

Synchronizing Processes on a Tree Network¹

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid & IMDEA Software Institute

Goals	s. 3
Requirements	s.6
Initial model	. s. 11
First refinement	. s. 23
Second refinement	. s. 51
Third refinement	. s. 55
Fourth refinement	s. 80

¹Example and most slides borrowed from J. R. Abrial: see http://wiki.event-b.org/index.php/Event-B_Language

・ロ・・聞・・ヨ・・ヨ・・ロ・

wi dea

・ キョット 4 聞 マス きょう 聞い うみの

Purpose of this lecture

- Learning a few more modeling conventions.
- Learning more about abstraction.
- Formalizing and proving on an interesting structure: a tree.
 - Will have an intermediate step to review functions, relations, data structures.
- Study a more complicated problem in distributed computing
- Example studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a Method of Multi-programming. Springer Verlag, 1999.

As usual:

- Define the informal requirements
- Define the refinement strategy
- Construct the various more and more concrete models

Prerequisites

- Knowledge of first order logic, set theory, relations, and functions.
- Rodin (to discharge the proofs).
- Slides:
 - Event B: Sets, Relations, Functions, Data Structures
- Please go through them.
- I will review parts of it here, when needed.

Comparison with previous examples

Requirements

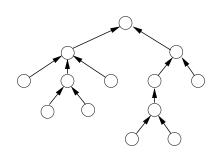
- Not a transformational system.
 - Not supposed to finish.
 - No final result.
- Not reactive.
 - No *external* world that reacts to system changes.
- Distributed.
 - Different *nodes* act autonomously.
 - With limited information access.
 - However, communication assumed to be reliable.

• All processes are supposed to execute forever the same code.

Each process has a counter, which is a natural number

(related to the work for which they have to synchronize).

• Each process is thus at most one phase ahead of the others


But processes must remain (somewhat) synchronized.
For this, each process has (initially) one counter.

• A process counter represents its "phase"

• Difference between any two counters < one.

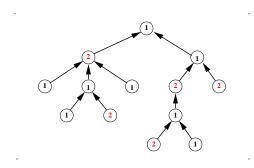
- Internal concurrency.
 - Every node has concurrent processes.
- Model small: just three events in the last refinement.
- However, proofs and reasoning involved.

ENV 1 We have a fixed set of processes forming a tree

- Note: they do not need to form a tree from the beginning.
- A set of communicating processes can coordinate to form a tree.

◆□ ▶ ◆舂 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Requirements (Cont.)


ENV 2

Requirements (Cont.)

▲日▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

FUN 3 The difference between any two counters is at most equal to 1

• Reading the counters

FUN 4	Each process can read the counters of its immediate neigh-
	bors only

• Modifying the counters

FUN 5	The counter of a process can be modified by this process
	only

Refinement strategy

- Construct abstract initial model dealing with FUN 3 and FUN 5
- Improve design to (partially) take care of FUN 4
- Improve design to better take care of FUN 4
- (Simplify final design to obtain efficient implementation).

FUN 3 The difference between any two counters is at most one

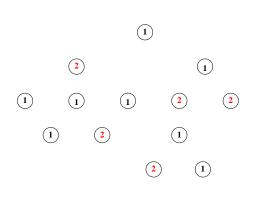
FUN 4 Processes read counters of immediate neighbors only

FUN 5 A process can modify only its counter(s)

・ロト・1日ト・1日ト・1日・1日・20への

Steps

Initial model: the state



- 1. Initial model: all nodes access to the state of all nodes.
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

- Simplify situation: forget about tree
- We just define the counters and express the main property: FUN 3

FUN 3 The difference between any two counters is at most one

- The initial model is always far more abstract than the final system
- Other requirements are probably not fulfilled

The difference between any two counters is at most 1 FUN 3

(日) (個) (目) (日) (日) (の)

Suggest an initial model!

・ロト・個ト・モン・モン モーション

wii dea

carrier set: P inv0_1: $c \in P \rightarrow \mathbb{N}$ inv0_2: $\forall x, y \cdot egin{pmatrix} x \in P \\ y \in P \\ \Rightarrow \\ c(x) \leq c(y) + 1 \end{pmatrix}$ variable: c

 $axm0_1: finite(P)$

🔤 i 🕅 dea (

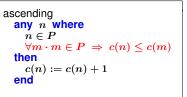
Is that right?

- - inv0_2 may be surprising at first glance:

 $\forall x, y \cdot x \in P \land y \in P \Rightarrow c(x) \le c(y) + 1$

- Is it the same as $\forall i, j \cdot |c(i) c(j)| \le 1$?
- Disprove it or convince us!

✓ Create project synch_tree


- ✓ Create context c0 with set, axiom
- ✓ Create machine m0 with variable, invariants.

Is that right?

