=i dea =i dea %

é

A Market Compliant with COVID-19 Regulations

LG0T s.3
Initial model ... e s.8
Manuel Carro First refinementooveee ettt s.12
manuel.carro@upm.es Second refinementooiii s. 31
. . L , Third refinement e s.48
Universidad Politécnica de Madrid &
IMDEA Software Institute
Scenario @i dea (% Requirements @i dea (%
| POLITECNICA | POLITECNICA]
@ We have to automate the checkout desk of a market. REQ 1 | The market exit is divided in three areas: the waiting area, the checkout counters
@ We have to control when clients enter the checkout area. and a checkout corridor that connects them.
@ Expected behavior:
o Clients wait in front of a screen displaying a number or’.‘WAIT”. ‘ REQ 2 ‘ At most one client can be in the corridor at any time.
o When a number appears, client walks to the corresponding counter.
@ Assoon as it passes by the screen, “WAIT" is displayed.
@ When the client reaches the counter, either a new number is REQ3 TA F be heck -
displayed (if there are free counters) or “WAIT” (otherwise). | REQ 3 | At most one client can be in a checkout counter at any time.
@ When a client leaves, a counter number is displayed.
@ Sensors register people movements. REQ 4 | A screen at the entrance of the tells clients to either wait for the corridor to be clear
@ People behave (no need for physical barriers). or a counter to be free, or displays the identifier of an available counter.

@ Note: incomplete model. Focus on showing use of sets.

mailto:manuel.carro@upm.es

Requirements

‘ REQ 5 ‘ When the corridor is not empty, the screen displays “WAIT". ‘

‘ REQ 6 ‘ When no counter is free, the screen displays “WAIT". ‘

REQ 7 | When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

REQ 8 | There are sensors that register people passing at the entrance of the corredor and
at the entrance and exit of every counter.

%)

Modeling approach @i dea

@ As usual: take bird's-eye view.
@ Include more requirements, details as we “get closer”.
@ Do not to overspecify early: refinement may become impossible.

What we see =i dea %

D0rons
e \l
,\:/|\: i X E———b
J’ [¥ —
A TE L
7 n s
ox‘;mﬂ X !E’_»

(Sizes not necessarily proportional)

Stages @i dea X

1. [Initial model: just number of clients]

2. First refinement: distinguish checkout desks

3. Second refinement: entrance corridor and screen
4. Third refinement: sensors

5. Variant: sets instead of indicator functions

High-level view, visible events
NCOUNTERS

/ l/hM

ot W

Model

Context cO

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS € 77

@i dea Model
rourccnical

Context cO
@ Clients arrive at the checkout desks.

@ Clients leave the checkout desks.

@ We only check that we do not have
more clients than counters.

CONSTANTS NCOUNTERS
AXIOMS NCOUNTERS € 77

@ Partial fullfillment of

REQ 9 | At most one client can be in a
checkout counter at any time.

@i dea % Stages
Machine mO

VARIABLES nclients
INVARIANTS nclients € 0..NCOUNTERS

Event arrive 1. Initial model: just number of clients
when nclients < NCOUNTERS 2. [First refinement: distinguish checkout desks]
then 3. Second refinement: entrance corridor and screen
nclients := nclients + 1 4. Third refinement: sensors
end 5. Variant: sets instead of indicator functions
Event leave
when nclients > 0
then

nclients := nclients — 1
end

=i dea

=i dea

5

(@

High-level view

s

?f @ Fullfill

=i dea (%

@ Keep track of (non) available counters.

REQ 10

At most one client can be
in a checkout counter at any
time.

¥
N
[]
;\E ™ X/J — % ;
=N
A \X
\
it ¢ foane c
Model state

@ Need to model which counter is available.

@ Possibility?

@ Do not follow people.

=i dea (%

available € 1..NCOUNTERS — BOOL

Model state @i dea 2
[Founicical

@ Need to model which counter is available.
@ Possibility?

Model state =i dea

@ Need to model which counter is available.
@ Possibility?

available € 1..NCOUNTERS — BOOL

@ But a function A — BOOL denotes aset S C A.
(it is the characteristic or indicator function of the set)

@ Why not using directly a set?

@ The set of busy counters is more useful than the set of available
counters (will see later why).

@ Do we need it to be 1..NCOUNTERS?

@ Actually no. We are not going to compare counters.
@ An abstract set will do.

Model state: context and invariants

Context c1

EXTENDS c0

SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!

