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The first-order predicate calculus and its rules @i dea (% First-order predicate calculus: informal @i dea (2
[ POLITECNICA| | POLTECNICA

@ Handling of variables, expressions, quantifiers, instantiation.

@ An expression is a formal text denoting an object.

@ A predicate denotes nothing.

@ An expression cannot be proved.

@ A predicate cannot be evaluated.

@ Predicates and expressions are not interchangeable.

@ Expressions will be extended with set-theoretic and arithmetic notation.

We have a universe of objects. We make statements about these objects. Sweet
Reason [HGTA11] is a delightful introduction to logic with examples.

Vx - P(x): For all elements x, P holds. 3x - P(x): For some element x, P holds.
P can be arbitrarily complex. P can be arbitrarily complex.
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First-order predicate calculus: informal

I(x,y)

Vx -
dx -
Vx -
dy -
Vy -
dx -
Vx -

We usually want to prove these statements true or false. We use inference rules
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x loves y

to prove truth or falsehood.
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x loves y
everyone loves everyone else (including themself)
at least a person loves someone

to prove truth or falsehood.
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x loves y
everyone loves everyone else (including themself)

We usually want to prove these statements true or false. We use inference rules

to prove truth or falsehood.
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x loves y

everyone loves everyone else (including themself)
at least a person loves someone

everybody loves someone

We usually want to prove these statements true or false. We use inference rules

to prove truth or falsehood.



First-order predicate calculus: informal

I(x,y)

Vx - Vy - I(x,y)
Ix -y - I(x,y)
Vx -3y - I(x,y)
dy -Vx - I(x,y)
Vy - 3x-I(x,y)
Ax -Vy - I(x,y)
Vx - =l(x, x)

x loves y

everyone loves everyone else (including themself)
at least a person loves someone

everybody loves someone

there is someone who is loved by everybody
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We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.
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We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

I(x,y)

Vx - Vy - I(x,y)
Ix -y - I(x,y)
Vx -3y - I(x,y)
dy -Vx - I(x,y)
Vy - 3x-I(x,y)
dx -Vy - I(x,y)
Vx - =l(x, x)

x loves y

everyone loves everyone else (including themself)
at least a person loves someone

everybody loves someone

there is someone who is loved by everybody
everybody is loved by someone
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We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.
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x loves y

everyone loves everyone else (including themself)
at least a person loves someone

everybody loves someone

there is someone who is loved by everybody
everybody is loved by someone

there is someone who loves everybody

no one loves themself
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We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.



Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Ix-Vy - P(x,y) = Vy-3Ix- P(x,y)

Yy - 3x - P(x,y) # 3x-Vy - P(x,y)

(Counterexample?)

@i dea (2 Some deductions and (non) equivalences
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Vx - P(x) = —3x - =P(x)
(definition of existential quantifier)
Ix-Vy - P(x,y) = Vy-3x- P(x,y)
@i dea (% Some deductions and (non) equivalences
T

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)
Ix-Vy - P(x,y) = Vy-3Ix- P(x,y)
Yy - 3x - P(x,y) # 3x-Vy - P(x,y)

(Counterexample?)

P(a) = 3x - P(x)
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Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)
Ix-Vy - P(x,y) = Vy-3x- P(x,y)
Yy - 3x - P(x,y) # 3x-Vy - P(x,y)

(Counterexample?)

P(a) = 3x - P(x)

Vx - (P(x B) = (3Ix - P(x B
( ()ig)vaé(B)) (x) = B)

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)
Ix-Vy - P(x,y) = Vy-3Ix- P(x,y)
Yy - 3x - P(x,y) # 3x-Vy - P(x,y)

(Counterexample?)

P(a) = 3x - P(x)

Vx - (P(x B) = (3Ix - P(x B
( ()=(;¢)var§(8)) (x)=B)

@i dea (2 Some deductions and (non) equivalences
 rourecnical
Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Ix-Vy - P(x,y) = Vy-3x- P(x,y)

Yy - 3x - P(x,y)# 3Ix - Yy - P(x,y)

(Counterexample?)

P(a) = 3x - P(x)

Vx - (P(x B) = (3Ix - P(x B
( ()ig)varg(B)) (x) = B)
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Vx - (P(x) A Q(x)) = Vx - P(x) AVx - Q(x) Vx - P(x) = —3x - ~P(x)
(definition of existential quantifier)

Ix - (P(x) V Q(x)) = 3x- P(x) VIx- Q(x) Ix-Vy - P(x,y) = Vy-3x- P(x,y)

Yy - 3x - P(x,y) # 3x-Vy - P(x,y)

(Counterexample?)

