
One-Way Bridge1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Example and many slides borrowed from J. R. Abrial

Goals . s. 3
Requirements . s. 7
Initial model . s. 16
First refinement: one-way bridge . s. 28
Second refinement: traffic lights . s. 53
Third refinement: sensors . s. 107

Goals of this chapter

Example of reactive system
development.
Including modeling the environment.
Invariants: capture requirements.

Invariant preservation will prove that
requirements are respected.

Increasingly accurate models
(refinement).

Refinements “zoom in”, see more
details.
Models separately proved correct.

Final system: correct by construction.
Correctness criteria: proof obligations.
Proofs: helped by theorem provers
working on sequent calculus.

Difference with previous examples

Previous examples were transformational.
Input⇒ transformation⇒ output.

Current example:
Interaction with environment.

Sensors and communication channels:
Hardware sensors modeled with events.
Channels modeled with variables.

mailto:manuel.carro@upm.es

Correctness within an environment

Control software reads sensor, raises
barrier.

If conditions allow it.

Software behavior relies on
environment:

Cars stop on a closed barrier.
Cars drive over sensor.
. . .

Correctness proofs: take this behavior
into account.

Model external actions as events.
E.g., sensor signal raised by event.
Following expected behavior.

Software control also events.
Everything subject to proofs.

Correctness within an environment

Control software reads sensor, raises
barrier.

If conditions allow it.

Software behavior relies on
environment:

Cars stop on a closed barrier.
Cars drive over sensor.
. . .

Correctness proofs: take this behavior
into account.

Model external actions as events.
E.g., sensor signal raised by event.
Following expected behavior.

Software control also events.
Everything subject to proofs.

Requirements document

Large reactive systems difficult to specify from the outset.
Building it piece-wise, ensuring it meets (natural-language)
requirements: a way towards ensuring we have a detailed system
specification that is provable correct.

Two kinds of requirements:
Concerned with the equipment (EQP).
Concerned with function of system (FUN).

Objective: control cars on a narrow bridge.
Bridge links the mainland to (small) island.

RequirementsA Requirements Document (2) 6

The system is controlling cars on a bridge
between the mainland and an island FUN-1

- This can be illustrated as follows

Bridge MainlandIsland

6

RequirementsA Requirements Document (3) 7

- The controller is equipped with two traffic lights with two colors.

The system has two traffic lights with two
colors: green and red EQP-1

7

RequirementsA Requirements Document (4) 8

- One of the traffic lights is situated on the mainland and the other

one on the island. Both are close to the bridge.

- This can be illustrated as follows

Bridge MainlandIsland

8

RequirementsA Requirements Document (5) 9

The traffic lights control the entrance to the
bridge at both ends of it EQP-2

- Drivers are supposed to obey the traffic light by not passing when

a traffic light is red.

Cars are not supposed to pass on a red traffic
light, only on a green one EQP-3

9

RequirementsA Requirements Document (6) 10

- There are also some car sensors situated at both ends of the bridge.

- These sensors are supposed to detect the presence of cars

intending to enter or leave the bridge.

- There are four such sensors. Two of them are situated on the bridge

and the other two are situated on the mainland and on the island.

The system is equipped with four car sensors
each with two states: on or off EQP-4

10

RequirementsA Requirements Document (7) 11

The sensors are used to detect the presence
of cars entering or leaving the bridge EQP-5

- The pieces of equipment can be illustrated as follows:

BridgeIsland Mainland

traffic light
sensor

11

RequirementsA Requirements Document (8) 12

- This system has two main constraints: the number of cars

on the bridge and the island is limited and the bridge is one way.

The number of cars on the bridge and the island
is limited FUN-2

The bridge is one way or the other, not both at the
same time FUN-3

12

Strategy

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3)
Third refinement Introducing the sensors (EQP-4,5)

Initial model

We ignore the equipment (traffic lights and sensors).
We do not consider the bridge.
We focus on the pair island + bridge.
FUN-2: limit number of cars on island + bridge.

Situation from the skyA Situation as Seen from the Sky 19

M a i n l a n d
I s l a n d

+ b r i d g e

19

Situation from the skyTwo Events that may be Observed 20

ML_out

ML_in

20

Formalization of state
X Create project Cars, context c0, machine m0, add constant, axiom, variable, invariants, initializa-
tion

Static part (context):

constant: d

axm0_1: d ∈ N

d is the maximum number of cars allowed
in island + bridge.