Model state: context and invariants @i dea (2 Model state: context and invariants @ dea (f
| POLTECNICA] P PoUTECNICA]
Context c1 Context c1 Machine m1
EXTENDS c0 EXTENDS c0 .
SETS COUNTERS SETS COUNTERS @ Refine mO to track busy counters,
AXIOMS card(COUNTERS) = NCOUNTERS AXIOMS card(COUNTERS) = NCOUNTERS create mf.
Create it! ® SEES c1

Create it!

@ WD PO not discharged!
@ card requires the set to be finite.

AXIOMS
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Model state: context and invariants

Context c1

EXTENDS c0

SETS COUNTERS
AXIOMS card(COUNTERS) = NCOUNTERS

Create it!
@ WD PO not discharged!

@ WD PO not discharged!

@ card requires the set to be finite.
VARIABLES busy

AXIOMS INVARIANTS 777
finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

(in that order)

Model state: context and invariants

Context c1

EXTENDS c0

SETS CO
AXIOMS

Create it!

UNTERS
card(COUNTERS) = NCOUNTERS

@ WD PO not discharged!

@ card

requires the set to be finite.

AXIOMS

(int

Events

finite(COUNTERS)
card(COUNTERS) = NCOUNTERS

hat order)

@ Initially, busy =

Machine m1

@ Refine mO to track busy counters,

Ccreate m1.
@ SEES c1
VARIABLES busy

INVARIANTS
busy C COUNTERS

@i dea (% Model state: context and invariants @mi dea %
Context c1 Machine m1
EXTENDS c0 .
SETS COUNTERS @ Refine mO to track busy counters,
AXIOMS card(COUNTERS) = NCOUNTERS create mi.
Create it! @ SEES c1
@ WD PO not discharged!
@ card requires the set to be finite.
VARIABLES busy
AXIOMS INVARIANTS
fm/te(COUNTERS) bUS}/ g COUNTERS
card(COUNTERS) = NCOUNTERS card(busy) = nclients
(in that order)
=i dea (% Events =i dea (%
[POLITECNICA| | POLTECNICA

@ Initially, busy =&

Events @i

@ Initially, busy =&

@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any ¢
where where
then
then
Events &l

@ Initially, busy =&

@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any ¢
where where

c € COUNTERS
¢ ¢ busy then
then

busy := busy U {c}

dea

dea

Events @i

@ Initially, busy =&
@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any ¢
where where
c € COUNTERS
¢ & busy then
then
Events @i

@ Initially, busy =&

@ We see event arrive when some client goes to a free counter and
the counter becomes busy.

@ An event parameter is the easiest way to model this.

Event arrive Event leave
refines arrive refines leave
any ¢ any ¢
where where

c € COUNTERS c € busy
¢ ¢ busy then
then

busy := busy U {c}

dea

dea

)

EENY

Events @mi dea 2 Events @mi dea %
@ Initially, busy =& @ Initially, busy =&
@ We see event arrive when some client goes to a free counter and @ We see event arrive when some client goes to a free counter and
the counter becomes busy. the counter becomes busy.
@ An event parameter is the easiest way to model this. @ An event parameter is the easiest way to model this.
Event arrive Event leave Event arrive Event leave
refines arrive refines leave refines arrive refines leave
any ¢ any ¢ any ¢ any ¢
where where where where
c € COUNTERS c € busy ¢ € COUNTERS c € busy
¢ & busy then ¢ & busy then
then busy := busy\{c} then busy := busy\{c}
busy := busy U {c} busy := busy U {c}
Fill in the Rodin model. POs should become green (otherwise, lasso + PO/ML)
Stages @i dea (% High-level view @ dea (X
[FourchicAl
L @ One-person, one-way corridor:
[{asE < — changes contents of screen.
1. Initial model: just number of clients f : y i —
2. First refinement: distinguish checkout desks i > @ Selection of available counter via
3. [Second refinement: entrance corridor and screen] - screen.
4. Third refinement: sensors X P N
5. Variant: sets instead of indicator functions Difference with car semaphores: screen

@ Will introduce several components.
@ Screen: tells clients what to do
(controls entrance to corridor).

goes “red” even if free counters (when
people in corridor), then may go “green”
again.

