Rules for equality (some already seen):

Note: $\mathrm{E} \mapsto \mathrm{F}$ denotes a pair (E, F) - we will use them later.

Proof by contradiction: why?

$$
\overline{\perp \vdash P} \text { CNTR }
$$

- Common sense:
if we are in an impossible situation, just do not bother.
- Proof-based:
- Let's assume Q and $\neg Q$.
- Then $\neg Q$.
- Then $\neg Q \vee P \equiv Q \Rightarrow P$.
- But since $Q \wedge(Q \Rightarrow P)$, then P.
- Model-based
- If $Q \Rightarrow P$, then $Q \vdash P$.
- Extension: $\operatorname{Ext}(P)=\{x \mid P(x)\}$ (id. Q).
- $Q \Rightarrow P$ iff $\operatorname{Ext}(Q) \subseteq \operatorname{Ext}(P)$. Why???

- If $Q \equiv R \wedge \neg R, \operatorname{Ext}(Q)=\varnothing$.
- $\varnothing \subseteq S$, for any S.
- Therefore, $\operatorname{Ext}(R \wedge \neg R) \subseteq \operatorname{Ext}(P)$ for any P.
- Thus, $R \wedge \neg R \Rightarrow P$ and then $\perp \vdash P$.
. Mordechai Ben-Ari
Mathematical Logic for Computer Science, 3rd Edition.
Springer, 2012.
R James M. Henle, Jay L. Garfield, Thomas Tymoczko, and Emily Altreuter.
Sweet Reason: A Field Guide to Modern Logic.
Wiley-Blackwell, 2nd edition, 211.
ISBN: 978-1-444-33715-0.
- Michael Huth and Mark Ryan.

Logic in Computer Science: Modelling and Reasoning About Systems.
Cambridge University Press, New York, NY, USA, 2004.
圊 Original Author Unclear.
Lecture 11: Refinement Logic.
Available at https://www.cs.cornell.edu/courses/cs4860/2009sp/lec-11.pdf, last acccessed on Jan 30, 2022.
囯 Original Author Unclear.
Lecture 9: From Analytic Tableaux to Gentzen Systems.

