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Conventions

I will sometimes use boxes with different meanings.

Quiz to do together during the
lecture.

Q: What happens in this case?

solution
solution
solution

Material / solutions that I want to
develop during the lecture.

Something to complete here
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Event B
An industry-oriented method, language, and set
of supporting tools to describe systems of
interacting, reactive software, hardware
components, and their environment, and to
reason about them.

mailto:manuel.carro@upm.es


Sequential vs. reactive software

Specification: remember sorting program.

Sequential vs. reactive software

Sequential vs. reactive software Industrial systems: usual characteristics
Functionality often not too complex.

Algorithms / data structures relatively simple.
Underlying maths of reasonable complexity.

Requirements document usually poor.
Reactive and concurrent by nature.

But often coarse: protecting (large) critical
regions often enough.

Many special cases.
Communication with hardware / environment involved.
Many details (≈ properties to ensure) to be taken into account.
Large (in terms of LOCs).

Producing correct (software) systems hard — but not
necessarily from a theoretical point of view.



Typical approaches and problems

Usual approach
Choose a platform.
Write software specifications
(which often neglect or
under-represent the
environment).
Design by cutting in small
pieces with well-defined
communication.
Code and test / verify units.
Integrate and test.

Pitfalls
Often too many details / interactions /
properties to take into account.
Cutting in pieces: poor job in taming
complexity.

Small pieces: easy to prove them right.
Additional relationships created!
Overall complexity not reduced.

Modeling environment?
E.g., we expect a car driver to stop at a red light.
Result: system as a whole seldom verified.
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The Event B approach

Complexity: Model Refinement
System built incrementally,
monotonically.

Take into account subset of
requirements at each step.
Build model of a partial system.
Prove its correctness.

Add requirements to the model, ensure
correctness:

The requirements correctly captured
by the new model.
New model preserves properties of
previous model.

Details: Tool Support
Tool to edit Event B models (Rodin).
Generates proof obligations:
theorems to be proved to ensure
correctness.
Interfaced with (interactive) theorem
provers.
Extensible.

Basic ideas

Model: formal description of a discrete system.
Formal: sound mechanism to decide whether some properties hold
Discrete: can be represented as a transition system

Formalization contains models of:
The future software components
The future equipments surrounding these components
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Refinement

Refinement allows us to build a model
gradually.
Ordered sequence of more precise
partial models.
Each model is a refinement of the one
preceding it.
Each model is proven:

Correct.
Respecting the boundaries of the
previous one.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention
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Program

Executable code

Translation

Compilation

Models and states

A discrete model is made of states

S0 S1 S2 Sn−1 Sn
G1

G0

G2

G1

States are represented by constants,
variables, and their relationships

Si = ⟨c1, . . . , cn, v1, . . . , vm⟩

Relationships among constants and
variables written using set-theoretic
expressions

What is its relationship with a regular program?
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States and transitions

Transitions between states: triggered
by events

Events: guards and actions
Guard (Gi ) denote enabling
conditions of events
Actions denote how states are
modified by events

Guards and actions written with
set-theoretic expressions (e.g.,
first-order, classical logic).

Event B based on set theory.

Si Sj

G

States

Guard of transition

Examples:
Si ≡ x = 0 ∧ y = 7
Si ≡ x , y ∈ N ∧ x < 4 ∧ y < 5 ∧ x + y < 7

Write extensional definition for the latter



A simple example – informal introduction!
Search for element k in array f of length n, assuming k is in f.

Constants / Axioms

CONST n ∈ N

CONST f∈ 1..n −→ N

CONST k ∈ ran(f)

Variables / Invariants

VARIABLE i ∈ 1..n

Event Search
when

i < n ∧ f(i) ̸= k
then

i := i + 1
end

Event Found
when

f(i) = k
then

skip
end

(initialization of i not shown for brevity)

Events

Event EventName
when

guard: G(v, c)
then

action: v := E(v, c)
end

Executing an event (normally)
changes the system state.
An event can2 fire when its guard
evaluates to true.
G(v, c) predicate that enables
EventName
v := E(v, c) is a state transformer.

2Not “must”!
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