
Synchronizing Processes on a Tree Network1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Example and most slides borrowed from J. R. Abrial: see
http://wiki.event-b.org/index.php/Event-B_Language

Goals . s. 3
Requirements . s. 6
Initial model . s. 11
First refinement . s. 23
Second refinement . s. 51
Third refinement . s. 55
Fourth refinement . s. 80

Purpose of this lecture

Learning a few more modeling conventions.
Learning more about abstraction.
Formalizing and proving on an interesting structure: a tree.

Will have an intermediate step to review functions, relations, data
structures.

Study a more complicated problem in distributed computing
Example studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a
Method of Multi-programming. Springer Verlag, 1999.

As usual:
Define the informal requirements
Define the refinement strategy
Construct the various more and more concrete models

Prerequisites

Knowledge of first order logic, set theory, relations, and functions.
Rodin (to discharge the proofs).
Slides:

Event B: Sets, Relations, Functions, Data Structures
Please go through them.
I will review parts of it here, when needed.

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

Comparison with previous examples

Not a transformational system.
Not supposed to finish.
No final result.

Not reactive.
No external world that reacts to
system changes.

Distributed.
Different nodes act autonomously.
With limited information access.
However, communication assumed
to be reliable.

Internal concurrency.

Every node has concurrent
processes.

Model small: just three events in the
last refinement.

However, proofs and reasoning
involved.

Requirements

ENV 1 We have a fixed set of processes forming a tree

Requirements (1) 3

We have a fixed set of processes forming a tree ENV-1

3

Note: they do not need to form a tree from the beginning.
A set of communicating processes can coordinate to form a tree.

Requirements (Cont.)

All processes are supposed to execute forever the same code.
But processes must remain (somewhat) synchronized.
For this, each process has (initially) one counter.

ENV 2 Each process has a counter, which is a natural number

A process counter represents its “phase”
(related to the work for which they have to synchronize).
Difference between any two counters ≤ one.
Each process is thus at most one phase ahead of the others

Requirements (Cont.)Requirements (3) 6

2

1

2

1

2

1 1

1 2

1

2

1

1

The difference between any two counters is at
most equal to 1 FUN-1

6

FUN 3 The difference between any two counters is at most equal to 1

Requirements (Cont.)

Reading the counters

FUN 4 Each process can read the counters of its immediate neigh-
bors only

Modifying the counters

FUN 5 The counter of a process can be modified by this process
only

Refinement strategy

Construct abstract initial model dealing with FUN 3 and FUN 5
Improve design to (partially) take care of FUN 4
Improve design to better take care of FUN 4
(Simplify final design to obtain efficient implementation).

FUN 3 The difference between any two counters is at most one

FUN 4 Processes read counters of immediate neighbors only

FUN 5 A process can modify only its counter(s)

Steps

1. Initial model: all nodes access to the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

Initial model: the state

Simplify situation: forget about tree
We just define the counters and express the main property: FUN 3

FUN 3 The difference between any two counters is at most one

The initial model is always far more abstract than the final system
Other requirements are probably not fulfilled

Abstract situationAbstract Situation 10

2

1

2

1

2

1 1

1 2

1

2

1

1

The difference between any two counters is at
most equal to 1 FUN-1

10

FUN 3 The difference between any two counters is at most 1

Suggest an initial model!

Initial model: the state
Initial Model: the State 11

carrier set: P axm0 1: finite(P)

variable: c

inv0 1: c ∈ P → N

inv0 2: ∀x, y ·

x ∈ P
y ∈ P
⇒
c(x) ≤ c(y) + 1

11

✓ Create project synch_tree
✓ Create context c0 with set, axiom
✓ Create machine m0 with variable, invariants.

Is that right?

inv0_2 may be surprising at first glance:

∀x , y · x ∈ P ∧ y ∈ P ⇒ c(x) ≤ c(y) + 1

Is it the same as ∀i , j · |c(i)− c(j)| ≤ 1?
Disprove it or convince us!

Proof by double implication.
Let us choose two arbitrary nodes with counters a and b.

If the invariant holds, then a ≤ b + 1 and b ≤ a+ 1. From there,
a− b ≤ 1 and b − a ≤ 1, therefore |a− b| ≤ 1.
If |a− b| ≤ 1, then both a− b ≤ 1 and b − a ≤ 1. Then, inv0_2 is
implied by the intended invariant.

