=i dea (%

@ dea
Event-B: Introduction and First Steps’

CONVENTIONS .ottt et aaeaens s.3

Manuel Carro =T o £ oF- T s.4

manuel.carro@upm.es EventBaPproach ... s.9

Computation model ...t e s. 18

Universidad Politécnica de Madrid &
IMDEA Software Institute
"Many slides borrowed from J. R. Abrial
Conventions @i dea % @i dea X
[EoEReal [PoLTECNICA]

I will sometimes use boxes with different meanings.

@ Quiz to do together during the @ Material / solutions that I want to
lecture. develop during the lecture.

Event B

An industry-oriented method, language, and set
aaaaaaaaaaaaaaaaaaa of supporting tools to describe systems of
R R R R T interacting, reactive software, hardware
daaadaaadadadaaaaad components, and their environment, and to
reason about them.

mailto:manuel.carro@upm.es

Sequential vs. reactive software @mi dea (% Sequential vs. reactive software @mi dea (%
| POLTECNICA | POLTECNICA

% Procram |2V PUT o PRO?:RAM Output

$ (4

_ S wd Codiom ?
10 i
1414-1 = X (1 i) R ?

Specification: remember sorting program.

Conne Amepa?

Sequential vs. reactive software @i dea (% Industrial systems: usual characteristics

@ Functionality often not too complex.
o Algorithms / data structures relatively simple.
o Underlying maths of reasonable complexity.
PROG RAM @ Requirements document usually poor.
@ Reactive and concurrent by nature.

g_ o But often coarse: protecting (large) critical
X regions often enough.

EN VIRONMENT" @ Many special cases.
g, @ Communication with hardware / environment involved.

@ Many details (~ properties to ensure) to be taken into account.
@ Large (in terms of LOCs).

'3,0=}[1a)) 9‘123(‘3.), yﬁ‘(?‘{), x, :?('3,),
Producing correct (software) systems hard — but not
6%&074 % e vironmien A1 necessarily from a theoretical point of view.

Typical approaches and problems

Usual approach
@ Choose a platform.

@ Write software specifications
(which often neglect or
under-represent the
environment).

@ Design by cutting in small
pieces with well-defined
communication.

@ Code and test / verify units.
@ Integrate and test.

The Event B approach

Complexity: Model Refinement

@ System built incrementally,
monotonically.
o Take into account subset of
requirements at each step.
@ Build model of a partial system.
@ Prove its correctness.

@ Add requirements to the model, ensure
correctness:
o The requirements correctly captured
by the new model.
o New model preserves properties of
previous model.

=i dea (%

=i dea (%

Details: Tool Support
@ Tool to edit Event B models (Rodin).

@ Generates proof obligations:
theorems to be proved to ensure
correctness.

@ Interfaced with (interactive) theorem
provers.

@ Extensible.

Typical approaches and problems

Usual approach
@ Choose a platform.

@ Write software specifications
(which often neglect or
under-represent the
environment).

@ Design by cutting in small
pieces with well-defined
communication.

@ Code and test / verify units.

@ Integrate and test.

Basic ideas

=i dea

%)

Pitfalls
@ Often too many details / interactions /
properties to take into account.
@ Cutting in pieces: poor job in taming
complexity.
@ Small pieces: easy to prove them right.

o Additional relationships created!
@ Overall complexity not reduced.

@ Modeling environment?
E.g., we expect a car driver to stop at a red light.

@ Result: system as a whole seldom verified.

=i dea (%

@ Model: formal description of a discrete system.

e Formal: sound mechanism to decide whether some properties hold
o Discrete: can be represented as a transition system

Basic ideas

@ Model: formal description of a discrete system.

e Formal: sound mechanism to decide whether some properties hold
o Discrete: can be represented as a transition system

@ Formalization contains models of:
o The future software components

@ The future equipments surrounding these components

Refinement

@ Refinement allows us to build a model
gradually.
@ Ordered sequence of more precise
partial models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
@ Respecting the boundaries of the
previous one.

Software requirements

Heavy hun

man intervention|

-+’ Abstract model 1

Abstract model

Light human intervention

Concrete model

No human intervention

Executable code

=i dea (%
| POLITECNICA

Refinement

Abstract model 2

I
1 Refinement,
I

*.| Final abstract model

Refinement

@ Refinement allows us to build a model
gradually.
@ Ordered sequence of more precise
partial models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
@ Respecting the boundaries of the
previous one.

Refinement

@ Refinement allows us to build a model
gradually.
@ Ordered sequence of more precise
partial models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
@ Respecting the boundaries of the
previous one.

Software requirements

Heavy human intervention|

Abstract model

Light human intervention

Concrete model

No human intervention

Executable code

Software requirements

Heavy hun

man intervention|

Abstract model

Light human intervention

| Conerete model 1

Concrete model

No human intervention

Executable code

=i dea

E (g

=i dea (%
| POLITECNICA]

Refinement

Concrete model 2

I
| Refinement,
I

*.| Final concrete model

Refinement @i dea 2 Models and states @mi dea %

A discrete model is made of states

@ Refinement allows us to build a model Software requirements

gradually.
@ Ordered sequence of more precise Heavy human intervention ﬁ ﬂ ___________ .
partlal models. Abstract model
1

@ Each model is a refinement of the one Go G
precedlng |t. Light human intervention
@ Each model is proven:
Concrete model . .
o Correct. @ States are represented by constants, @ Relationships among constants and
o Respecting the boundaries of the No human intervention o Translation variables, and their relationships variables written using set-theoretic

Program

Compilati =
‘'ompilation 5’- = <C17,,,7C,-,7V1,...,Vm>
_| Executable code

previous one. expressions

Executable code

Models and states @i dea (% States and transitions @mi dea %

A discrete model is made of states
@ Transitions between states: triggered Guard of transition

by events .

\\J
@0® @9
Go G @ Guard (G;) denote enabling

conditions of events
@ Actions denote how states are
modified by events

@ States are represented by constants, @ Relationships among constants and ‘ . . .-
variables, and their relationships variables written using set-theoretic @ Guards and actions written with Stat -
expressions set-theoretic expressions (e.g., ates
Si={c1,...,CnyViyevy Vi) first-order, classical logic).
Examples:
What is its relationship with a regular program? © Event B based on set theory. Si=x=0Ay=7

Si=x,y e NAx<4ANy<H5Ax+y<T

Write extensional definition for the latter

=i dea Events

é (g

A simple example - informal introduction!
Search for elementk in array £ of length n, assuming k is in f£.

Variables / Invariants

Constants / Axioms

CONST n € N
CONST f€ 1.n — N

VARIABLEi € 1.n

Event EventName
when

guard: G(v, c)

@ Executing an event (normally)
changes the system state.

@ An event can? fire when its guard
evaluates to true.

then @ G(v, c) predicate that enables
Event Search Event Found action: v := E(v, ¢) EventName
: : ,

when when end @ v := E(v, c) is a state transformer.

i<nAf@) #k fl) =k
then then

i=1i+1 skip
end end

(initialization of i not shown for brevity) 2Not “must”

	Conventions
	Landscape
	Event B approach
	Computation model