Initial model considerations @i dea

[PouéCNICA]
40188 = § Two variables for display, one for corridor:
el = FALSE .))
ey @ wait € BOOL: clients need to wait?
[N X —
/‘o\ = P—;—— @ next_counter € COUNTERS: show free
y counter / register client destination.
/‘F’ — % (can be used to open physical barrier?).
M_LoVieon . .
/ X — @ in_corridor € BOOL
onlin ot ¥ \,{@,{,\gc Relationship below.
Will be captured via invariants.

in_corridor wait meaning of next_counter
FALSE FALSE Destination of client (displayed)
FALSE TRUE Meaningless (all counters busy, not displayed)
TRUE FALSE IMPOSSIBLE
TRUE TRUE Destination of client (not displayed)

Introducing the model @i dea (%

@ Refine m1 into m2. @ Initialization:

@ New variables and their types: .)
in_corridor =

in_corridor € {0,1} wait
wait € BOOL
next_counter € COUNTERS

next_counter &

Why in_corridor € {0,1} instead of in_corridor € BOOL ?

Initial model considerations @mi dea (%
[PouECNICA]
Fueen=¢ Handling the screen
MI: FALSE
LR E T—
. ”"J LN @ Could be checked after every
(f ¥ })“’ state-changing event.
v
—— = @ Repeated reasoning, models.
. oo — - . .
X @ Specialize events for every situation.
{ AN (last and non-last car in bridge example)
0»4[2/ et){ \/&Mr&c 8 P
‘ @ Separate events handle screen

o Introducing event enter according to state variables.

@ Refining events arrive, leave. @ But: additional interleavings, more
@ Events & variables model both people, error possibilities!
controller.)
o Will be split in next refinement. @ Risky if not verified!
Introducing the model @i dea (X

@ Refine m1 into m2. @ Initialization:

@ New variables and their types:) .
in_corridor :=

in_corridor € {0,1} wait
wait € BOOL
next_counter € COUNTERS

next_counter &

Why in_corridor € {0, 1} instead of in_corridor € BOOL ?

Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, and incorrect
in_corridor := in_corridor + 1 will be detected

Introducing the model

@ Refine m1 into m2. @ Initialization:

@ New variables and their types:

in_corridor

in_corridor € {0,1} wait

wait € BOOL next_counter
next_counter € COUNTERS

Why in_corridor € {0, 1} instead of in_corridor € BOOL ?

Additional security.

vious value of in_corridor = TRUE. However, and
in_corridor := in_corridor + 1 will be detected
Introducing the model
@ Refine m1 into m2. @ Initialization:
@ New variables and their types: .)
in_corridor
in_corridor € {0,1} wait
wait € BOOL next_counter
next_counter € COUNTERS

Why in_corridor € {0,1} instead of in_corridor € BOOL ?

Additional security.
vious value of in_corridor = TRUE. However,

in_corridor := in_corridor + 1 will be detected

in_corridor := TRUE may overwrite a pre-

incorrect

=i dea (%
| POLITECNICA

=0
= FALSE
:€ COUNTERS

in_corridor := TRUE may overwrite a pre-
and

incorrect

Introducing the model @i
@ Refine m1 into m2. @ Initialization:
@ New variables and their types: _)
in_corridor = 0
in_corridor € {0,1} wait FALSE
wait € BOOL next_counter €
next_counter € COUNTERS

Why in_corridor € {0, 1} instead of in_corridor € BOOL ?

Additional security. in_corridor := TRUE may overwrite a pre-
vious value of in_corridor = TRUE. However, and incorrect
in_corridor := in_corridor + 1 will be detected

Requirements and invariants &l

dea

EENY

‘ REQ 0 ‘ When the corridor is not empty, the screen displays “WAIT".

Requirements and invariants @i dea

[rourecca
‘ REQ 0 ‘ When the corridor is not empty, the screen displays “WAIT". ‘
in_corridor = TRUE = wait = TRUE

‘ REQ 0 ‘ When no counter is free, the screen displays “WAIT".
Requirements and invariants @mi dea (%
[rouricca

‘ REQ 0 ‘ When the corridor is not empty, the screen displays “WAIT". ‘

in_corridor = TRUE = wait = TRUE

] REQ 0 \ When no counter is free, the screen displays “WAIT".

busy = COUNTERS = wait = TRUE

REQ 0 | When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

wait = FALSE = next_counter ¢ busy

Enter them!