Is that right?

inv0_2 may be surprising at first glance:

∀x , y · x ∈ P ∧ y ∈ P ⇒ c(x) ≤ c(y) + 1

Is it the same as ∀i , j · |c(i)− c(j)| ≤ 1?
Disprove it or convince us!

Proof by double implication.
Let us choose two arbitrary nodes with counters a and b.

If the invariant holds, then a ≤ b + 1 and b ≤ a+ 1. From there,
a− b ≤ 1 and b − a ≤ 1, therefore |a− b| ≤ 1.
If |a− b| ≤ 1, then both a− b ≤ 1 and b − a ≤ 1. Then, inv0_2 is
implied by the intended invariant.

Initial model: events

Initial Model: the Events 12

init
c := P × {0}

ascending
any n where

n ∈ P
∀m · m ∈ P ⇒ c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

- A process counter is incremented only when ≤ to all other counters

- Notice the non-determinacy

12

Note any n: it is logically ∃n · n ∈ P ∧ · · ·
Process counter incremented only
when ≤ to all other counters.
Intuition: If I see I can increase
without breaking difference
constraint, I do it!

Non-determinism!

A specification of what should happen.

Not a final state (there is not one): a
procedure that (hopefully) respects
the invariant.

✓ Add initialization, event
Note: × is entered with **, any with pull-down menu, “Add event pa-
rameter”.

Proof of invariant preservation
Proof of inv0 2 Preservation by Event ascending 13

c ∈ P → N inv0 1

∀x, y ·

x ∈ P
y ∈ P
⇒
c(x) ≤ c(y) + 1

 inv0 2

n ∈ P Guards of event
∀m · (m ∈ P ⇒ c(n) ≤ c(m)) ascending

`

∀x, y ·

x ∈ P
y ∈ P
⇒
(c �− {n 7→ c(n) + 1})(x) ≤ (c �− {n 7→ c(n) + 1})(y) + 1

⇑

Modified invariant inv0 2

13

In Rodin: automatic; if not, repeatedly apply lassoing, p0 or m0.

Model so far

An Event-B Specification of c0

CONTEXT c0

SETS

P

AXIOMS

axm1: finite(P)

END

11.04.2021 16:41 Page 1 of 1

An Event-B Specification of m0

MACHINE m0

SEES c0

VARIABLES

c

INVARIANTS

inv1: c ∈ P → N
inv2: ∀x, y ·x ∈ P ∧ y ∈ P ⇒ c(x) ≤ 1 + c(y)

EVENTS

Initialisation

begin
act1: c := P × {0}

end

Event ascending 〈ordinary〉 =̂

any
n

where
grd12: n ∈ P

grd11: ∀m·m ∈ P ⇒ c(n) ≤ c(m)

then
act11: c(n) := c(n) + 1

end

END

11.04.2021 16:44 Page 1 of 1

Problem with the current eventProblem with the Current Event 16

ascending
any n where
n ∈ P
∀m · m ∈ P ⇒ c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

- Requirement FUN-2 is not fulfilled:

Each node can read the counters of its
immediate neighbors only FUN-2

16

What requirement is this event breaking?

FUN 2 Each node can read the counters of its immediate neighbors only

Problem with the current eventProblem with the Current Event 16

ascending
any n where
n ∈ P
∀m · m ∈ P ⇒ c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

- Requirement FUN-2 is not fulfilled:

Each node can read the counters of its
immediate neighbors only FUN-2

16

What requirement is this event breaking?

FUN 2 Each node can read the counters of its immediate neighbors only

Steps

1. Initial model: all nodes access to the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

First refinement: (partially) solving the problem

Introduce a designated process r .
We suppose that the counter of r is always minimal

∀m ·m ∈ P ⇒ c(r) ≤ c(m)

Rationale:
We only synchronize with r — not compliant, but communication
restricted.
Helps ensure that difference between any two nodes ≤ one.
Because: if for any m either c(m) = c(r) or c(m) = c(r) + 1, then
difference between any m, n ≤ 1.

Treat this property as a new (temporary) invariant.