Initial model: events

$$\begin{tabular}{ccc} \mbox{init} \\ c \ := \ P \times \{0\} \end{tabular}$$

- Note any *n*: it is logically $\exists n \cdot n \in P \land \cdots$
- Process counter incremented only when < to all other counters
- Intuition: If I see I can increase without breaking difference *constraint. I do it!*
- Non-determinism!

end

- A specification of what should happen.
- Not a final state (there is not one): a procedure that (hopefully) respects the invariant.

• If the invariant holds, then $a \le b + 1$ and $b \le a + 1$. From there, $a-b \leq 1$ and $b-a \leq 1$, therefore $|a-b| \leq 1$.

Let us choose two arbitrary nodes with counters *a* and *b*.

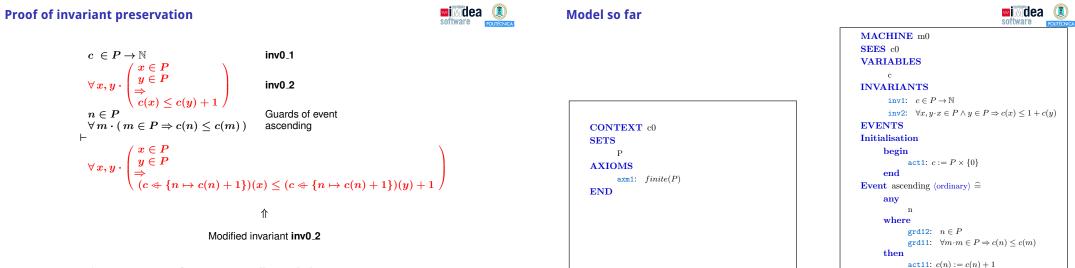
 $\forall x, y \cdot x \in P \land y \in P \Rightarrow c(x) < c(y) + 1$

• inv0_2 may be surprising at first glance:

• Is it the same as $\forall i, j \cdot |c(i) - c(j)| < 1$?

• Disprove it or convince us!

Proof by double implication.


• If |a - b| < 1, then both a - b < 1 and b - a < 1. Then, inv0 2 is implied by the intended invariant.

when	\leq	to all	other	counters.	
		TCT	-		

✓ Add initialization, event

Note: \times is entered with ******, any with pull-down menu, "Add event parameter".

・ロト・(部)・(日)・(日)・(日)・(の)への

In Rodin: automatic; if not, repeatedly apply lassoing, p0 or m0.

▲日▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Problem with the current event

Steps

What requirement is this event breaking?

ascending any n where $n \in P$ $\forall m \cdot m \in P \implies c(n) \le c(m)$ then c(n) := c(n) + 1end

What requirement is this event breaking?

FUN 2 Each node can read the counters of its immediate neighbors only

・ロト・1日・1日・1日・1日・1000

1. Initial model: all nodes access to the state of all nodes.

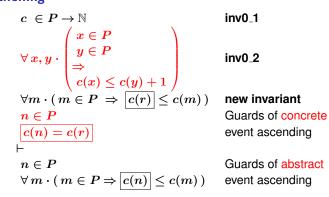
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

・ロト・(部)・(目)・(目)・(日)・(日)

First refinement: (partially) solving the problem

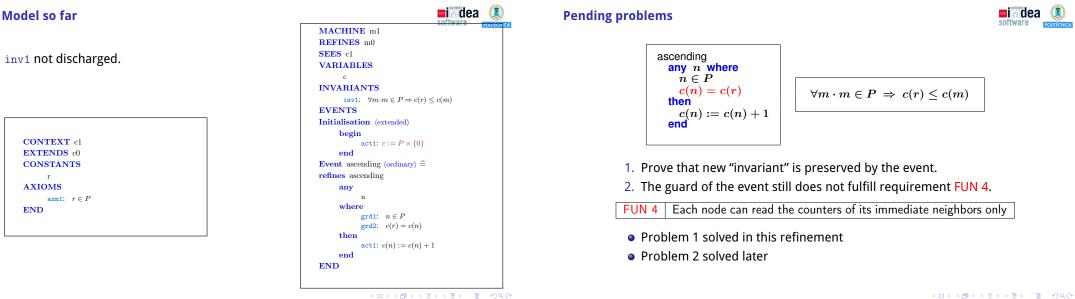
- Introduce a designated process r.
- We suppose that the counter of *r* is always minimal

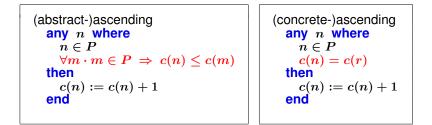
$$\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$$


- Rationale:
 - We only synchronize with *r* not compliant, but communication restricted.
 - Helps ensure that difference between any two nodes \leq one.
 - Because: if for any *m* either c(m) = c(r) or c(m) = c(r) + 1, then difference between any $m, n \le 1$.
- Treat this property as a new (temporary) invariant.