Dynamic part (machine):
variable: n

inv0_1: n ∈ N
inv0_2: n ≤ d

n number of cars in island + bridge
Always smaller than or equal to d (FUN_2)

Labels axm0_1, inv0_1, chosen
systematically.
Label axm, inv recalls purpose.
0 (as in inv0_1): initial model.

Later: inv1_ 1 for invariant 1 of
refinement 1, etc.

Any systematic convention is valid.

Situation from the skyEvent ML out 24

- This is the first transition (or event) that can be observed

- A car is leaving the mainland and entering the Island-Bridge

Before After

ML_out

- The number of cars in the Island-Bridge is incremented

24

Situation from the skyEvent ML in 25

- We can also observe a second transition (or event)

- A car leaving the Island-Bridge and re-entering the mainland

Before

ML_in

After

- The number of cars in the Island-Bridge is decremented

25

Situation from the sky
X Create events ML_out, ML_in. Add actions. Guards?Formalizing the two Events: an Approximation 26

- Event ML out increments the number of cars

ML out
n := n + 1

- Event ML in decrements the number of cars

ML in
n := n − 1

- An event is denoted by its name and its action (an assignment)

26

Events

INITIALISATION
n := 0

Event ML_out
where

n < d
then

n := n + 1
end

Event ML_in
where

0 < n
then

n := n − 1
end

ML_out/inv0_1/INV d ∈ N, n ∈ N, n ≤ d , n < d ` n + 1 ∈ N
ML_out/inv0_2/INV d ∈ N, n ∈ N, n ≤ d , n < d ` n + 1 ≤ d

ML_in/inv0_1/INV d ∈ N, n ∈ N, n ≤ d , 0 < n ` n − 1 ∈ N
ML_in/inv0_2/INV d ∈ N, n ∈ N, n ≤ d , n < d ` n − 1 < d

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
That translates into (some) event(s)
always enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m `
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ` n < d ∨ 0 < n

X Add invariant at the end, mark as
theorem.

Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
That translates into (some) event(s)
always enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m `
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ` n < d ∨ 0 < n

X Add invariant at the end, mark as
theorem.
Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
That translates into (some) event(s)
always enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m `
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ` n < d ∨ 0 < n

X Add invariant at the end, mark as
theorem.
Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Progress

It is common to require that physical
systems progress.
We want cars to be able to either enter
or exit.
That translates into (some) event(s)
always enabled.
Depends on guards: deadlock
freedom.

A1...l , I1...m `
n∨

i=1
Gi (v , c)

In our case:
d ∈ N, n ∈ N, n ≤ d ` n < d ∨ 0 < n

X Add invariant at the end, mark as
theorem.
Cannot be proven!

Why? Let us find out in which cases
events may be in deadlock.

Solve ¬(n > 0 ∨ n < d).

If d = 0, no car can enter! Missing
axiom: 0 < d . Add it.

Note that we are calculating the
model.

Strategy

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3)
Third refinement Introducing the sensors (EQP-4,5)

Physical system (reminder)Reminder of the physical system 84

BridgeIsland Mainland

traffic light
sensor

84

One-way bridge

We introduce the bridge.
We refine the state and the events.
We also add two new events: IL_in and IL_out.
We are focusing on FUN-3: one-way bridge.

One-way bridge

First Refinement: Introducing a one Way Bridge 86

IL_in

I s l a n d

I s l a n d

One Way
Bridge

ML_out

IL_out ML_in

86

One-way bridgeIntroducing Three New Variables: a, b, and c 87

b

a

c

- a denotes the number of cars on bridge going to island

- b denotes the number of cars on island

- c denotes the number of cars on bridge going to mainland

- a, b, and c are the concrete variables

- They replace the abstract variable n

87

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 ??
Formalization of one-way bridge (FUN-3) inv1_5 ??

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to justify the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing the requirement.

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 a + b + c = n
Formalization of one-way bridge (FUN-3) inv1_5 ??

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to justify the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing the requirement.

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 a + b + c = n
Formalization of one-way bridge (FUN-3) inv1_5 a = 0 ∨ c = 0

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to justify the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing the requirement.

Refining state: invariants

Cars on bridge going to island inv1_1 a ∈ N
Cars on island inv1_2 b ∈ N
Cars on bridge to mainland inv1_3 c ∈ N
Linking new variables to previous model inv1_4 a + b + c = n
Formalization of one-way bridge (FUN-3) inv1_5 a = 0 ∨ c = 0

inv1_4 glues the abstract state n with the concrete state a, b, c

A new class of invariant
Note that we are not finding an invariant to justify the correctness (=
postcondition) of a loop. We are establishing an invariant to capture a
requirement and we want the model to preserve the invariant,
therefore implementing the requirement.