✓ Extend c0 into c1 (left pane, right click, “Extend”), add constant r , axiom r ∈ P
✓ Refine m0 into m1 (left pane, right click, “Refine”), add new invariant
✓ m0 should “see” c1

First refinement: proposal for the event refinement

We simplify the guard

First Refinement: Proposal for the Event Refinement 18

- We simplify the guard

(abstract-)ascending
any n where

n ∈ P
∀m · m ∈ P ⇒ c(n) ≤ c(m)

then
c(n) := c(n) + 1

end

(concrete-)ascending
any n where

n ∈ P
c(n) = c(r)

then
c(n) := c(n) + 1

end

- We have then to prove guard strengthening

18

Note: if c(r)minimal, c(n) < c(r) impossible; therefore c(n) = c(r)

✓ Change “extended” to “not extended”, change guard
We have then to prove guard strengthening.

Guard strengthening

Guard Strengthening 19

c ∈ P → N inv0 1

∀x, y ·

x ∈ P

y ∈ P

⇒
c(x) ≤ c(y) + 1

 inv0 2

∀m · (m ∈ P ⇒ c(r) ≤ c(m)) new invariant
n ∈ P Guards of concrete
c(n) = c(r) event ascending

`
n ∈ P Guards of abstract
∀m · (m ∈ P ⇒ c(n) ≤ c(m)) event ascending

19

In Rodin: lasso + p0

✓ Go to the proving perspective, discharge proof

Model so far

inv1 not discharged.

An Event-B Specification of c1

CONTEXT c1

EXTENDS c0

CONSTANTS

r

AXIOMS

axm1: r ∈ P

END

11.04.2021 17:16 Page 1 of 1

An Event-B Specification of m1

MACHINE m1

REFINES m0

SEES c1

VARIABLES

c

INVARIANTS

inv1: ∀m·m ∈ P ⇒ c(r) ≤ c(m)

EVENTS

Initialisation 〈extended〉
begin

act1: c := P × {0}
end

Event ascending 〈ordinary〉 =̂

refines ascending

any
n

where
grd1: n ∈ P

grd2: c(r) = c(n)

then
act1: c(n) := c(n) + 1

end

END

11.04.2021 17:16 Page 1 of 1

Pending problems
Pending Problems 20

ascending
any n where
n ∈ P
c(n) = c(r)

then
c(n) := c(n) + 1

end

∀m · m ∈ P ⇒ c(r) ≤ c(m)

1. We have to prove that the new invariant is preserved by the event

2. The guard of the event still does not fulfill requirement FUN-2

Each node can read the counters of its
immediate neighbors only FUN-2

- Problem 1 solved in this refinement, problem 2 solved later

20

1. Prove that new “invariant” is preserved by the event.
2. The guard of the event still does not fulfill requirement FUN 4.
FUN 4 Each node can read the counters of its immediate neighbors only

Problem 1 solved in this refinement
Problem 2 solved later

First refinement: defining the tree

Tree: root r and “pointer” f from each
node in P \ {r} to every node’s parent.

Plus some additional properties and
inference rules.

Reminder: sets, relations, functions,
specific data structures and their
inference rules.

Note: constructing a tree (≡ root /
leader + links) is a classical problem in
distributed systems.

Can also be tackled using Event B.

First Refinement: Let us First Define the Tree 21

f

r

- A tree has got a root r and a parent function f

- This is not sufficient to defined a tree (but enough for the moment)

21

Invariant: we have a condition involving
nodes in pairs and we need a condition
that relates a single node r with all the
others.

Update model

✓ Add to c1 (note f is↠, written –»)
Constant f .
Axioms:

L ⊆ P

f ∈ P \ {r}↠ P \ L

∀S · S ⊆ f −1[S]⇒ S = ∅

f −1 is written f~.
↠: f defined for all P \ {r} and arrives to every element in P \ L.

Minimal counter at the root

Minimality of counter at the root

∀m ·m ∈ P ⇒ c(r) ≤ c(m)

relates c(r) with c(m) for every m.
Events change local values and consult neighbouring values.
We can (easily) prove properties relating neighbouring nodes.
How can we relate local properties with global properties?

Minimal counter at the root

We define a weaker, local invariant first.
The counter at every node is not greater than its descendants:

inv1_1 :∀m ·m ∈ P\{r} ⇒ c(f (m)) ≤ c(m)

✓ Add it to m1
Observing the Invariant and Theorem 24

1

1

2

1

1

2 1

2 2

2

2

2

2

inv1 1 : ∀m · m ∈ P \ {r} ⇒ c(f(m)) ≤ c(m)

thm1 1 : ∀m · m ∈ P ⇒ c(r) ≤ c(m)

24

Rationale (advancing the algorithm)
Assume we can update the tree
keeping a maximum difference
between neighbors.
Will be helpful to prove c(r) ≤ c(m).