✓ Extend c0 into c1 (left pane, right click, "Extend"), add constant r, axiom $r \in P$ ✓ Refine m0 into m1 (left pane, right click, "Refine"), add new invariant ✓ m0 should "see" c1

First refinement: proposal for the event refinement


Guard strengthening


In Rodin: lasso + p0

✓ Go to the proving perspective, discharge proof

◆ロト ◆舂 ト ◆ 臣 ト ◆ 臣 ト ○臣 - のへで

We simplify the guard

- Note: if c(r) minimal, c(n) < c(r) impossible; therefore c(n) = c(r)
 - ✓ Change "extended" to "not extended", change guard
- We have then to prove guard strengthening.

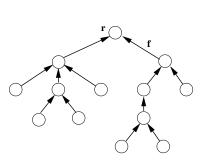
・ロト・(部・・ミト・ミト・ ヨー のへで

windea

First refinement: defining the tree

- Tree: root r and "pointer" f from each node in P \ {r} to every node's parent.
- Plus some additional properties and inference rules.
- Reminder: sets, relations, functions, specific data structures and their inference rules.
- Note: constructing a tree (≡ root / leader + links) is a classical problem in distributed systems.

• Minimality of counter at the root


relates c(r) with c(m) for every m.

 $\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$

• Events change local values and consult neighbouring values.

We can (easily) prove properties relating neighbouring nodes.
How can we relate local properties with global properties?

• Can also be tackled using Event B.

Invariant: we have a condition involving nodes in pairs and we need a condition that relates a single node *r* with all the others.

windea

Update model

✓ Add to c1 (note f is --->, written ->)

- Constant f.
- Axioms:

$$L \subseteq P$$

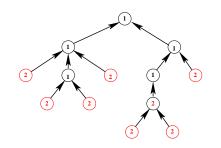
$$f \in P \setminus \{r\} \twoheadrightarrow P \setminus L$$

$$\forall S \cdot S \subseteq f^{-1}[S] \Rightarrow S = \emptyset$$

- f^{-1} is written f[~].
- \rightarrow : *f* defined for all $P \setminus \{r\}$ and *arrives* to every element in $P \setminus L$.

▲日▶▲舂▶▲臣▶▲臣▶ 臣 のへで

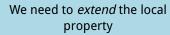
Minimal counter at the root


Minimal counter at the root

- We define a weaker, local invariant first.
- The counter at every node is not greater than its descendants:

 $\operatorname{inv1_1}: \forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$

✓ Add it to m1


Rationale (advancing the algorithm)

- Assume we can update the tree keeping a maximum difference between neighbors.
- Will be helpful to prove $c(r) \leq c(m)$.

・ロ・・聞・・ヨ・・ヨ・ ヨー わべぐ

Minimal counter at the root: induction

software

 $\forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$

to the whole tree.

- Start with leaves $I \in L$.
- Prove that for any *I*, $c(f(I)) \le c(I)$, then $c(f(f(I))) \le c(f(I)) \le c(I)$, ...
- Work upwards towards root *r*.

OR

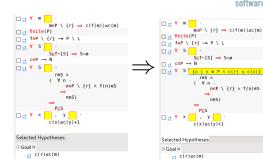
- Start with *r*.
- Prove that for all *m* s.t. *r* = *f*(*m*),
 c(*r*) ≤ *c*(*m*).
 m is a child of *r*
- Then, for all m' s.t. m = f(m'), $c(m) \le c(m')$...
- And so on towards the leaves.

・ロト・オクト・オミン・オミン・ヨー のへの

wi Mdea

Minimal counter at the root: induction

- Induction: difficult for theorem provers to do on their own.
 - Needs to identify base case, property to use for induction i.e., the *strategy*.
- Proving property for base case & inductive step within theorem provers' capabilities.
- In Rodin: needs adding induction scheme:
 ✓ Add to c1:
 ∀S·S ⊆ P∧r ∈ S∧(∀n·n ∈ P \ {r}∧f(n) ∈ S ⇒ n ∈ S) ⇒ P ⊆ S
 ✓ Tip: Ctrl-Enter breaks text in input box in separate lines.
- Instantiating it with the property to prove expressed as a set: $\{x \mid x \in P \land c(r) \leq c(x)\}$ (next slide)


✓ In m1: ensure you have inv1_1: $\forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$ ✓ Ensure thm1_1: $\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$ below invariant, marked as theorem

ふちゃくぼ 不能を入りる

🔤 i 🕅 dea

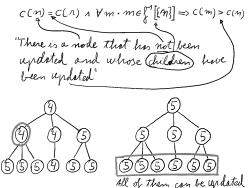
Induction in Rodin: instantiation

- Double click in the unproved theorem (left pane).
- Switch to prover view, lasso.
- Locate induction axiom.
- Enter
 - $\{x \ | \ x \in P \land c(r) \le c(x) \}.$
- Return and p0.
- The theorem should be proved now.

Invariant inv1_1 not yet proved. Requires order between parent and children $c(f(m)) \le c(m)$ that ascending cannot guarantee: guard c(r) = c(n) allows updates in arbitrary order. Will enforce through more local comparison.

More local comparison

- Nodes with difference \leq one from *r*.
- When can we update looking locally?