Event refinement proposalProposal for Refining Event ML out 91

ML_out

a

ML out
when
a + b < d
c = 0

then
a := a + 1

end

91

Event ML_out
where

????

then
????

end

Proposal for Refining Event ML in 92

ML_in

c

ML in
when
0 < c

then
c := c − 1

end

92

Event ML_in
where

????
then

????
end

Event refinement proposalProposal for Refining Event ML out 91

ML_out

a

ML out
when
a + b < d
c = 0

then
a := a + 1

end

91

Event ML_out
where

a + b < d
c = 0

then
a := a + 1

end

Proposal for Refining Event ML in 92

ML_in

c

ML in
when
0 < c

then
c := c − 1

end

92

Event ML_in
where

????
then

????
end

Event refinement proposalProposal for Refining Event ML out 91

ML_out

a

ML out
when
a + b < d
c = 0

then
a := a + 1

end

91

Event ML_out
where

a + b < d
c = 0

then
a := a + 1

end

Proposal for Refining Event ML in 92

ML_in

c

ML in
when
0 < c

then
c := c − 1

end

92

Event ML_in
where

0 < c
then

c := c − 1
end

In Rodin. . .

Right-click on m0.
Select Refine.
Name it (m1).
Remove variable n.
Introduce variables, invariants.
Edit existing events by changing them from “extended” to “not
extended” (mouse click).

a ∈ N
b ∈ N
c ∈ N

a + b + c = n

a = 0 ∨ c = 0

Event ML_out
where

a + b < d
c = 0

then
a := a + 1

end

Event ML_in
where

0 < c
then

c := c − 1
end

Refinement POs (reminder)

Every concrete guard is stronger than abstract guard.
Every concrete simulation is simulated by abstract action.

ML_out / GRD:
d ∈ N, 0 < d , n ∈ N, n ≤ d , a ∈ N, b ∈ N, c ∈
N, a + b + c = n, a = 0 ∨ c = 0, a + b < d , c = 0 ` n < d

ML_in / GRD:
d ∈ N, 0 < d , n ∈ N, n ≤ d , a ∈ N, b ∈
N, c ∈ N, a + b + c = n, a = 0 ∨ c = 0, 0 < c ` 0 < n

New events

New events add transitions without abstract counterpart.
Refining skip .
Can be seen as internal steps (w.r.t. abstract model).
Only perceived by observer who is zooming in.

Proposal for new eventsNew Event IL in 125

IL_in

ab

IL in
when
0 < a

then
a := a − 1
b := b + 1

end

125

Event IL_in
where

????
then

????

end

New Event IL out 126

IL_out

b c

IL out
when
0 < b
a = 0

then
b := b − 1
c := c + 1

end

126

Event IL_out
where

????

then
????

end

Proposal for new eventsNew Event IL in 125

IL_in

ab

IL in
when
0 < a

then
a := a − 1
b := b + 1

end

125

Event IL_in
where

0 < a
then

a := a− 1
b := b + 1

end

New Event IL out 126

IL_out

b c

IL out
when
0 < b
a = 0

then
b := b − 1
c := c + 1

end

126

Event IL_out
where

????

then
????

end

Proposal for new eventsNew Event IL in 125

IL_in

ab

IL in
when
0 < a

then
a := a − 1
b := b + 1

end

125

Event IL_in
where

0 < a
then

a := a− 1
b := b + 1

end

New Event IL out 126

IL_out

b c

IL out
when
0 < b
a = 0

then
b := b − 1
c := c + 1

end

126

Event IL_out
where

0 < b
a = 0

then
c := c + 1
b := b − 1

end

POs and convergence of new events

New events refine implicit “void” event
(skip action, true guards).

No previous history to respect.
Guard strengthening (GR): trivial
(implicit event has true guards).
Simulation (SIM) trivial: the updates
to a, b, c do not change n⇒ no new
abstract states introduced.

Need to prove invariants.

Termination: meaningful events are
eventually not eligible any more.

Finish event: artifact to mark when
computation is successful.

Convergence: a generalization of
termination.

Events from a subset of (convergent)
events are eligible for a bounded
time.
Right after this, only events outside
this subset are eligible.
Then, convergent events can be
eligible again.
Avoid lifelocks⇒ computation
progress.