Requirements and invariants @i dea 2

‘ REQ 0 ‘ When the corridor is not empty, the screen displays “WAIT".

in_corridor = TRUE = wait = TRUE

‘ REQ 0 ‘ When no counter is free, the screen displays “WAIT".

busy = COUNTERS = wait = TRUE

REQ 0 | When access to the corridor is possible, the screen displays the identifier of one of
the available counters.

The new enter and refined arrive and leave @i dea (2

@ |eave does not need to be changed. @ Arrive at counter previously shown in

, . reen nter m .
@ A client (can) enters when there is no screen, counter becomes busy

need to wait. Event arrive
refines arrive
when in_ corridor > 0

with c: ¢ = next counter

@ The corridor has one more person.

@ Other clients have to wait

then
Event enter in_corridor := in_corridor — 1
when wait = FALSE busy := busy U {next counter}
then end
in corridor := in corridor + 1
wait := TRUE @ Note “c:” in the label of “with": it is

necessary (next slide)!
@ Type in “enter”, modify “arrive

end

Refining arrive
@ next_counter: see next slide.

Event arrive (abstract)
refines arrive
any ¢
where
c € COUNTERS
c ¢ busy
then
busy := busy U {c}
end

@ Parameter c disappeared: need to
state concrete value for it.

@ GRD needs to relate guards: prove
in_corridor > 0 = next_counter ¢ busy
o If it was a gluing invariant, GRD would

Screen management

@i dea (®
@ GRD not discharged.

Event arrive (concrete)

refines arrive

when in__corridor > 0

with c¢: ¢ = next_counter

then
in_corridor := in_corridor + 1
busy := busy U {next_counter}

end

be proven.

@ Itis! Add it and GRD should be proven.

@ Not a requirement, but (a) necessary
lemma and (b) sensible.

=i dea (%

@ Display is set to “WAIT” when a client enters.
@ We only need to decide whether we allow more clients to enter.

Event screen _num
when
COUNTERS # busy

in_corridor = 0

wait = TRUE
then
next_counter :€ COUNTERS \ busy
wait := FALSE
end
Type them in

All POs should be fine now.

Screen management

@ Display is set to “WAIT” when a client enters.

@ We only need to decide whether we allow more clients to enter.

Event screen _num

when
wait = TRUE
then
next counter :¢ COUNTERS \ busy
wait := FALSE
end
Type them in

All POs should be fine now.

Stages

u A W N =

. Initial model: just number of clients

. First refinement: distinguish checkout desks

. Second refinement: entrance corridor and screen
. [Third refinement: sensors|

. Variant: sets instead of indicator functions

dea

dea

é (g

High-level view @i dea

e

é)

@ Separate environment and system
variables / events.

)
T A

@ Keep interactions clear!

ST
3 ’ ¥ @ Guidelines:
. IR |
Eg L v @ Some events simulate environment
T v (clients).
AGyyon X e They react to environment variables

and act on sensors.

@ Keep previous “logical” model. e Events that represent the controller.
@ Add physical model on top, connect

with logical model.

@ They react to sensors and act on
environment variables.

Using sensors in refined model @mi dea (®

@ enter, arrive, leave refined.
@ New events enter_s, arrive_s, leave_s.
@ Note: we will not show leave_s. It is of little interest.
@ *_srepresent people; they react to environment variables, trigger
changes in sensors.

@ Modeling agent behavior: variables that represent what people
can see, do.

SCREEN_CNT € {WAIT, NOWAIT} What the screen displays (WAIT or a number)
CROSSING_E € BOOL A person is crossing the corridor sensor
IN_CORRIDOR < {0,1} Number of people in the corridor

@ IN_CORRIDOR could be BOOL. We would then need a gluing
invariant with in_corridor. Keeping it in {0, 1} is easier.

How sensors work =i dea

%)

@ Not necessarily real sensors.

@ Client presence activates sensor (a BOOL).
@ Stays on until deactivated by controller.

@ Modeling sensor arrays:
o First idea: use booleans, functions.

S_E € BOOL
S_A € COUNTER — BOOL
S_L € COUNTER— BOOL

e S_E sensor entry; S_A sensor arrival; S_L sensor for leaving.
@ However, two last ones are indicator sets.
@ We can use the set of activated sensors.