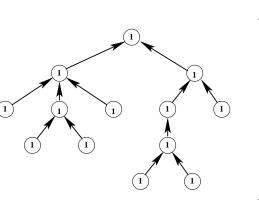

ascending

any *n* where

 $n \in P$ c(r) = c(n) $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)$ then c(n) := c(n) + 1

end

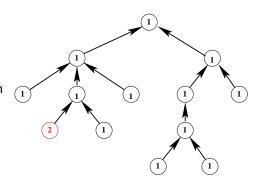
Ensure inv1_1 is preserved: double click, prover view, lasso, p0 should do it.



How it is expected to work

software

Update order restricted:

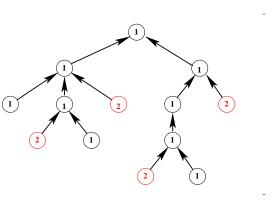

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

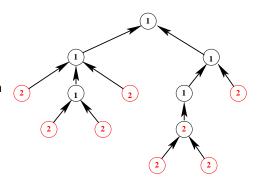
winde:


🔤 i 🕅 dea

windea

How it is expected to work

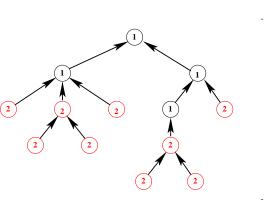
Update order restricted:


- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

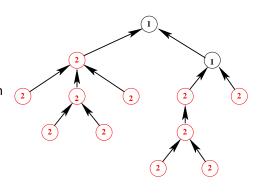
- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



How it is expected to work

software

Update order restricted:


- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

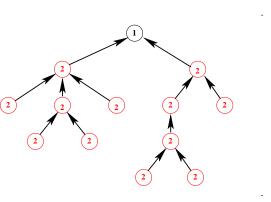
Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

シャク・ビー・ビー・ イビー・ 白ー シック

winde:

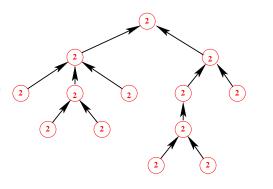
🔤 i 🕅 dea


(ロ)

windea

How it is expected to work

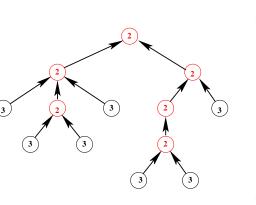
Update order restricted:


- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

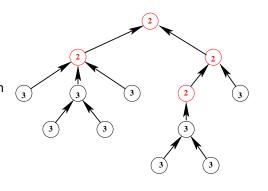
- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



How it is expected to work

software

Update order restricted:


- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

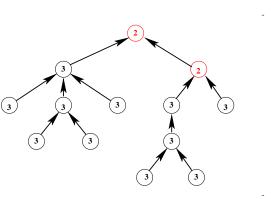
Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

・ ロト ・ 御 ト ・ 言 ト ・ 言 ・ うへの

mi Mide:

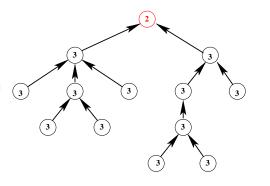
🔤 i 🕅 dea


・ロ・・聞・・ヨ・・ヨ・ ヨー うへぐ

wi dea

How it is expected to work

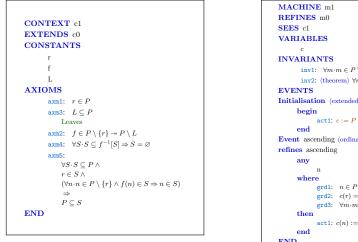
Update order restricted:

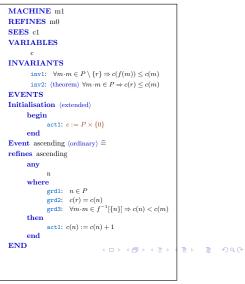

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

How it is expected to work

Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

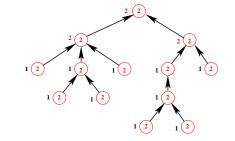

Steps



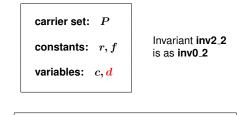
FUN 4 Each process can read the counters of its immediate neighbors only

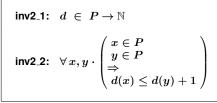
- $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)$ uses only local comparisons.
- c(r) = c(n) uses non-local comparisons.
- We will tackle that in the next refinement.

Note: c(n) < c(m) in ascending should be $c(n) \neq c(m)$


(日) (個) (目) (日) (日) (の)

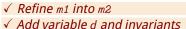
Second refinement


🔤 i 🕅 dea


- Replace the guard c(r) = c(n).
 - Processes must be aware when this situation does occur.
 - Add second counter $d(\cdot)$ to each node to capture value of c(r).

- 1. Initial model: all nodes access to the state of all nodes.
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

Second refinement: the state



d has an overall property similar to *c*:

 $\forall x, y \cdot x \in P \land y \in P \Rightarrow c(x) \le c(y) + 1$

- *d* will capture the value of *c*(*r*).
- It will be updated in a downward wave.