Convergence of new events

Events ML_in and ML_out can
alternate ad infinitum.

But new eventsmust not diverge:

IL_in, IL_out should not be enabled
without limits.

Not physically observable.

It should not happen in our model.

Ensure it does not happen without
imposing unnecessary scheduling
restrictions? (Dangerous!)

Idea: create a variant that ensures
IL_in, IL_out not indefinitely enabled.

Reminder:

IL_in

a := a − 1
b := b + 1

IL_out

c := c + 1
b := b − 1

We need an f s.t.:
f (a, b, c) > f (a− 1, b + 1, c)

f (a, b, c) > f (a, b − 1, c + 1)

Calculate it! X Add variant!
Note: ignoring guards here – not necessary.
Other cases may need them. See PO scheme in
Search slides.

Convergence of new events

Events ML_in and ML_out can
alternate ad infinitum.

But new eventsmust not diverge:

IL_in, IL_out should not be enabled
without limits.

Not physically observable.

It should not happen in our model.

Ensure it does not happen without
imposing unnecessary scheduling
restrictions? (Dangerous!)

Idea: create a variant that ensures
IL_in, IL_out not indefinitely enabled.

Reminder:

IL_in

a := a − 1
b := b + 1

IL_out

c := c + 1
b := b − 1

We need an f s.t.:
f (a, b, c) > f (a− 1, b + 1, c)

f (a, b, c) > f (a, b − 1, c + 1)

Calculate it! X Add variant!
Note: ignoring guards here – not necessary.
Other cases may need them. See PO scheme in
Search slides.

We can posit a simple f : f (a, b, c) = k1a + k2b + k3c

Therefore:
k1a + k2b + k3c > k1(a− 1) + k2(b + 1) + k3c
k1a + k2b + k3c > k1a) + k2(b − 1) + k3(c + 1)

Simplifying and solving:
k1 > k2 > k3

The simplest selection:
k1 = 2, k2 = 1, k3 = 0

VAR: 2a + b

Moreover:
if a ∈ N, b ∈ N, then 2a + b ∈ N.

Bridge after first refinement

Progress: (relative) deadlock freedom

Ensure no new deadlocks introduced.
If concrete model deadlocks, it is
because abstract model also did.
Gi (c , v) abstract guards, Hi (c , v)
concrete guards:

A1...l(c), I1...m(c , v),
n∨

i=1
Gi (c , v) `

p∨
i=1

Hi (c , v)

Optional PO (depends on system).

X Add invariant:

n∨
i=1

Gi (c , v)⇒
p∨

i=1

Hi (c , v)

XMark as theorem.
No need to check per event.
Invariant preservation will generate
the right PO.

Complete sequent
d ∈ N, 0 < d , n ∈ N, n ≤ d , a ∈ N, b ∈ N, c ∈ N, a + b +
c = n, a = 0 ∨ c = 0, 0 < n ∨ n < d ` (a + b < d ∧ c = 0) ∨ c >

0 ∨ a > 0 ∨ (b > 0 ∧ a = 0)

Discharged POs

Strategy

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3)
Third refinement Introducing the sensors (EQP-4,5)

Introducing traffic lightsSecond Refinement: Introducing Traffic Lights 157

M A I N L A N D

il_tl

ml_tl

I S L A N D

ML_out

IL_out

157

At the end of the refinement...

When developing, we often do not know where we are going.
For pedagogical reasons: this is where we will end in this refinement.

Introducing traffic lights
Extending the Constants 158

set: COLOR

constants: red, green

axm2 1: COLOR = {green, red}

axm2 2: green 6= red

158

X Create context COLORS
X Introduce in context: set, constants, axioms.
X Refine machine m1, create m2 .
XMake m2 see COLORS

Introducing traffic lightsExtending the Variables 159

il tl ∈ COLOR ml tl ∈ COLOR

Remark: Events IL in and ML in are not modified in this refinement

159

X Add variables, invariants to m2

Introducing traffic lights: leaving mainlandExtending the Invariant (1) 160

ml_tl

c

b

a

- A green mainland traffic light implies safe access to the bridge

160

Invariant?

ml_tl = green⇒ c = 0 ∧ a + b < d

Introducing traffic lights: leaving mainlandExtending the Invariant (1) 160

ml_tl

c

b

a

- A green mainland traffic light implies safe access to the bridge

160

Invariant: ml_tl = green⇒ c = 0 ∧ a + b < d

Refining ML_out

ML_out was enabled
depending on # of cars in
system.
But in reality a car cannot
now that.
It will now depend on
state of traffic light.