P(a) = 3x - P(x)

Vx - (P(x B) = (3x - P(x B
( ()=(;¢)var§(8)) (x) = B)

=i dea

Vx - (P(x) A Q(x)) = Vx - P(x) AVx - Q(x)

=i dea

Vx - (P(x) A Q(x)) =Vx - P(x) AVx - Q(x)

Ix - (P(x) V Q(x)) = 3x- P(x) VIx- Q(x)

Vx - (P(x)V Q(x)) #Vx - P(x) VVx - Q(x)

(Counterexample?)
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Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)
Ix-Vy - P(x,y) = Vy-3x- P(x,y)
Yy - 3x - P(x,y) # 3x-Vy - P(x,y)

(Counterexample?)

P(a) = 3x - P(x)

Vx - (P(x B) = (3Ix - P(x B
( ()ig)varsf(B)) (x) = B)

Vx - (P(x) A Q(x)) = Vx - P(x) AVx - Q(x)

Ix - (P(x) V Q(x)) = 3x - P(x) V 3Ix - Q(x)

Vx - (P(x)V Q(x)) #Vx - P(x) VVx - Q(x)

(Counterexample?)

Ix - (P(x) A Q(x)) #3x - P(x) A 3x - Q(x)

(Counterexample?)

First-order predicate calculus: inference rules

H, Px) - Q

H, Ix-P(x) - Q

XST_L

- In rule XST_L, variable x is not free in H and Q

H + P(E)

H - 3x-P(x)

XSTR

where E is an expression

=i dea (2
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First-order predicate calculus: inference rules

H, vx-P(x), P(E) - Q

H, vx-P(x) F Q

ALL L

where E is an expression

H F P(x)

ALL R

H F Vx-:P(x)

- In rule ALL_R, variable x is not free in H

First-order predicate calculus: inference rules

Compare rules:

H, vx-P(x), P(E) - Q

H, vx-P(x) - Q

ALL L

H - Px)

HF wx.px ALLR

H, P(x) - Q
H, 3x-P(x) - Q

XST.L

H + 3Ix.P(x)

H + P(E) XST R

=i dea
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First-order predicate calculus: inference rules @i dea

Rules for equality (some already seen):

HF),E=F - PF) o o HE).E=F - PE) o
HE), E=F - P(E) - HF), E=F + P(F) -
F E=E EQL

Note: E — F denotes a pair (E, F) — we will use them later.

Set theory: membership @i dea

@ Asetis a well-defined collection of distinct objects.
@ Set theory is primary concerned the membership predicate

EeS

@ Eis an expression, S is a set.

z Set theory: membership u
[ POLITECNICA]

)

@ Event-B formal reasoning is built based on:

o First-order logic inference rules (seen).
o Set theory (to be touched upon).

@ Set theory as a foundation for relations, functions (and, therefore,
data structures).

@ Proofs often reduced to proving goals on sets.
@ We will briefly see how this is intuitively done.

Set theory: basic constructs @i dea

There are three basic constructs in set theory:

Cartesian product SxT

Power set P(S)

Comprehension 1 {z-x€S AN P(z)| F(x)}

Comprehension 2 {z|xzeS AN P(x)}

Sand T are sets, x is a variable, P is a predicate, F is an expression.

dea (%
[ POLITECNICA]



Set theory: basic constructs

Definitions

Defined by equivalences

Operations on sets

SCT
S=T
SUT
sNnT
S\T
Ec{a,...,z}
Eco

EmFeSxT

SeP(T)
Ec{x|xeSAPKx)}
Ec{x-xeSAPX)|F(x)}

SeP(T)
SCTATCS
{x|xeSvxeT}
{x|xeSAxeT}
{x|xeSAx¢gT}
E=aVv..VE==z
1

@mi dea (% Set theory: basic constructs @mi dea (%
Examples

EeSANFeT
Vx-xeS=xeT
EecSAP(E)

Ix-x € SAP(x)ANE = F(x)

{1,2,3} x{a,b} = {l—a,l—b2— a2 b3~ a,3+— b}
P({1,2,3}) {{1,2,3},{1,2},{1,3},{2,3}, {1}, {2}, {3}, 2}
{x|x€{2,3,4,5} Ax mod 2 =0} {2,4}
{x-xe€{2,3,45} Ax mod2=1|x*} = {259}

Reminder: A— B is a tuple.
It is sometimes written as (A, B) in other formalisms.