S_AS.L C COUNTER

Using sensors in refined model @i dea (2
Event enter (abstract) Event enter s e
refines enter when SCREEN _CNT = NOWAIT
when wait = FALSE CROSSING_E = FALSE
then then
in_corridor := TRUE CROSSING_E := TRUE
wait := TRUE S E:=TRUE
end IN_CORRIDOR :=IN_CORRIDOR + 1
end

CROSSING _E in enter_s: a physical person is
crossing. Others can see it. We behave Event enter

correctly. refines enter

In enter: controller events should not update when S _E = TRUE // Only look at sensor
environment variables. But we (exceptionally?) then // abstract actions plus ...

model assumption that controllers so fast that S E := FALSE;

when a person has physically crossed, CROSSING_E := FALSE // See explanation
controller has already updated state. SCREEN CNT = WAIT

end

Using sensors in refined model

Event arrive (abstract)
refines arrive
when in__corridor > 0
with ¢: ¢ = next_counter
then
in_corridor := FALSE
busy := busy U {next_counter}
end

CROSSING_E is used here to ensure that a
person has actually crossed the entrance
and is in the corridor.

Proof obligations

GRD for enter, arrive.

active at a time:

inv_sens_arr: card(S_A) < 1

=i dea (%

Event arrive_s
when IN_CORRIDOR > 0
CROSSING _E = FALSE // State updated
then
IN_CORRIDOR := IN_CORRIDOR —1
S Ai=S AU {next counter}
end

Event arrive
refines arrive
when next counter € S_A
then
in_corridor := in_corridor — 1
busy := busy U {next_counter}
S Ai=S A\ {next counter}
end

=i dea (%

=

Some additional work regarding POs needs to be done.
IN_CORRIDOR € {0,1} invariant for enter_s.

Plus we will introduce a sensible invariant: only one sensor is

@ Needs to be discharged for arrive_s

Proof obligations @i dea
@ Some additional work regarding POs needs to be done.
@ IN_CORRIDOR € {0,1} invariant for enter_s.
@ GRD for enter, arrive.
@ Plus we will introduce a sensible invariant: only one sensor is
active at a time:
inv_sens_arr: ???
@ Needs to be discharged for arrive_s
card(S_A) <1 =i dea

The (minimal) sequent to discharge (see proving perspective - goal
slightly simplified) is

card(S_A) < 1,IN_CORRIDOR > 0, CROSSING_E = FALSE

F card(S_A) < card(S_A(\{next_counter})

Can be proven if S_A = &. Note we have IN_CORRIDOR > 0 and it makes
sense that if no one is entering the counter if there is a person in the
corridor (see arrive_s). Therefore the invariant

IN_CORRIDOR >0=S_A=o

(if provable) would be helpful. After adding it, proving cardinal-
ity is possible with lasso + “remove membership” in the hypothesis
IN_CORRIDOR € {0, 1} (click on membership symbol).

5

)

IN_CORRIDOR >0=S A= @i dea

Invariant needs discharging now in enter_s.
We will delay it.

GRD of enter @i dea
frotricen

@ PO for guard strengthening:
S_E = TRUE = wait = FALSE.

@ After positing it as invariant, GRD is proven but the new invariant
remains to be proven.

@ SCREEN_CNT = NOWAIT = wait = FALSE as invariant can be
proven and helps prove the previous one.

5

GRD POs =i dea

@ GRD POs for enter and arrive are pending.
@ They would be

next_counter € S_A = in_corridor > 0
for arrive and
S_E = TRUE = wait = FALSE

for enter. We will start with the latter.

GRD of arrive

@ PO for guard strengthening:
next_counter € S_A = in_corridor > 0.

@ Add as invariant. GRD is proven.
@ New invariant needs to be discharged for arrive_s.

@ Another, intermediate invariant helps prove it:
(IN_CORRIDOR =1 A CROSSING_E = FALSE) = in_corridor = 1

@ At this point, all POs but one should be discharged.

=i dea

5

(@

Origin of (IN_CORRIDOR = 1 A CROSSING_E = FALSE) = in_corridor = 1

@ The PO in the prover view needs to discharge

S_A £ 0= in_corridor = 1.

@ Inspecting the hypothesis we have S_A # 0. So we need to deduce

that in_corridor = 1.

@ The rest of the “facts” that we have among the hypotheses are

IN_CORRIDOR = TRUE and CROSSING_E = FALSE.
@ Perhaps we can use them to infer in_corridor = 1.

Last PO

@ Intermediate invariants also helped

prove pending POs.

dea

=
)

[POLITECNICA

@ Pending: S_A # @ = in_corridor > 0.
@ Simplifying, it requires proving:

next_counter € S_A,—~S_A C {next_counter}, card(S_A) < 1+ in_corridor > 1

I was not able to discharge it
automatically.