Refining Event ML out 163

a

ML_out

(abstract)ML out
when
c = 0
a + b < d

then
a := a + 1

end

(concrete)ML out
when
ml tl = green

then
a := a + 1

end

163

Abstract
Event ML_out

where
c = 0
a + b < d

then
a := a + 1

end

Concrete
Event ML_out

where
??????

then
??????

end

Refining ML_out

ML_out was enabled
depending on # of cars in
system.
But in reality a car cannot
now that.
It will now depend on
state of traffic light.

Refining Event ML out 163

a

ML_out

(abstract)ML out
when
c = 0
a + b < d

then
a := a + 1

end

(concrete)ML out
when
ml tl = green

then
a := a + 1

end

163

Abstract
Event ML_out

where
c = 0
a + b < d

then
a := a + 1

end

Concrete
Event ML_out

where
mt_tl = green

then
a := a + 1

end

Introducing traffic lights: leaving island
Extending the Invariant (2) 164

c

b

a

il_tl

- A green island traffic light implies safe access to the bridge

164

Invariant?

il_tl = green⇒ a = 0 ∧ b > 0

A note on b > 0: il_tl green signals cars in island they may pass. It does not make sense to let
them pass if there is no car in the island; it would not align with intention of IL_out. The invariant
helps ensure that the light does not turn green if the island is empty.

Introducing traffic lights: leaving island
Extending the Invariant (2) 164

c

b

a

il_tl

- A green island traffic light implies safe access to the bridge

164

Invariant: il_tl = green⇒ a = 0 ∧ b > 0

A note on b > 0: il_tl green signals cars in island they may pass. It does not make sense to let
them pass if there is no car in the island; it would not align with intention of IL_out. The invariant
helps ensure that the light does not turn green if the island is empty.

Refining IL_out
Refining Event IL out 167

c

IL_out

b

(abstract)IL out
when
a = 0
0 < b

then
b, c := b − 1, c + 1

end

(concrete)IL out
when
il tl = green

then
b, c := b − 1, c + 1

end

167

Abstract
Event IL_out

where
a = 0
b > 0

then
b := b − 1
c := c + 1

end

Concrete
Event IL_out

where
??????

then
??????

end

Refining IL_out
Refining Event IL out 167

c

IL_out

b

(abstract)IL out
when
a = 0
0 < b

then
b, c := b − 1, c + 1

end

(concrete)IL out
when
il tl = green

then
b, c := b − 1, c + 1

end

167

Abstract
Event IL_out

where
a = 0
b > 0

then
b := b − 1
c := c + 1

end

Concrete
Event IL_out

where
il_tl = green

then
b := b − 1
c := c + 1

end

Status so far

il_tl ∈ COLOR
ml_tl ∈ COLOR
il_tl = green⇒ a = 0 ∧ b > 0
ml_tl = green⇒ c = 0 ∧ a + b < d

X Add invariants.
X Change initialization, ML_out, IL_out to
“non extended”.
X INITIALIZE variables, change guards.

Several INV not proven.
We will come back to them.

Event ML_out
where

ml_tl = green
then

a := a + 1
end

Event IL_out
where

i l _ t l = green
then

b := b − 1
c := c + 1

end

Changing traffic lights

Car entering event visible when traffic
light so allows.

We will eventually control traffic
lights.

When do traffic lights change?
First approximation: correct
simulation.

Traffic lights may change at any
moment it is not wrong to do so.
We are removing wrong behaviors.

We can observe traffic light changes
with associated events.

X Add new events.

Event ML_tl_green
where // Mainland t r a f . l i g h t

?????

ml_tl = red
c = 0
a + b < d

then
ml_tl := green

end

Event IL_t l_green
where // I s l a n d t r a f . l i g h t

?????

il_tl = red
a = 0
b > 0

then
il_tl := green

end

Changing traffic lights

Car entering event visible when traffic
light so allows.

We will eventually control traffic
lights.

When do traffic lights change?
First approximation: correct
simulation.

Traffic lights may change at any
moment it is not wrong to do so.
We are removing wrong behaviors.

We can observe traffic light changes
with associated events.

X Add new events.

Event ML_tl_green
where // Mainland t r a f . l i g h t

ml_tl = red
c = 0
a + b < d

then
ml_tl := green

end

Event IL_t l_green
where // I s l a n d t r a f . l i g h t

?????

il_tl = red
a = 0
b > 0

then
il_tl := green

end

Changing traffic lights

Car entering event visible when traffic
light so allows.