Minimal counter at the root: induction

We need to extend the local
property

∀m ·m ∈ P\{r} ⇒ c(f (m)) ≤ c(m)

to the whole tree.

Start with leaves l ∈ L.
Prove that for any l , c(f (l)) ≤ c(l), then
c(f (f (l))) ≤ c(f (l)) ≤ c(l), . . .
Work upwards towards root r .

OR

Start with r .
Prove that for all m s.t. r = f (m),
c(r) ≤ c(m).
m is a child of r
Then, for all m′ s.t. m = f (m′),
c(m) ≤ c(m′). . .
And so on towards the leaves.

Minimal counter at the root: induction

Induction: difficult for theorem provers to do on their own.
Needs to identify base case, property to use for induction — i.e.,
the strategy.

Proving property for base case & inductive step within theorem
provers’ capabilities.
In Rodin: needs adding induction scheme:
✓ Add to c1:
∀S ·S ⊆ P ∧ r ∈ S ∧ (∀n ·n ∈ P \ {r}∧ f (n) ∈ S⇒n ∈ S)⇒P ⊆ S
✓ Tip: Ctrl-Enter breaks text in input box in separate lines.
Instantiating it with the property to prove expressed as a set:
{x | x ∈ P ∧ c(r) ≤ c(x)} (next slide)

✓ In m1: ensure you have inv1_1 : ∀m ·m ∈ P\{r} ⇒ c(f (m)) ≤ c(m)
✓ Ensure thm1_1 : ∀m ·m ∈ P ⇒ c(r) ≤ c(m) below invariant, marked as theorem

Induction in Rodin: instantiation
Double click in the unproved
theorem (left pane).
Switch to prover view, lasso.
Locate induction axiom.
Enter
{x | x ∈ P ∧ c(r) ≤ c(x)}.
Return and p0.
The theorem should be
proved now.

⇒

Invariant inv1_1 not yet proved. Requires order between
parent and children c(f (m)) ≤ c(m) that ascending cannot
guarantee: guard c(r) = c(n) allows updates in arbitrary
order. Will enforce through more local comparison.

More local comparison

Nodes with difference ≤ one from r .
When can we update looking locally?

a s c end i ng
any n where

n ∈ P
c(r) = c(n)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c (n) := c (n) + 1

end

Ensure inv1_1 is preserved: double click, prover
view, lasso, p0 should do it.

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Initial situation 32

1

1

1

1

1

1 1

1 1

1

1

1

1

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

32

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 33

1

1

1

1

1

1 1

2 1

1

1

1

1

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

33

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 34

1

1

2

1

1

1 1

2 1

2

2

1

1

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

34

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 35

1

1

2

1

1

2 1

2 2

2

2

2

2

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

35

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 36

1

1

2

1

1

2 2

2 2

2

2

2

2

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

36

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 37

2

1

2

1

2

2 2

2 2

2

2

2

2

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

37

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 38

2

2

2

1

2

2 2

2 2

2

2

2

2

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

38

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 39

2

2

2

2

2

2 2

2 2

2

2

2

2

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

39

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 40

2

2

2

2

2

2

3

3 3

3

3

3

3

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

40

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 41

2

2

2

2

3

3

3

3 3

3

3

3

3

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

41

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 42

3

2

2

3

3

3

3

3 3

3

3

3

3

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

42

How it is expected to work

Update order restricted:
Before: any node whose counter is
equal to the root (the one with the
minimum).
Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.
Updates will go in waves towards the
root.

Progress 43

3

3

2

3

3

3

3

3 3

3

3

3

3

- the guards:

c(r) = c(n)

∀m · (m ∈ f−1[{n}] ⇒ c(f(m)) < c(m))

43

Neighborhood checking

FUN 4 Each process can read the counters of its immediate neighbors
only

∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m) uses only local comparisons.
c(r) = c(n) uses non-local comparisons.
We will tackle that in the next refinement.

