
Event-B: Introduction and First Steps1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Many slides borrowed from J. R. Abrial

Conventions . s. 3
Landscape .s. 4
Event B approach . s. 9
Computation model . s. 18

Conventions

I will sometimes use boxes with different meanings.

Quiz to do together during the
lecture.

Q: What happens in this case?

solution
solution
solution

Material / solutions that I want to
develop during the lecture.

Something to complete here

aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaa

Event B
An industry-oriented method, language, and set
of supporting tools to describe systems of
interacting, reactive software, hardware
components, and their environment, and to
reason about them.

mailto:manuel.carro@upm.es

Sequential vs. reactive software

Specification: remember sorting program.

Sequential vs. reactive software

Sequential vs. reactive software Industrial systems: usual characteristics
Functionality often not too complex.

Algorithms / data structures relatively simple.
Underlying maths of reasonable complexity.

Requirements document usually poor.
Reactive and concurrent by nature.

But often coarse: protecting (large) critical
regions often enough.

Many special cases.
Communication with hardware / environment involved.
Many details (≈ properties to ensure) to be taken into account.
Large (in terms of LOCs).

Producing correct (software) systems hard — but not
necessarily from a theoretical point of view.

Typical approaches and problems

Usual approach
Choose a platform.
Write software specifications
(which often neglect or
under-represent the
environment).
Design by cutting in small
pieces with well-defined
communication.
Code and test / verify units.
Integrate and test.

Pitfalls
Often too many details / interactions /
properties to take into account.
Cutting in pieces: poor job in taming
complexity.

Small pieces: easy to prove them right.
Additional relationships created!
Overall complexity not reduced.

Modeling environment?
E.g., we expect a car driver to stop at a red light.
Result: system as a whole seldom verified.

Typical approaches and problems

Usual approach
Choose a platform.
Write software specifications
(which often neglect or
under-represent the
environment).
Design by cutting in small
pieces with well-defined
communication.
Code and test / verify units.
Integrate and test.

Pitfalls
Often too many details / interactions /
properties to take into account.
Cutting in pieces: poor job in taming
complexity.

Small pieces: easy to prove them right.
Additional relationships created!
Overall complexity not reduced.

Modeling environment?
E.g., we expect a car driver to stop at a red light.
Result: system as a whole seldom verified.

The Event B approach

Complexity: Model Refinement
System built incrementally,
monotonically.

Take into account subset of
requirements at each step.
Build model of a partial system.
Prove its correctness.

Add requirements to the model, ensure
correctness:

The requirements correctly captured
by the new model.
New model preserves properties of
previous model.

Details: Tool Support
Tool to edit Event B models (Rodin).
Generates proof obligations:
theorems to be proved to ensure
correctness.
Interfaced with (interactive) theorem
provers.
Extensible.

Basic ideas

Model: formal description of a discrete system.
Formal: sound mechanism to decide whether some properties hold
Discrete: can be represented as a transition system

Formalization contains models of:
The future software components
The future equipments surrounding these components

Basic ideas

Model: formal description of a discrete system.
Formal: sound mechanism to decide whether some properties hold
Discrete: can be represented as a transition system

Formalization contains models of:
The future software components
The future equipments surrounding these components

Refinement

Refinement allows us to build a model
gradually.
Ordered sequence of more precise
partial models.
Each model is a refinement of the one
preceding it.
Each model is proven:

Correct.
Respecting the boundaries of the
previous one.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Refinement

Refinement allows us to build a model
gradually.
Ordered sequence of more precise
partial models.
Each model is a refinement of the one
preceding it.
Each model is proven:

Correct.
Respecting the boundaries of the
previous one.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Abstract model 1

Abstract model 2

Final abstract model

Refinement

Refinement

Refinement

Refinement allows us to build a model
gradually.
Ordered sequence of more precise
partial models.
Each model is a refinement of the one
preceding it.
Each model is proven:

Correct.
Respecting the boundaries of the
previous one.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Concrete model 1

Concrete model 2

Final concrete model

Refinement

Refinement

Refinement

Refinement allows us to build a model
gradually.
Ordered sequence of more precise
partial models.
Each model is a refinement of the one
preceding it.
Each model is proven:

Correct.
Respecting the boundaries of the
previous one.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Final concrete model

Program

Executable code

Translation

Compilation

Models and states

A discrete model is made of states

S0 S1 S2 Sn−1 Sn
G1

G0

G2

G1

States are represented by constants,
variables, and their relationships

Si = ⟨c1, . . . , cn, v1, . . . , vm⟩

Relationships among constants and
variables written using set-theoretic
expressions

What is its relationship with a regular program?

Models and states

A discrete model is made of states

S0 S1 S2 Sn−1 Sn
G1

G0

G2

G1

States are represented by constants,
variables, and their relationships

Si = ⟨c1, . . . , cn, v1, . . . , vm⟩

Relationships among constants and
variables written using set-theoretic
expressions

What is its relationship with a regular program?

States and transitions

Transitions between states: triggered
by events

Events: guards and actions
Guard (Gi) denote enabling
conditions of events
Actions denote how states are
modified by events

Guards and actions written with
set-theoretic expressions (e.g.,
first-order, classical logic).

Event B based on set theory.

Si Sj

G

States

Guard of transition

Examples:
Si ≡ x = 0 ∧ y = 7
Si ≡ x , y ∈ N ∧ x < 4 ∧ y < 5 ∧ x + y < 7

Write extensional definition for the latter

A simple example – informal introduction!
Search for element k in array f of length n, assuming k is in f.

Constants / Axioms

CONST n ∈ N

CONST f∈ 1..n −→ N

CONST k ∈ ran(f)

Variables / Invariants

VARIABLE i ∈ 1..n

Event Search
when

i < n ∧ f(i) ̸= k
then

i := i + 1
end

Event Found
when

f(i) = k
then

skip
end

(initialization of i not shown for brevity)

Events

Event EventName
when

guard: G(v, c)
then

action: v := E(v, c)
end

Executing an event (normally)
changes the system state.
An event can2 fire when its guard
evaluates to true.
G(v, c) predicate that enables
EventName
v := E(v, c) is a state transformer.

2Not “must”!

	Conventions
	Landscape
	Event B approach
	Computation model