We will eventually control traffic
lights.

When do traffic lights change?
First approximation: correct
simulation.

Traffic lights may change at any
moment it is not wrong to do so.
We are removing wrong behaviors.

We can observe traffic light changes
with associated events.
X Add new events.

Event ML_tl_green
where // Mainland t r a f . l i g h t

ml_tl = red
c = 0
a + b < d

then
ml_tl := green

end

Event IL_t l_green
where // I s l a n d t r a f . l i g h t

il_tl = red
a = 0
b > 0

then
il_tl := green

end

Summary of refinement so far

Variables, invariants

variables: a, b, c , ml_tl , il_tl

inv2_1: ml_tl ∈ COLOR

inv2_2: il_tl ∈ COLOR

inv2_3: il_tl = green⇒ a = 0 ∧ b > 0

inv2_4: ml_tl = green⇒
c = 0 ∧ a + b < d

Pending refinement proofs

Simulation (SIM).
Nothing to do: refined events have
same actions.

Guard strengthening (GRD).
Guards have changed.
Easy: invariants directly imply GRD.

Invariant establishment and
preservation (INV).

New invariants, new events.

Issues in POs

Some INV POs were not discharged.
Some look like

H ` ⊥
Would be discharged if H were
inconsistent.
Further examination:

Some H containsml_tl = green
and il_tl = green.
I.e., both traffic lights are green.
That should not be allowed.
Or require inferringml_tl = green
when il_tl = green (equivalent).

We are missing an invariant

inv2_5 : ml_tl = red ∨ il_tl = red

(FUN-3 and EQP-3)

This allows some proofs to be
completed.

X Add it

Issues in POs

Some INV POs were not discharged.
Some look like

H ` ⊥
Would be discharged if H were
inconsistent.
Further examination:

Some H containsml_tl = green
and il_tl = green.
I.e., both traffic lights are green.
That should not be allowed.
Or require inferringml_tl = green
when il_tl = green (equivalent).

We are missing an invariant

inv2_5 : ml_tl = red ∨ il_tl = red

(FUN-3 and EQP-3)

This allows some proofs to be
completed.

X Add it

Status of proofs

Done Pending
ML_out / inv2_4 / INV ML_out / inv2_3 / INV
IL_out / inv2_3 / INV IL_out / inv2_4 / INV

ML_tl_green / inv2_5 / INV
IL_tl_green / inv2_5 / INV

Issues in POs

Event ML_out
where

ml_tl = green
then

a := a + 1
end

Preservation of
a+b < d ,ml_tl = green ` a+1+b < d
fails.
The nth car to enter the island should
force traffic light to become red.
X Split event corresponding to car
entering bridge into two different
cases: last car and non-last car.

Event ML_out_1
where

ml_tl = green
a + 1 + b < d

then
a := a + 1

end

Event ML_out_2
where

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_tl := red

end

Issues in POs

Event IL_out
where

i l _ t l = green
then

b := b − 1
c := c + 1

end

IL_out / inv2_4 / INV fails.
0 < b ` 0 < b − 1.
The last car to leave the island should
turn the island traffic light red.
Again, two different cases.
X Add to the model.

Event IL_out_1
where

i l _ t l = green
b 6= 1

then
b , c := b − 1 , c + 1

end

Event IL_out_2
where

i l _ t l = green
b = 1

then
b , c := b − 1 , c + 1
i l _ t l := red

end

Status of proofs

Done Pending
ML_out / inv2_4 / INV ML_tl_green / inv2_5 / INV
IL_out / inv2_3 / INV IL_tl_green / inv2_5 / INV

ML_out_{1,2} / inv2_3 / INV
IL_out_{1,2} / inv2_4 / INV

Proving inv2_5

inv2_5: ml_tl = red ∨ il_tl = red

Not preserved by ML_tl_green, IL_tl_green.
There is an state where ML_tl_green and IL_tl_green can fire sequentially.

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
??????

il_tl := red

end

Event IL_t l_green
where

il_tl = red
0 < b
a = 0

then
il_tl := green
??????

ml_tl := red

end

Proving inv2_5

inv2_5: ml_tl = red ∨ il_tl = red

Not preserved by ML_tl_green, IL_tl_green.
There is an state where ML_tl_green and IL_tl_green can fire sequentially.