Model so far
Note: c(n) < c(m) in ascending should be c(n) ̸= c(m)

An Event-B Specification of c1

CONTEXT c1

EXTENDS c0

CONSTANTS

r

f

L

AXIOMS

axm1: r ∈ P

axm3: L ⊆ P

Leaves

axm2: f ∈ P \ {r}� P \ L
axm4: ∀S ·S ⊆ f−1[S]⇒ S = ∅
axm5:
∀S ·S ⊆ P ∧
r ∈ S ∧
(∀n·n ∈ P \ {r} ∧ f(n) ∈ S⇒ n ∈ S)

⇒
P ⊆ S

END

11.04.2021 19:07 Page 1 of 1

An Event-B Specification of m1

MACHINE m1

REFINES m0

SEES c1

VARIABLES

c

INVARIANTS

inv1: ∀m·m ∈ P \ {r}⇒ c(f(m)) ≤ c(m)

inv2: 〈theorem〉 ∀m·m ∈ P ⇒ c(r) ≤ c(m)

EVENTS

Initialisation 〈extended〉
begin

act1: c := P × {0}
end

Event ascending 〈ordinary〉 =̂

refines ascending

any
n

where
grd1: n ∈ P

grd2: c(r) = c(n)

grd3: ∀m·m ∈ f−1[{n}]⇒ c(n) < c(m)

then
act1: c(n) := c(n) + 1

end

END

11.04.2021 19:07 Page 1 of 1

Steps

1. Initial model: all nodes access to the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

Second refinement

Replace the guard c(r) = c(n).
Processes must be aware when this situation does occur.
Add second counter d(·) to each node to capture value of c(r).

Introducing a Second Counter at each Node 65

We add a second counter d at each node

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

1 1

2

1

1

1 1

1111

- The second counter d has properties which are similar to those of c

65

Second refinement: the stateSecond Refinement: the State 66

carrier set: P

constants: r, f

variables: c, d

Invariant inv2 2
is as inv0 2

inv2 1: d ∈ P → N

inv2 2: ∀x, y ·

x ∈ P
y ∈ P
⇒
d(x) ≤ d(y) + 1

66

d has an overall property similar
to c :

∀x , y · x ∈ P ∧ y ∈ P ⇒ c(x) ≤
c(y) + 1

d will capture the value of
c(r).
It will be updated in a
downward wave.

✓ Refine m1 into m2
✓ Add variable d and invariants

Updating d

This refinement captures:
The existence of d .
How its update can proceed not to break its invariant.

Event de s c end i ng
any n where

n ∈ P
∀m ·m ∈ P ⇒ d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

✓ Add event to m2
✓ Initialize d to 0 (copy the initialization of c)

Steps

1. Initial model: all nodes access to the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

Third refinement

We extend the invariant of counter d .
We establish the relationship between both counters c and d .

This will allow us to refine event ascending
We construct the descending wave (by refining event descending).
Remark: this is the most difficult refinement.

✓ Refine m2 into m3

Idea behind third refinement
Progress 79

2 2

2

2

2 2

2 2

2

2

2

2

2

2

1

1 1

1

1

1

1 1

1111

79

Idea behind third refinement
Progress 80

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

1 1

2

1

1

1 1

1111

80

Idea behind third refinement
Progress 81

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

1 1

2

2

1

1 1

2222

81

Idea behind third refinement
Progress 82

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

2 2

2

2

2

1 1

2222

82

Idea behind third refinement
Progress 83

2 2

2

2

2 2

2 2

2

2

2

2

2

2

2

2 2

2

2

2

2 2

2222

83

Idea behind third refinement
Progress 84

2 3

2

2

3 2

3 3

3

3

2

3

2

2

2

2 2

2

2

2

2 2

2222

84

Idea behind third refinement
Progress 85

2 3

2

2

3 3

3 3

3

3

3

3

2

2

2

2 2

2

2

2

2 2

2222

85

Idea behind third refinement
Progress 86

3 3

2

3

3 3

3 3

3

3

3

3

2

2

2

2 2

2

2

2

2 2

2222

86

Idea behind third refinement
Progress 87

3 3

2

3

3 3

3 3

3

3

3

3

3

2

2

2 2

2

2

2

2 2

2222

87

Idea behind third refinement
Progress 88

3 3

3

3

3 3

3 3

3

3

3

3

3

2

2

2 2

2

2

2

2 2

2222

88

State and invariants
Recall local condition for c :

inv1_1 :∀m ·m ∈ P\{r} ⇒ c(f (m)) ≤ c(m)

