
Event B: First-Order Logic, Sets, Relations, Functions, Arithmetic1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Many slides borrowed from J. R. Abrial: see http://wiki.event-b.org/index.php/Event-B_Language

First-order predicate calculus .s. 3
Sets . s. 26
Relations . s. 32
Functions . s. 37
Strict societies . s. 38
Arithmetic . s. 52

The first-order predicate calculus and its rules

Handling of variables, expressions, quantifiers, instantiation.
An expression is a formal text denoting an object.
A predicate denotes nothing.
An expression cannot be proved.
A predicate cannot be evaluated.
Predicates and expressions are not interchangeable.
Expressions will be extended with set-theoretic and arithmetic notation.

First-order predicate calculus: informal

We have a universe of objects. We make statements about these objects. Sweet
Reason [HGTA11] is a delightful introduction to logic with examples.

∀x · P(x): For all elements x , P holds.
P can be arbitrarily complex.

∃x · P(x): For some element x , P holds.
P can be arbitrarily complex.

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y)
∃x · ∃y · l(x , y)
∀x · ∃y · l(x , y)
∃y · ∀x · l(x , y)
∀y · ∃x · l(x , y)
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y)
∀x · ∃y · l(x , y)
∃y · ∀x · l(x , y)
∀y · ∃x · l(x , y)
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y) at least a person loves someone
∀x · ∃y · l(x , y)
∃y · ∀x · l(x , y)
∀y · ∃x · l(x , y)
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y) at least a person loves someone
∀x · ∃y · l(x , y) everybody loves someone
∃y · ∀x · l(x , y)
∀y · ∃x · l(x , y)
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y) at least a person loves someone
∀x · ∃y · l(x , y) everybody loves someone
∃y · ∀x · l(x , y) there is someone who is loved by everybody
∀y · ∃x · l(x , y)
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y) at least a person loves someone
∀x · ∃y · l(x , y) everybody loves someone
∃y · ∀x · l(x , y) there is someone who is loved by everybody
∀y · ∃x · l(x , y) everybody is loved by someone
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y) at least a person loves someone
∀x · ∃y · l(x , y) everybody loves someone
∃y · ∀x · l(x , y) there is someone who is loved by everybody
∀y · ∃x · l(x , y) everybody is loved by someone
∃x · ∀y · l(x , y) there is someone who loves everybody
∀x · ¬l(x , x)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

l(x , y) x loves y
∀x · ∀y · l(x , y) everyone loves everyone else (including themself)
∃x · ∃y · l(x , y) at least a person loves someone
∀x · ∃y · l(x , y) everybody loves someone
∃y · ∀x · l(x , y) there is someone who is loved by everybody
∀y · ∃x · l(x , y) everybody is loved by someone
∃x · ∀y · l(x , y) there is someone who loves everybody
∀x · ¬l(x , x) no one loves themself

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(Counterexample?)

P(a)⇒ ∃x · P(x)

∀x · (P(x)⇒ B) ≡ (∃x · P(x)⇒ B)
(x 6∈ vars(B))

∀x · (P(x) ∧ Q(x)) ≡ ∀x · P(x) ∧ ∀x · Q(x)

∃x · (P(x) ∨ Q(x)) ≡ ∃x · P(x) ∨ ∃x · Q(x)

∀x · (P(x) ∨ Q(x)) 6≡ ∀x · P(x) ∨ ∀x · Q(x)

(Counterexample?)

∃x · (P(x) ∧ Q(x)) 6≡ ∃x · P(x) ∧ ∃x · Q(x)

(Counterexample?)

First-order predicate calculus: inference rulesInference Rules for Predicate Calculus 41

H, ∀x · P(x), P(E) ` Q

H, ∀x · P(x) ` Q
ALL L

where E is an expression

H ` P(x)

H ` ∀x · P(x)
ALL R

- In rule ALL R, variable x is not free in H

41

First-order predicate calculus: inference rules
Rules of Inference for Existential Quantification 44

H, P(x) ` Q

H, ∃x · P(x) ` Q
XST L

- In rule XST L, variable x is not free in H and Q

H ` P(E)

H ` ∃x · P(x)
XST R

where E is an expression

44

First-order predicate calculus: inference rules

Compare rules:
Comparing the Quantification Rules 45

H, ∀x · P(x), P(E) ` Q
H, ∀x · P(x) ` Q

ALL L
H ` P(x)

H ` ∀x · P(x)
ALL R

H, P(x) ` Q
H, ∃x · P(x) ` Q

XST L
H ` P(E)

H ` ∃x · P(x)
XST R

45

First-order predicate calculus: inference rules

Rules for equality (some already seen):
Equality Rules of Inference 48

H(F), E = F ` P(F)
H(E), E = F ` P(E)

EQ LR
H(E), E = F ` P(E)
H(F), E = F ` P(F)

EQ RL

` E = E EQL

H ` E = G ∧ F = I
H ` E 7→ F = G 7→ I

PAIR

48

Note: E 7→ F denotes a pair (E ,F)—we will use them later.