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
il_tl := red

end

Event IL_t l_green
where

il_tl = red
0 < b
a = 0

then
il_tl := green
??????

ml_tl := red

end

Proving inv2_5

inv2_5: ml_tl = red ∨ il_tl = red

Not preserved by ML_tl_green, IL_tl_green.
There is an state where ML_tl_green and IL_tl_green can fire sequentially.

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
il_tl := red

end

Event IL_t l_green
where

il_tl = red
0 < b
a = 0

then
il_tl := green
ml_tl := red

end

Proving inv2_5

inv2_5: ml_tl = red ∨ il_tl = red

Not preserved by ML_tl_green, IL_tl_green.
There is an state where ML_tl_green and IL_tl_green can fire sequentially.

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
il_tl := red

end

Event IL_t l_green
where

il_tl = red
0 < b
a = 0

then
il_tl := green
ml_tl := red

end

X Add actions

Divergence

At this point, all invariants for requirements in this refinement are
preserved (safety). We can think about liveness.

Event firing may happen without leading to system progress.
Other (necessary) events may not take place.

Called “livelock” in concurrent programming.
Events that do not clearly change a bounded expression or
variablea are suspicious.
New events in particular — remember we already proved
convergence of IL_in and IL_out

a“Clearly” does not ensure; properties should anyway be proven.

Divergence

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0

then
ml_tl := green
il_tl := red

end

Event IL_t l_green
where

il_tl = red
0 < b
a = 0

then
il_tl := green
ml_tl := red

end

Guards depend on a, b, c and traffic
lights.
ml_tl = red and il_tl = red (in guards)
alternatively set by the other event.

The rest of the guards are
simultaneously true when
a = c = 0, 0 < b < d .
Traffic lights could alternatively
change colors w.o. control.

Alternating traffic lightsML tl green and IL tl green can run for ever 218

IL ML

ml_tl

il_tl

a=0

c=0

218

Alternating traffic lightsML tl green and IL tl green can run for ever 219

IL ML

ml_tl

il_tl

a=0

c=0

219

Alternating traffic lightsML tl green and IL tl green can run for ever 220

IL ML

ml_tl

il_tl

a=0

c=0

220

Alternating traffic lightsML tl green and IL tl green can run for ever 221

IL ML

ml_tl

il_tl

a=0

c=0

221

Alternating traffic lightsML tl green and IL tl green can run for ever 222

IL ML

ml_tl

il_tl

a=0

c=0

222

Alternating traffic lightsML tl green and IL tl green can run for ever 223

IL ML

ml_tl

il_tl

a=0

c=0

223

Prove convergence: variant

We have seen that there is divergence.
Adding a variant does not help: it does
not change behavior (just checks it!).
We need to add a way to control when
events are enabled.

Allow lights to turn green only when a
car has passed in the other direction
since it turned red.
Two additional variables:
inv2_6: ml_pass ∈ {0, 1}
inv2_7: ll_pass ∈ {0, 1}
We update them when cars go out of
mainland and out of the island.

Concerns:

Is it safe?

Yes. We are not letting traffic lights be
green when inadequate. Other
invariants will be not provable
otherwise.

Isn’t traffic going to stop circulating?

Perhaps. Anyway we were letting
traffic lights change color, and stating
when it is not safe to do so. We will
deal with that.

Prove convergence: variant

We have seen that there is divergence.
Adding a variant does not help: it does
not change behavior (just checks it!).
We need to add a way to control when
events are enabled.
Allow lights to turn green only when a
car has passed in the other direction
since it turned red.
Two additional variables:
inv2_6: ml_pass ∈ {0, 1}
inv2_7: ll_pass ∈ {0, 1}
We update them when cars go out of
mainland and out of the island.

Concerns:

Is it safe?

Yes. We are not letting traffic lights be
green when inadequate. Other
invariants will be not provable
otherwise.

Isn’t traffic going to stop circulating?

Perhaps. Anyway we were letting
traffic lights change color, and stating
when it is not safe to do so. We will
deal with that.

Prove convergence: variant

We have seen that there is divergence.
Adding a variant does not help: it does
not change behavior (just checks it!).
We need to add a way to control when
events are enabled.
Allow lights to turn green only when a
car has passed in the other direction
since it turned red.
Two additional variables:
inv2_6: ml_pass ∈ {0, 1}
inv2_7: ll_pass ∈ {0, 1}
We update them when cars go out of
mainland and out of the island.

Concerns:

Is it safe?