Every node’s counter is smaller than or equal to its children’s.
Local condition for d is similar:

inv3_1 :∀m ·m ∈ P\{r} ⇒ d(m) ≤ d(f (m))

Every node’s counter is smaller than or equal to its parent (if it has
a parent). This is what makes the wave descending.
inv3_1 and tree induction proves that the root has the highest
value of d(·):

thm3_1 :∀n · n ∈ P ⇒ d(n) ≤ d(r)

(remember: root had the smallest value of c(·))

Proving theorem and invariant

✓ Add to m3:
inv3_1 : ∀m ·m ∈ P \ {r}⇒ d(m) ≤ d(f (m))

thm3_1 : ∀n · n ∈ P ⇒ d(n) ≤ d(r)

✓Mark the latter as theorem
✓ Double click on the PO for THM
✓ Go to proving perspective; locate induction axiom
✓ Instantiate with {x |x ∈ P ∧ d(x) ≤ d(r)}, invoke p0
✓ That should prove thm3_1
✓ inv3_1 cannot be proved yet - reasons similar to c .
We will deal with that later

Refining ascending

Event (a b s t r a c t −) a s c end i ng
any n where

n ∈ P
c(n) = c(r)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Event (conc r e t e −) a s c end i ng
any n where

n ∈ P
c(n) = d(n)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Downward wave d will eventually
propagate d(r).
✓ Change event guard in m3

Need to prove guard strengthening.
We cannot. c and d unrelated so far!
✓ Relate c and d : inv3_2 : d(r) ≤ c(r)
If needed: proving perspective, lasso +
p0 proves strengthening.

ascending: only local comparisons now!

Refining ascending

Event (a b s t r a c t −) a s c end i ng
any n where

n ∈ P
c(n) = c(r)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Event (conc r e t e −) a s c end i ng
any n where

n ∈ P
c(n) = d(n)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Downward wave d will eventually
propagate d(r).
✓ Change event guard in m3
Need to prove guard strengthening.

We cannot. c and d unrelated so far!
✓ Relate c and d : inv3_2 : d(r) ≤ c(r)
If needed: proving perspective, lasso +
p0 proves strengthening.

ascending: only local comparisons now!

Refining ascending

Event (a b s t r a c t −) a s c end i ng
any n where

n ∈ P
c(n) = c(r)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Event (conc r e t e −) a s c end i ng
any n where

n ∈ P
c(n) = d(n)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Downward wave d will eventually
propagate d(r).
✓ Change event guard in m3
Need to prove guard strengthening.
We cannot. c and d unrelated so far!
✓ Relate c and d : inv3_2 : d(r) ≤ c(r)
If needed: proving perspective, lasso +
p0 proves strengthening.

ascending: only local comparisons now!

Refining descending

A different case.
Two situations raise a change of d :
1. For a non-root node: parent’s d change.
2. For the root node: c(r) changes.

Different guards.
We will prepare the events to be edited.

✓ Change (concrete) descending event to non-extended
✓ Left click on circle to left of name to select
Ctrl-C to copy, Ctrl-V to paste
✓ Rename first event as descending_nr.
✓ Rename second event as descending_r.

Refining descending: the non-root case

Event (a b s t r a c t −) d e s c end i ng
any n where

n ∈ P
∀m ·m ∈ N ⇒ d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

Event (conc r e t e −) d e s c end i ng
any n where

n ∈ P\{r}
d(n) ̸= d(f (n))

then
d(n) := d(n) + 1

end

✓ Update guards

(Note: Rodin ≥ 3.6 seems to prove strengthening automatically; previ-
ous versions needed additional steps [in next slide])

Proving guard strengthening

Note: the steps below do not seem to be necessary in Rodin 3.6 with
the Atelier B provers installed. Strengthening is proven automatically.

n ∈ P\{r}, d(n) = d(f (n)),m ∈ P ⊢ d(n) ≤ d(m)

We need some magic mushrooms to help the provers:

thm3_2 : ∀n · n ∈ P\{r} ⇒ d(f (n)) ∈ d(n)..d(n) + 1
thm3_3 : ∀n · n ∈ P ⇒ d(r) ∈ d(n)..d(n) + 1

thm3_2 downward wave, parent is at most one more than
children (when it has just been increased)

thm3_3 special case for root (the first one to be increased)

Refining descending (Cont. — the root case.)