Updating *d*

Event descending any n where $n \in P$ $\forall m \cdot m \in P \Rightarrow d(n) \le d(m)$ then d(n) := d(n) + 1end

• How its update can proceed not to break its invariant.

✓ Add event to m2

This refinement captures:

• The existence of *d*.

 \checkmark Initialize d to 0 (copy the initialization of c)

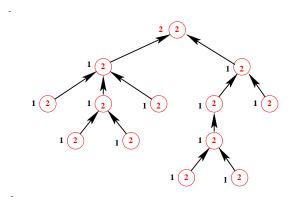
ふちゃく 御や 不可か 不可す

- i Midea

Steps

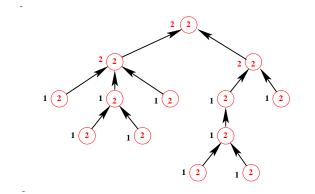
・ロト・(部)・(日)・(日)・(日)・(の)への

Third refinement

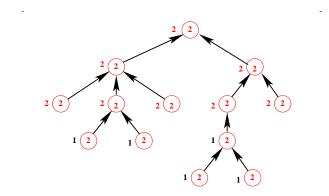

- 1. Initial model: all nodes access to the state of all nodes.
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

- We establish the relationship between both counters *c* and *d*.
 - This will allow us to refine event ascending
- We construct the descending wave (by refining event descending).
- Remark: this is the most difficult refinement.

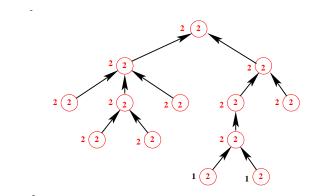
✓ Refine m2 into m3


Idea behind third refinement

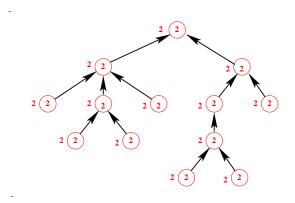
Idea behind third refinement



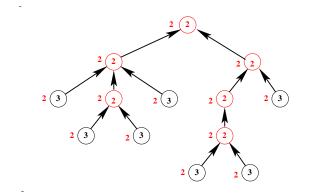
< ロ > < 個 > < 言 > < 言 > 、言 - のので


<□><番><番><≧><≧><≧><≧><≧><≧<><

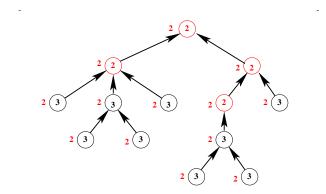
Idea behind third refinement



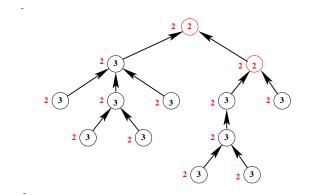
Idea behind third refinement


Idea behind third refinement

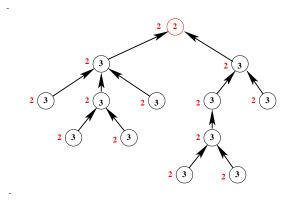
Idea behind third refinement



▲□> ★課> ★注> ★注> 注: のQ()

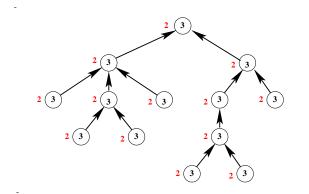

▲□▶▲舂▶▲≧▶▲≧▶ ≧ のなぐ

Idea behind third refinement



Idea behind third refinement

Idea behind third refinement



Idea behind third refinement

Proving theorem and invariant

・ロト・雪ト・ヨト・ヨー シタの

- ◆ □ → ◆ 岔 → ◆ 茎 → ◆ 茎 → りへぐ

🔤 i 🕅 dea

State and invariants

• Recall local condition for *c*:

 $inv1_1: \forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$

Every node's counter is smaller than or equal to its children's.

• Local condition for *d* is similar:

inv3_1 : $\forall m \cdot m \in P \setminus \{r\} \Rightarrow d(m) \leq d(f(m))$

Every node's counter is smaller than or equal to its parent (if it has a parent). This is what makes the wave *descending.*

inv3_1 and tree induction proves that the root has the highest value of *d*(·):

thm3_1: $\forall n \cdot n \in P \Rightarrow d(n) \leq d(r)$

(remember: root had the smallest value of $c(\cdot)$)

	SULMAIG
✓ Add to m3:	
inv3_1: $\forall m \cdot m \in P \setminus \{r\} \Rightarrow d(m) \leq d(f(m))$	
thm3_1: $\forall n \cdot n \in P \Rightarrow d(n) \le d(r)$	
$\operatorname{dim}_{2} : \qquad \operatorname{dim}_{1} \subset \operatorname{dim}_{2} \subset \operatorname{dim}_{2} \subset \operatorname{dim}_{1} \subset \operatorname{dim}_{2} \operatorname{dim}_{2} \subset \operatorname{dim}_{2} $	
✓ Mark the latter as theorem	
✓ Double click on the PO for THM	
✓ Go to proving perspective; locate induction axiom	
✓ Instantiate with $\{x x \in P \land d(x) \le d(r)\}$, invoke p0	
\checkmark That should prove thm3_1	
$\frac{1}{1}$ (inv3.1 cannot be proved yet - reasons similar to c	