But it should be true - see why.
Note that in_corridor > 1 cannot be
inferred, as in_corridor € {0,1}.
Then: prove inconsistency in LHS.
Since card(S_A) < 1, S_A has either
one or zero elements.

Since next_counter € S_A, then

S_A = {next_counter}

@ We have that —)S_A C {next_counter}).

@ However, that would mean that
—({next_counter} C {next_counter}).

@ We have a contradiction and the

sequent is proven.

@ I have left it as reviewed.

@ Model checking (see video) can't find a

counterexample, either.

@ Animating the model (see video in
web) shows that it is, fundamentally,
an event sequence that can fire either

Origin of (IN_CORRIDOR = 1 A CROSSING_E = FALSE) = in_corridor =1 @i dea

leave or screen _num at the end.

INIT enter s enter arrive_s arrive
SCREEN_CNT NOWAIT NOWAIT WAIT WAIT WAIT
IN_CORRIDOR 1 T T L 1
S_E, CROSSING_E 1 T 1 L 1
S A o] o] o] {n_c} o)
in_corridor 0 0 1 1 0
wait 1 1 T T T
busy %) & %) & {n_c}

~®@mo

» © Variables

» +Invariants

» # Events

%)
@ DLF/THM
@INITIALISATION/inv1/INV
@arrive/inv1/INV
@leave/inv1/INV
~Om1

» © Variables

» +Invariants

» # Events

~ @ Proof Obligations
©inv2/WD
@INITIALISATION/inv2/INV
@arrive/inv2/INV
@arrive/grd1/GRD
@leave/inv2/INV
@leave/grd1/GRD

~@m2
» © Variables
> +Invariants
» # Events
~ @Proof Obligations

€inve/THM
€INITIALISATION/inv3/INV
€INITIALISATION/inv4/INV
€INITIALISATION/inv2/INV
€INITIALISATION/inv6/INV
INITIALISATION/inv8/INV
@INITIALISATION/act4/FIS
€enter/inv3/INV
@enter/inva/INV
€enter/inv2/INV
€enter/inve/INV
@enter/inv8/INV
@arrive/inv3/INV
@arrive/inv4/INV
@arrive/inv2/INV
€arrive/invé/INV
@arrive/inva/INV
€arrive/grd1/GRD
@arrive/act1/SIM
©screen_num/inv4/INV
@screen_num/inv2/INV
@screen_num/inv6/INV
@screen_num/inv8/INV
@screen_num/act1/FIS
€leave/inv2/INV
@leave/inv6/INV
@leave/inv8/INV

The two facts we have in our hypotheses (IN_CORRIDOR = TRUE and
CROSSING_E = FALSE) are true only after enter (the state in which arrive_s is executed)
and in_corridor = 1. The implication is then a true invariant. Fortunately, it is also an
inductive invariant.

=i dea

~@m3

» o Variables

* “lnvariants

» 4 Events

~@Proof Obligations
@inv_sens_arr/wD
©INITIALISATION/inv/INV
©INITIALISATION/inv_sens_arr/INV
SINITIALISATION/inv20/INV
@INITIALISATION/inv_ent_grd/INV
@INITIALISATION/inv_aux_ent_grd/INV
@INITIALISATION/inv_grd_arr/INV
©INITIALISATION/inv_aux_grd_arr/INV
@enter_s/inve/INV
@enter_s/inv20/INV
@enter_s/inv_ent_grd/INV
@enter_s/inv_aux_grd_arr/INV
@enter/inv_ent_grd/INV
@enter/inv_aux_ent_grd/INV
@enter/inv_grd_arr/INV
@enter/inv_aux_grd_ar/INV
©enter/grd2/GRD
@arrive_s/inv9/INV
@arrive_s/inv_sens_arr/INV
arrive_s/inv20/INV
arrive_s/inv_grd_arr/INV
@arrive_s/inv_aux_grd_arr/INV
@arrive/inv_sens_arr/INV
@arrive/inv20/INV
@arrive/inv_ard_arr/INV
@arrive/inv_aux_grd_arr/INV
@arrive/grd1/GRD
@screen_num/inv_ent_grd/INV
@screen_num/inv_aux_ent_grd/INV

é (g

@ We can make a chart of the state of
variables after every event.

	Goals
	Initial model
	First refinement
	Second refinement
	Third refinement