Event (a b s t r a c t −) d e s c end i ng
any n where

n ∈ P
∀m ·m ∈ P ⇒ d(n) ≤ d(m)

then
d(n) := d(n) + 1

end

Event (conc r e t e −) d e s c end i ng
r e f i n e s

descending
when

d(r) ̸= c(r)
with

n: n = r
then

d(r) := d(r) + 1
end

✓ Click on circle left of param. n, delete
Parameter n disappeared!
Substitute (witness) for GRD, SIM.
We are particularizing for r .
Similar to gluing invariant!

Note with label: specific Rodin idiom.

Need to prove
d(r) ̸= c(r), m ∈ P ⊢ d(r) ≤ d(m)

ML should do the trick.

Finishing proofs
Note: this is the version I had in previous courses. It seems that with Rodin 3.6, ML as applied in the
previous slide does the trick. Or that I did not bother to try it...
I needed two more magic pills:

inv3_3 : ∀n · n ∈ P ⇒ c(n) ∈ d(n)..d(n) + 1 To prove GRD
thm3_4 : ∀n · n ∈ P ⇒ c(r) ∈ d(n)..d(n) + 1 To prove inv3_3

Plus, if not added before:
thm3_2 : ∀n · n ∈ P\{r} ⇒ d(f (n)) ∈ d(n)..d(n) + 1
thm3_3 : ∀n · n ∈ P ⇒ d(r) ∈ d(n)..d(n) + 1

After this, the invariant can be proved with a combination of several steps:

Apply lasso.
Instantiate ∀n · c(r) ∈ d(n)..d(n) + 1
(which relates c and d) with n.
Remove ∈ in goal
(c(n) ∈ d(n) + 1..d(n) + 1+ 1) to create
inequalities.

Do P0 in c(n) ≤ d(n) + 1 + 1 goal.
Note that only possibility to prove is
d(n) = c(n).
Do case distinction with d(n) = c(n),
Apply ML to the subgoals.

Finishing proofs
Note: this strategy works with Rodin 3.6

We needed one magic pill:
inv3_3 : ∀n · n ∈ P ⇒ c(n) ∈ d(n)..d(n) + 1 To prove GRD

After this, the invariant can be proved with a combination of several steps:

Apply lasso.
Apply ML to c(n0) ∈ d(n0)..d(n0) + 1.

Remove ∈ in goal
(c(n) ∈ d(n) + 1..d(n) + 1+ 1) to create
inequalities.

Do ML in c(n) ≤ d(n) + 1 + 1 goal.
For d(n) + 1 ≤ c(n), do case
distinction:

Either with d(n) = c(n), or
with d(n) + 1 = c(n)

and ML to the subgoals.

Third refinement: invariants
Summary of Third Refinement: the State 77

inv3 1: ∀m · (m ∈ P \ {r} ⇒ d(m) ≤ d(f(m)))

inv3 2: d(r) ≤ c(r)

inv3 3: ∀n · (n ∈ P ⇒ c(n) ∈ d(n) .. d(n) + 1)

thm3 1: ∀m · (m ∈ P ⇒ d(m) ≤ d(r))

thm3 2: ∀n · (n ∈ P \ {r} ⇒ d(f(n)) ∈ d(n) .. d(n) + 1)

thm3 3: ∀n · (n ∈ P ⇒ d(r) ∈ d(n) .. d(n) + 1)

thm3 4: ∀n · (n ∈ P ⇒ c(r) ∈ d(n) .. d(n) + 1)

77

Third refinement: events

Event descend ing_r
when

d(r) ̸= c(r)
with

n: n = r
then

d(r) := d(r) + 1
end

Event descend ing_nr
any n where

n ∈ P\{r}
d(n) ̸= d(f (n))

then
d(n) := d(n) + 1

end

Event a s c end i ng
any n where

n ∈ P
c(n) = d(n)
∀m ·m ∈ f −1[{n}] ⇒ c(n) ̸= c(m)

then
c(n) := c(n) + 1

end

Steps

1. Initial model: all nodes access to the state of all nodes.
2. First refinement: restrict access to a single node.
3. Second refinement: local check, upwards wave.
4. Third refinement: construct downwards wave.
5. Fourth refinement: remove upwards and downwards counters.

Observation

The difference among counters is at most one.
That has been proven by construction.