 \checkmark inv3_1 cannot be proved yet - reasons similar to c. We will deal with that later

Refining *ascending*

```
Event (abstract –) ascending
                                              Event (concrete –) ascending
     any n where
                                                    any n where
          n \in P
                                                         n \in P
          c(n) = c(r)
                                                         c(n) = d(n)
          \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
     then
                                                    then
          c(n) := c(n) + 1
                                                          c(n) := c(n) + 1
     end
                                                    end
                                              ascending: only local comparisons now!
```

- Downward wave *d* will eventually propagate d(r).
 - ✓ Change event guard in m3

 $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)$

wi dea

Refining *ascending*

```
Event (abstract –) ascending
      any n where
            n \in P
            c(n) = c(r)
           \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
      then
            c(n) := c(n) + 1
      end
```

- Downward wave *d* will eventually propagate d(r).
 - ✓ Change event guard in m3
- Need to prove guard strengthening.

Event (concrete –) ascending any *n* where $n \in P$ c(n) = d(n) $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)$ then c(n) := c(n) + 1end

🔤 i 🛛 dea

ascending: only local comparisons now!

▲日▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

mi Mides

・ロト・(部・・ミト・ミト・ ヨー のへで

wi dea

Refining *ascending*

```
Event (abstract –) ascending
     any n where
           n \in P
           c(n) = c(r)
           \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)
     then
           c(n) := c(n) + 1
     end
```

- Downward wave *d* will eventually propagate d(r).
 - ✓ Change event guard in m3
- Need to prove guard strengthening.
- We cannot. c and d unrelated so far! ✓ *Relate c and d:* inv3 2 : d(r) < c(r)
- If needed: proving perspective, lasso + p0 proves strengthening.

Event (concrete -) ascending any *n* where $n \in P$ c(n) = d(n) $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m)$ then c(n) := c(n) + 1end

ascending: only local comparisons now!

Refining *descending*

- A different case.
- Two situations raise a change of d:
 - 1. For a non-root node: parent's *d* change.
 - 2. For the root node: c(r) changes.
- Different guards.
- We will prepare the events to be edited.
- ✓ Change (concrete) descending event to non-extended \checkmark Left click on circle to left of name to select Ctrl-C to copy, Ctrl-V to paste ✓ Rename first event as descending nr.
- ✓ Rename second event as descending r.

・ロト・(部)・(日)・(日)・(日)・(の)への

<pre>Event (abstract -)descending</pre>	<pre>Event (concrete -)descending</pre>
any <i>n</i> where	any <i>n</i> where
$n \in P$	$n \in P \setminus \{r\}$
$\forall m \cdot m \in N \Rightarrow d(n) \leq d(m)$	$d(n) \neq d(f(n))$
then	then
d(n) := d(n) + 1	d(n) := d(n) + 1
end	end

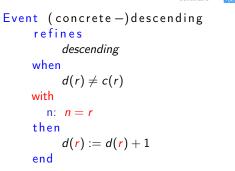
✓ Update guards

(Note: Rodin > 3.6 seems to prove strengthening automatically; previous versions needed additional steps [in next slide])

Note: the steps below do not seem to be necessary in Rodin 3.6 with the Atelier B provers installed. Strengthening is proven automatically.

 $n \in P \setminus \{r\}, d(n) = d(f(n)), m \in P \vdash d(n) \leq d(m)$

We need some magic mushrooms to help the provers:


thm3 2: $\forall n \cdot n \in P \setminus \{r\} \Rightarrow d(f(n)) \in d(n)..d(n) + 1$ $\forall n \cdot n \in P \Rightarrow d(r) \in d(n)..d(n) + 1$ thm3 3 :

thm3 2 downward wave, parent is at most one more than children (when it has just been increased) thm3 3 special case for root (the first one to be increased)

▲日▶ ▲御▶ ▲臣▶ ★臣▶ ―臣 …のへで

Refining *descending* (Cont. — the root case.)

Event (abstract -) descending
any <i>n</i> where
$n \in P$
$orall m \cdot m \in P \Rightarrow d(n) \leq d(m)$
then
d(n) := d(n) + 1
end

✓ Click on circle left of param. n, delete

- Parameter *n* disappeared!
- Substitute (witness) for GRD, SIM.
- We are particularizing for *r*.
- Similar to gluing invariant!