Set theory: membership

Event-B formal reasoning is built based on:
First-order logic inference rules (seen).
Set theory (to be touched upon).

Set theory as a foundation for relations, functions (and, therefore,
data structures).

Proofs often reduced to proving goals on sets.
We will briefly see how this is intuitively done.

Set theory: membership

A set is a well-defined collection of distinct objects.
Set theory is primary concerned the membership predicate

E ∈ S

E is an expression, S is a set.

Set theory: basic constructs
Set Theory: Basic Constructs 54

There are three basic constructs in set theory:

Cartesian product S × T

Power set P(S)

Comprehension 1 {x · x ∈ S ∧ P (x) | F (x)}

Comprehension 2 {x | x ∈ S ∧ P (x) }

where S and T are sets, x is a variable and P is a predicate.

54

S and T are sets, x is a variable, P is a predicate, F is an expression.

Set theory: basic constructs
Definitions

Defined by equivalences

E 7→ F ∈ S × T ≡ E ∈ S ∧ F ∈ T

S ∈ P(T) ≡ ∀x · x ∈ S ⇒ x ∈ T

E ∈ {x | x ∈ S ∧ P(x)} ≡ E ∈ S ∧ P(E)

E ∈ {x · x ∈ S ∧ P(x) | F (x)} ≡ ∃x · x ∈ S ∧ P(x) ∧ E = F (x)

Set theory: basic constructs
Examples

{1, 2, 3} × {a, b} = {1 7→ a, 1 7→ b, 2 7→ a, 2 7→ b, 3 7→ a, 3 7→ b}
P({1, 2, 3}) = {{1, 2, 3}, {1, 2}, {1, 3}, {2, 3}, {1}, {2}, {3},∅}

{x | x ∈ {2, 3, 4, 5} ∧ x mod 2 = 0} = {2, 4}
{x · x ∈ {2, 3, 4, 5} ∧ x mod 2 = 1 | x2} = {25, 9}

Reminder: A 7→ B is a tuple.
It is sometimes written as (A,B) in other formalisms.
Shortcut: m..n ≡ {x ∈ Z | m ≤ x ∧ x ≤ n}

{x | x ∈ N ∧ x < 2} × 8..10
{x · x ∈ 3..5 | x 7→ x ∗ x}

{n · n ∈ N | (0..n) 7→ n}

Operations on sets

S ⊆ T ≡ S ∈ P(T)

S = T ≡ S ⊆ T ∧ T ⊆ S

S ∪ T ≡ {x | x ∈ S ∨ x ∈ T}
S ∩ T ≡ {x | x ∈ S ∧ x ∈ T}
S \ T ≡ {x | x ∈ S ∧ x 6∈ T}

E ∈ {a, . . . , z} ≡ E = a ∨ . . . ∨ E = z

E ∈ ∅ ≡ ⊥

Operators based on membership and
logic operations.
Note: E 6∈ T ≡ ¬(E ∈ T).
Also: generalized / conditional union
and intersection (see reference cards).

Binay relations

A binary relation r ∈ S ↔ T is a subset
of their Cartesian product: r ⊆ S × T

Different syntax to highlight structure.

S ↔ T : all (= the set of) the possible
relations between S and T .

r would be one of them.

r ∈ 1..3↔ 7..11
r = {1 7→ 10, 2 7→ 7, 2 7→ 11}
4 7→ 10 6∈ r

x ∈ dom(r) ≡ ∃y · x 7→ y ∈ r

y ∈ ran(r) ≡ ∃x · x 7→ y ∈ r

r−1 ≡ {y 7→ x | x 7→ y ∈ r}

r ∈ {meat, fish, pasta, bacon}↔ {carbs, protein, fat} – write a couple of relations.
dom(r), ran(r), relation with S and T

How many different r may there be?