Shortcut: m.n={x€Z|m<xAx<n}

@ {x|xeNAx<2}x8.10 @ {n-neN|(0..n) — n}
@ {x-x€3.5]x—xx*x}

@i dea 2 Binay relations @i dea (X
| POLITECNICA [PouTECNICA]
0 tors based bershi d @ Abinary relation r € S <+ T is a subset @relil3«7.11
° pfera ors .ase on membership an of their Cartesian product: rC S x T o r={1—10,27,2 11}
logic operations. 0 4—~10¢r

@ Note: EZT=—(EeT).
@ Also: generalized / conditional union

and intersection (see reference cards).

Different syntax to highlight structure.

@ S« T:all (=the set of) the possible -
relations between S and T. x €dom(r) = 3y -x—yer
y€ran(r) = 3x-x—yEr
o r would be one of them. 1
r = {y—x|x—yer}

r € {meat, fish, pasta, bacon} <+ {carbs, protein, fat} - write a couple of relations.
dom(r), ran(r), relation with Sand T
How many different r may there be?



Types of relations mi dea 2

Total S« T reS< TAdom(r)=S5S
Surjective S«» T reS< TAran(r)=T
Both S«»T reS«<»TAreS«T

Can you classify the following relations?
(Use common sense; we are not looking for hidden corner cases)

@ Satellite € SkyBodies <+ SkyBodies @ SquareRoot € R <+ R
@ Riding € Person <+ MovingBicycle @ ThePreviousMoment € Time <+ Time

@ BirthDate € LivingPerson <+ Date

Hint: sets and relations are very useful modeling tools!

Operations on relations @i dea (%
| POLITECNICA
Image r[S] {y|x—=yernxeS}
Composition p;g {x—z|x—yeEpAy—z€cq}
Overriding p<q q U (dom(q) < p)
Identity id(S) {x—=x|xeS}
Overriding:

@ Take g, and add the tuples from p whose lhs are not already in q.
@ Or, take p and add ¢, overriding the tuples with the same Ihs.

Operations on relations

Domain restriction
Domain subtraction
Range restriction
Range subtraction

Assume Prey € Animal <+ Animal.
We mean hunter — hunted. The syntax of @ Mammal < Prey

the relation does not reveal its intended

semantics.

Some useful results, definitions

(r ™
dom(r1)
(S<ar)™t

(prq)!

p;(q;r)
pi(qur)

(p: q)[S]

r[SU T]

ran(r)
risS
ghpt
(piq);r
(pig) U (pir)
qlp(S]]
r[S]U r[T]

S<r {x—yer|xeS}
Sar {xw—yer|x¢gS}
r>T {x—yer|yeT}
reT {x—yer|ygT}

@ Mammal < Prey

@ Prey 1> Spiders
@ Fish <1 (Prey > Spiders)
@ Spiders < (Prey > Spiders)

r=r"t  symmetric
rnrl=g asymmetric

id(S) Cr  reflexive

rirCr transitive

Set-theoretic notation more readable than predicate calculus

r =

rl=vx,y - xeSAyeS=(x—ycrey—xecr)

dea
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Functions @i dea
@ Functions: one type of relations. Total function (dom(f) =S) S—T
@ Notation: f(x) =y =x—y € f. Partial function S»T
@ Every element in domain relates only
to one element in range. Injection: if f(x) = f(y), then x = y.
X yEfAxmzef=y=z Partia.li.nje.ction ST
Total injection S—T
@ WD conditions:
feS+»T —
: xe doz(f) Surjection: f € S<» T, ran(f) = T.
o ) Partial surjection S+»T
@ Using right type of function allows Total surjection ST
different proofs.
Bijection ST
An example of functions and relations: a strict society @i dea

Every person is man or woman

men C PERSON

=
t
2

[FoUTECNICAY

)

An example of functions and relations: a strict society

Every person is either a man or a woman.

Woman have at most one husband.
Men have at most one wife.
Mother are married women.

No person is man and woman at the same time.
Only women have husbands, who must be a man.