- Note with label: specific Rodin idiom.
- Need to prove
 - $d(r) \neq c(r), m \in P \vdash d(r) \leq d(m)$
- ML should do the trick. ・ロト・(部・・ミト・ミト・ ヨー のへぐ

Finishing proofs

Note: this is the version I had in previous courses. It seems that with Rodin 3.6, ML as applied in the previous slide does the trick. Or that I did not bother to try it... I needed two more magic pills: ---

inv3_3:
$$\forall n \cdot n \in P \Rightarrow c(n) \in d(n)..d(n) + 1$$
 To prove GRD
thm3_4: $\forall n \cdot n \in P \Rightarrow c(r) \in d(n)..d(n) + 1$ To prove inv3_3

Plus, if not added before:

t

thm3_2:
$$\forall n \cdot n \in P \setminus \{r\} \Rightarrow d(f(n)) \in d(n)..d(n) + 1$$

thm3_3: $\forall n \cdot n \in P \Rightarrow d(r) \in d(n)..d(n) + 1$

After this, the invariant can be proved with a combination of several steps:

- Apply lasso.
- Instantiate $\forall n \cdot c(r) \in d(n)..d(n) + 1$ (which relates *c* and *d*) with *n*.
- Remove \in in goal $(c(n) \in d(n) + 1..d(n) + 1 + 1)$ to create inequalities.
- Do P0 in $c(n) \le d(n) + 1 + 1$ goal.
- Note that only possibility to prove is d(n) = c(n).
- Do case distinction with d(n) = c(n),
- Apply ML to the subgoals.

Finishing proofs Note: this strategy works with Rodin 3.6

We needed one magic pill:

inv3 3: $\forall n \cdot n \in P \Rightarrow c(n) \in d(n)...d(n) + 1$ To prove GRD

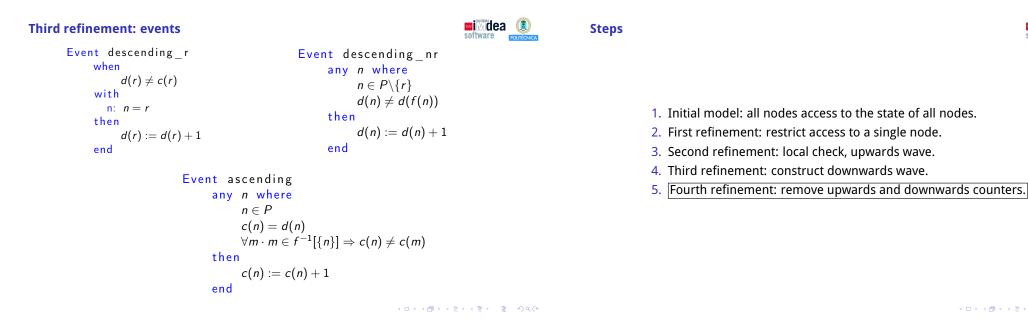
After this, the invariant can be proved with a combination of several steps:

- Apply lasso.
- Apply ML to $c(n0) \in d(n0)...d(n0) + 1$.
- ٢

```
• Remove \in in goal
  (c(n) \in d(n) + 1..d(n) + 1 + 1) to create
  inequalities.
```

• For d(n) + 1 < c(n), do case distinction: • Either with d(n) = c(n), or • with d(n) + 1 = c(n)

• Do ML in c(n) < d(n) + 1 + 1 goal.


and ML to the subgoals.

inv3_1: $\forall m \cdot (m \in P \setminus \{r\} \Rightarrow d(m) \leq d(f(m)))$ inv3_2: d(r) < c(r)inv3_3: $\forall n \cdot (n \in P \Rightarrow c(n) \in d(n) \dots d(n) + 1)$ thm3_1: $\forall m \cdot (m \in P \Rightarrow d(m) \leq d(r))$ thm3_2: $\forall n \cdot (n \in P \setminus \{r\} \Rightarrow d(f(n)) \in d(n) \dots d(n) + 1)$ thm3_3: $\forall n \cdot (n \in P \Rightarrow d(r) \in d(n) \dots d(n) + 1)$ thm3_4: $\forall n \cdot (n \in P \Rightarrow c(r) \in d(n) \dots d(n) + 1)$

・ロト・(部)・(日)・(日)・(日)・(の)への

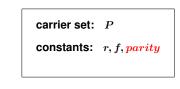
・ロト・(部)・(目)・(目)・(ロ)・(ロ)

🔤 i 🕅 dea

Observation

- The difference among counters is at most one.
 - That has been proven by construction.
- In the guards, we only care whether they are equal or not.
- For this, we only need parity!

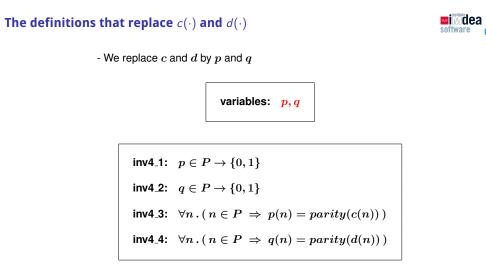
 $a, b \in \mathbb{N} \land |a - b| \leq 1 \Rightarrow (a = b \Leftrightarrow parity(a) = parity(b))$


• We will prove that this is a valid refinement.