Types of relations

Total S ←↔ T r ∈ S ↔ T ∧ dom(r) = S
Surjective S ↔→ T r ∈ S ↔ T ∧ ran(r) = T
Both S ↔↔ T r ∈ S ↔→ T ∧ r ∈ S ←↔ T

Can you classify the following relations?
(Use common sense; we are not looking for hidden corner cases)

Satellite ∈ SkyBodies↔ SkyBodies

Riding ∈ Person↔MovingBicycle

BirthDate ∈ LivingPerson↔ Date

SquareRoot ∈ R↔ R
ThePreviousMoment ∈ Time↔ Time

Hint: sets and relations are very useful modeling tools!

Operations on relations

Domain restriction S C r {x 7→ y ∈ r | x ∈ S}
Domain subtraction S C− r {x 7→ y ∈ r | x 6∈ S}
Range restriction r B T {x 7→ y ∈ r | y ∈ T}
Range subtraction r B− T {x 7→ y ∈ r | y 6∈ T}

Assume Prey ∈ Animal ↔ Animal .
We mean hunter 7→ hunted . The syntax of
the relation does not reveal its intended
semantics.

Mammal C Prey

Mammal C− Prey

Prey B Spiders

Fish C (Prey B Spiders)

Spiders C− (Prey B Spiders)

Operations on relations

Image r [S] {y | x 7→ y ∈ r ∧ x ∈ S}
Composition p; q {x 7→ z | x 7→ y ∈ p ∧ y 7→ z ∈ q}
Overriding p C− q q ∪ (dom(q)C− p)
Identity id(S) {x 7→ x | x ∈ S}

Overriding:
Take q, and add the tuples from p whose lhs are not already in q.
Or, take p and add q, overriding the tuples with the same lhs.

Some useful results, definitions

(r−1)−1 = r

dom(r−1) = ran(r)
(S C r)−1 = r−1 B S

(p; q)−1 = q−1; p−1

p; (q; r) = (p; q); r

p; (q ∪ r) = (p; q) ∪ (p; r)

(p; q)[S] = q[p[S]]

r [S ∪ T] = r [S] ∪ r [T]

r = r−1 symmetric
r ∩ r−1 = ∅ asymmetric
id(S) ⊆ r reflexive
r ; r ⊆ r transitive

Set-theoretic notation more readable than predicate calculus
r = r−1 ≡ ∀x , y · x ∈ S ∧ y ∈ S ⇒ (x 7→ y ∈ r ⇔ y 7→ x ∈ r)

Functions

Functions: one type of relations.
Notation: f (x) = y ≡ x 7→ y ∈ f .
Every element in domain relates only
to one element in range.

x 7→ y ∈ f ∧ x 7→ z ∈ f ⇒ y = z

WD conditions:
f ∈ S 7→ T
x ∈ dom(f)

Using right type of function allows
different proofs.

Total function (dom(f) = S) S → T
Partial function S 7→ T

Injection: if f (x) = f (y), then x = y .
Partial injection S 7� T
Total injection S� T

Surjection: f ∈ S ↔ T , ran(f) = T .
Partial surjection S 7� T
Total surjection S � T

Bijection S�� T

An example of functions and relations: a strict society

Every person is either a man or a woman.
No person is man and woman at the same time.
Only women have husbands, who must be a man.
Woman have at most one husband.
Men have at most one wife.
Mother are married women.

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON

No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men

Women have husbands (men)
husband ∈ women 7�menAt most one husband per woman

Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife

Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife =
spouse =
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse =
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father =
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children =

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter =
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter = children C women
sibling =
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter = children C women
sibling = (children−1; children) \ id(PERSON)
brother =

An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON
No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Let us derive some relations (Double check with Rodin)

wife = husband−1

spouse = husband ∪ wife
father = mother ; husband
children = (mother ∪ father)−1

daughter = children C women
sibling = (children−1; children) \ id(PERSON)
brother = sibling Bmen

Properties

mother = father ;wife

spouse = spouse−1

sibling = sibling−1

cousin = cousin−1

father ; father−1 = mother ;mother−1

father ;mother−1 = ∅
mother ; father−1 = ∅
father ; children = mother ; children

Arithmetic

The usual (+, -, *, ÷) plus: mod, ˆ (power).
card(set), min(set), max(set)

James M. Henle, Jay L. Garfield, Thomas Tymoczko, and Emily Altreuter.
Sweet Reason: A Field Guide to Modern Logic.
Wiley-Blackwell, 2nd edition, 211.
ISBN: 978-1-444-33715-0.

	First-order predicate calculus
	Sets
	Relations
	Functions
	Strict societies
	Arithmetic