An example of functions and relations: a strict society

Every person is man or woman
No person is man and woman

men C PERSON
women = PERSON \ men

dea (%
[ POLITECNICA]
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An example of functions and relations: a strict society @i dea (%
Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men
Women have husbands (men)
At most one husband per woman husband € women -+ men

Men at most one wife

An example of functions and relations: a strict society @i dea m;m
Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men
Women have husbands (men)
At most one husband per woman husband € women -+ men
Men at most one wife
Mother are married women mother € PERSON -~ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = daughter =
spouse = sib/ing =
father = brother =

children =

An example of functions and relations: a strict society @i

Every person is man or woman
No person is man and woman
Women have husbands (men)

At most one husband per woman
Men at most one wife

Mother are married women

men C PERSON
women = PERSON \ men

husband € women — men

mother € PERSON -+ dom(husband)

An example of functions and relations: a strict society @i

Every person is man or woman
No person is man and woman
Women have husbands (men)

At most one husband per woman
Men at most one wife

Mother are married women

men C PERSON
women = PERSON \ men

husband € women — men

mother € PERSON -~ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband ™1
spouse =

father =

children =

daughter =
sibling =
brother =

dea
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An example of functions and relations: a strict society @mi dea (% An example of functions and relations: a strict society @mi dea (%

| POLTECNICA | POLTECNICA
Every person is man or woman men C PERSON Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men No person is man and woman women = PERSON \ men
Women have husbands (men) Women have husbands (men)
At most one husband per woman husband € women - men At most one husband per woman husband € women - men
Men at most one wife Men at most one wife
Mother are married women mother € PERSON -+ dom(husband) Mother are married women mother € PERSON -+ dom(husband)
Let us derive some relations (Double check with Rodin) Let us derive some relations (Double check with Rodin)
wife = husband ! daughter = wife = husband ! daughter =
spouse = husband U wife sibling = spouse = husband U wife sibling =
father = brother = father = mother: husband brother =
children = children =
An example of functions and relations: a strict society @i dea (% An example of functions and relations: a strict society @i dea (2
Every person is man or woman men C PERSON Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men No person is man and woman women = PERSON \ men
Women have husbands (men) Women have husbands (men)
At most one husband per woman husband € women ~ men At most one husband per woman husband € women - men
Men at most one wife Men at most one wife
Mother are married women mother € PERSON -+ dom(husband) Mother are married women mother € PERSON -+ dom(husband)
Let us derive some relations (Double check with Rodin) Let us derive some relations (Double check with Rodin)
wife = husband 1 daughter = wife = husband 1 daughter = children < women
spouse = husband U wife sibling = spouse = husband U wife sibling =
father = mother; husband brother = father = mother; husband brother =

children = (mother U father)~1 children = (mother U father) ™1



An example of functions and relations: a strict society @mi dea (%

Every person is man or woman
No person is man and woman
Women have husbands (men)

At most one husband per woman

Men at most one wife
Mother are married women

men C PERSON
women = PERSON \ men

husband € women ~ men

mother € PERSON -+ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband !
spouse = husband U wife
father = mother: husband

children = (mother U father) ™1

Properties

mother

spouse

sibling

cousin

father; father 1
father; mother™*
mother: father !
father; children

daughter = children <t women
sibling = (children—1; children) \ id(PERSON)
brother =

=i dea (%

father; wife
spouse_1
sibling ™!
cousin™*

mother; mother !
%)

6]

mother; children

An example of functions and relations: a strict society @i dea mé:ﬂm
Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men
Women have husbands (men)
At most one husband per woman husband € women -+ men
Men at most one wife
Mother are married women mother € PERSON -+ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband ™1 daughter = children <t women
spouse = husband U wife sibling = (children—?; children) \ id(PERSON)
father = mother: husband brother = sibling > men

children = (mother U father) ™1

Arithmetic =i dea (%

@ The usual (+, -, *, +) plus: mod, ~ (power).
@ card(set), min(set), max(set)



[§ James M. Henle, Jay L. Garfield, Thomas Tymoczko, and Emily Altreuter. Bi dea (X
Sweet Reason: A Field Guide to Modern Logic.
Wiley-Blackwell, 2nd edition, 211.

ISBN: 978-1-444-33715-0.



	First-order predicate calculus
	Sets
	Relations
	Functions
	Strict societies
	Arithmetic