✓ Extend context c1 into c2	
√ Refine m3 into m4	
√ m₄ should see c2	

Formalizing parity

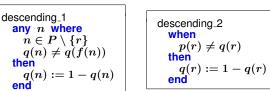
- We replace the counters by their parities
- we add the constant *parity*


- axm4_1: $parity \in \mathbb{N} \rightarrow \{0, 1\}$
- **axm4_2:** parity(0) = 0
- axm4_2: $\forall x . (x \in \mathbb{N} \Rightarrow parity(x+1) = 1 parity(x))$
- \checkmark Add parity and axioms to c2. Note: parity is a function! \checkmark Need some clicking (dom to $\mathbb{N} + ML$) to prove WD

New events: counters replaced by parity

then

end


wi Mdea

 \checkmark Do it in m4. Note the gluing invariants! p and q really syntactic sugar.

(日) (個) (目) (日) (日) (の)

ascending any n where $n \in P$ p(n) = q(n) $orall m \cdot (\ m \in f^{-1}[\{n\}] \ \Rightarrow \ p(m) eq p(n)$) then p(n) := 1 - p(n)end

Proving remaining POs (in ascending)

Proving remaining POs (in ascending)

GRD of q(n) = p(n)

Needs additional property

 $\forall x, y \cdot y \in \mathbb{N} \land x \in y..y + 1 \quad \Rightarrow \\ (parity(x) = parity(y) \Leftrightarrow x = y)$

- We could make it axiom, but it can be proven as theorem (better!).
- Proving it is not difficult.
 - WD: P0 takes care of it.
 - THM: A couple of simple rewritings
 - + distinction by cases work.

- \iff : rewrite in two implications.
- par(x) = par(y) ⇒ x = y: ah with possible values of x.
- Prove ah with ML.
- Goal y = y + 1: do dc with par(y) = 0.
- P0 works for both branches.

GRD of q(n) = p(n)

• With theorem

```
\forall x, y \cdot y \in \mathbb{N} \land x \in y..y + 1
(parity(x) = parity(y) \Leftrightarrow x = y)
```

- Instantiate with c(n), d(n).
- Instantiate defs. of p(n), q(n).
- Invoke P0.

▼ ⊘simplification rewrites √ ⊗ type rewrites → ⊗ simplification rewrites **∀**⊘sl/ds ▼Øsl/ds **∀**⊘sl/ds ▼ ⊘∀ hyp (inst n) ⊘⊤ goal •⊘∀ hyp (inst n) ⊘⊤ goal • ⊘∀ hyp (inst n) ⊘⊤ goal $\neg \oslash \forall$ hyp (inst c(n),d(n)) ★ @ generalized MP ✓ Simplification rewrites Ø⊤ goal ▼ Øgeneralized MP ▼⊘simplification rewrites $\neg \otimes \Rightarrow$ hyp mp (d(n) $\in \mathbb{N} \Rightarrow \neg$ parity(c(n))=parity(d(n))) •
Ø functional image goal for d(n) ✓ Inctional image goal for d(n) ⊘hyp O PP

```
・ キョット 1日 マイボット 前下 うくらく
```

Proving POs (in ascending)

・ロト・(部)・(日)・(日)・(日)・(の)への

Discharging POs (in descending)

GRD of $\forall m \cdot m \in f^{\sim}[n] \Rightarrow p(n) \neq p(m)$

One simple path that works:

- 1. Add a new THM: $\forall n \cdot n \in P \setminus \{r\} \Rightarrow c(n) \in c(f(n))...c(f(n)) + 1$
- 2. Introduce the hypothesis n = f(m) (which comes from $m \in f^{-1}[n]$) with ah and use ML repeatedly. See recording at course web.

Rationale: we have to prove than if $p(m) \neq p(f(m))$, then $c(n) \neq c(f(m))$. We have a theorem that says parity(x) = parity(y) $\Leftrightarrow x = y$ when $x \in y...y + 1$. So we need $c(n) \in c(f(n))..c(f(n)) + 1$ to apply it. We add it as a theorem, which is immediately proven, and ML can use it.

 In my case, GRD for q(n) ≠ q(f(n)) in descending_nr remains to be proven.

 \Rightarrow

- It should imply $d(n) \neq d(f(n))$.
- Similar to the previous case.
- Add a symmetrical theorem $\forall n \cdot n \in P \setminus \{r\} \Rightarrow d(f(n)) \in d(n)..d(n) + 1$
- It is immediately proven and it discharges the pending GRD proof.

Less Manual Work?

- *Atelier B* provers: integrated and developed in conjunction with Rodin and with Event B in mind.
- However, in the world of theorem provers probably not the most powerful ones.
- Some third-party SMT provers available as plugins.
 - Check term project for installation instructions.
- Not guaranteed to work always seamlessly.
- But in many cases can discharge proofs without manual intervention!
- Why not using them before?
 - I wanted to show interactive theorem proving in examples that are not too complex to require it.

(日) (個) (目) (目) (日) (の)