In the guards, we only care whether they are equal or not.
For this, we only need parity!

a, b ∈ N ∧ |a− b| ≤ 1 ⇒ (a = b ⇔ parity(a) = parity(b))

We will prove that this is a valid refinement.
✓ Extend context c1 into c2
✓ Refine m3 into m4
✓ m4 should see c2

Formalizing parity

Fourth Refinement: the State 89

- We replace the counters by their parities

- we add the constant parity

carrier set: P

constants: r, f, parity

axm4 1: parity ∈ N → {0, 1}

axm4 2: parity(0) = 0

axm4 2: ∀x . (x ∈ N ⇒ parity(x + 1) = 1 − parity(x))

89

✓ Add parity and axioms to c2. Note: parity is a function!
✓ Need some clicking (dom to N + ML) to prove WD

The definitions that replace c(·) and d(·)
Fourth Refinement: the State 91

- We replace c and d by p and q

variables: p, q

inv4 1: p ∈ P → {0, 1}

inv4 2: q ∈ P → {0, 1}

inv4 3: ∀n . (n ∈ P ⇒ p(n) = parity(c(n)))

inv4 4: ∀n . (n ∈ P ⇒ q(n) = parity(d(n)))

91✓ Do it in m4. Note the gluing invariants! p and q really syntactic sugar.

New events: counters replaced by parityFourth Refinement: the Events 92

ascending
any n where
n ∈ P
p(n) = q(n)
∀m · (m ∈ f−1[{n}] ⇒ p(m) 6= p(n))

then
p(n) := 1 − p(n)

end

descending 1
any n where
n ∈ P \ {r}
q(n) 6= q(f(n))

then
q(n) := 1 − q(n)

end

descending 2
when
p(r) 6= q(r)

then
q(r) := 1 − q(r)

end

92

Proving remaining POs (in ascending)

GRD of q(n) = p(n)

Needs additional property
∀x , y · y ∈ N ∧ x ∈ y ..y + 1 ⇒

(parity(x) = parity(y)⇔ x = y)

We could make it axiom, but it can be
proven as theorem (better!).
Proving it is not difficult.

WD: P0 takes care of it.
THM: A couple of simple rewritings

+ distinction by cases work.

⇐⇒: rewrite in two implications.
par(x) = par(y) ⇒ x = y : ah with
possible values of x .
Prove ah with ML.
Goal y = y + 1: do dc with par(y) = 0.
P0 works for both branches.

Proving remaining POs (in ascending)

GRD of q(n) = p(n)

With theorem

∀x , y · y ∈ N ∧ x ∈ y ..y + 1 ⇒
(parity(x) = parity(y)⇔ x = y)

Instantiate with c(n), d(n).
Instantiate defs. of p(n), q(n).
Invoke P0.

Proving POs (in ascending)

GRD of ∀m ·m ∈ f ˜[n]⇒ p(n) ̸= p(m)

One simple path that works:
1. Add a new THM: ∀n · n ∈ P \ {r}⇒ c(n) ∈ c(f (n))..c(f (n)) + 1
2. Introduce the hypothesis n = f (m) (which comes from m ∈ f −1[n])

with ah and use ML repeatedly. See recording at course web.

Rationale: we have to prove than if p(m) ̸= p(f (m)), then
c(n) ̸= c(f (m)). We have a theorem that says
parity(x) = parity(y)⇔ x = y when x ∈ y ..y + 1. So we need
c(n) ∈ c(f (n))..c(f (n)) + 1 to apply it. We add it as a theorem, which is
immediately proven, and ML can use it.

Discharging POs (in descending)

In my case, GRD for q(n) ̸= q(f (n)) in descending_nr remains to
be proven.
It should imply d(n) ̸= d(f (n)).
Similar to the previous case.
Add a symmetrical theorem
∀n · n ∈ P \ {r}⇒ d(f (n)) ∈ d(n)..d(n) + 1
It is immediately proven and it discharges the pending GRD proof.

Less Manual Work?

Atelier B provers: integrated and developed in conjunction with
Rodin and with Event B in mind.
However, in the world of theorem provers probably not the most
powerful ones.
Some third-party SMT provers available as plugins.

Check term project for installation instructions.
Not guaranteed to work always seamlessly.
But in many cases can discharge proofs without manual
intervention!
Why not using them before?

I wanted to show interactive theorem proving in examples that are
not too complex to require it.

	Goals
	Requirements
	Initial model
	First refinement
	Second refinement
	Third refinement
	Fourth refinement