Yes. We are not letting traffic lights be
green when inadequate. Other
invariants will be not provable
otherwise.

Isn’t traffic going to stop circulating?

Perhaps. Anyway we were letting
traffic lights change color, and stating
when it is not safe to do so. We will
deal with that.

Prove convergence: variant

We have seen that there is divergence.
Adding a variant does not help: it does
not change behavior (just checks it!).
We need to add a way to control when
events are enabled.
Allow lights to turn green only when a
car has passed in the other direction
since it turned red.
Two additional variables:
inv2_6: ml_pass ∈ {0, 1}
inv2_7: ll_pass ∈ {0, 1}
We update them when cars go out of
mainland and out of the island.

Concerns:

Is it safe?

Yes. We are not letting traffic lights be
green when inadequate. Other
invariants will be not provable
otherwise.

Isn’t traffic going to stop circulating?

Perhaps. Anyway we were letting
traffic lights change color, and stating
when it is not safe to do so. We will
deal with that.

Prove convergence: variant

We have seen that there is divergence.
Adding a variant does not help: it does
not change behavior (just checks it!).
We need to add a way to control when
events are enabled.
Allow lights to turn green only when a
car has passed in the other direction
since it turned red.
Two additional variables:
inv2_6: ml_pass ∈ {0, 1}
inv2_7: ll_pass ∈ {0, 1}
We update them when cars go out of
mainland and out of the island.

Concerns:

Is it safe?

Yes. We are not letting traffic lights be
green when inadequate. Other
invariants will be not provable
otherwise.

Isn’t traffic going to stop circulating?

Perhaps. Anyway we were letting
traffic lights change color, and stating
when it is not safe to do so. We will
deal with that.

Modifications to avoid divergence
Event ML_out_1

where
ml_tl = green
a + 1 + b < d

then
a := a + 1
ml_pass := 1

end

Event IL_out_1
where

i l _ t l = green
b 6= 1

then
b := b − 1
c := c + 1
il_pass := 1

end

Event ML_out_2
where

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_tl := red
ml_pass := 1

end

Event IL_out_2
where

i l _ t l = green
b = 1

then
b := b − 1
c := c + 1
i l _ t l := red
il_pass := 1

end

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0
il_pass = 1

then
ml_tl := green
i l _ t l := red
ml_pass := 0

end

Event IL_t l_green
where

i l _ t l = red
0 < b
a = 0
ml_pass = 1

then
i l _ t l := green
ml_tl := red
il_pass := 0

end

Divergence, once more

Proving non-divergence (X Add VARIANT to model):

variant_2 :ml_pass + il_pass

Convergence proofs (for ML_tl_green and IL_tl_green):
ml_tl = red , il_pass = 1, . . . ` il_pass + 0 < ml_pass + il_pass
il_tl = red ,ml_pass = 1, . . . ` ml_pass + 0 < ml_pass + il_pass

Cannot be proven as they are.
Suggestion: posit the invariants (X Add them)

inv2_8: ml_tl = red ⇒ ml_pass = 1
inv2_9: il_tl = red ⇒ il_pass = 1

Note: we are not forcing ml_pass = 1 when ml_tl = red .
But if it is true (⇒ invariant preservation), then we can prove non-divergence.

Divergence, once more

Proving non-divergence (X Add VARIANT to model):

variant_2 :ml_pass + il_pass

Convergence proofs (for ML_tl_green and IL_tl_green):
ml_tl = red , il_pass = 1, . . . ` il_pass + 0 < ml_pass + il_pass
il_tl = red ,ml_pass = 1, . . . ` ml_pass + 0 < ml_pass + il_pass

Cannot be proven as they are.

Suggestion: posit the invariants (X Add them)
inv2_8: ml_tl = red ⇒ ml_pass = 1
inv2_9: il_tl = red ⇒ il_pass = 1

Note: we are not forcing ml_pass = 1 when ml_tl = red .
But if it is true (⇒ invariant preservation), then we can prove non-divergence.

Divergence, once more

Proving non-divergence (X Add VARIANT to model):

variant_2 :ml_pass + il_pass

Convergence proofs (for ML_tl_green and IL_tl_green):
ml_tl = red , il_pass = 1, . . . ` il_pass + 0 < ml_pass + il_pass
il_tl = red ,ml_pass = 1, . . . ` ml_pass + 0 < ml_pass + il_pass

Cannot be proven as they are.
Suggestion: posit the invariants (X Add them)

inv2_8: ml_tl = red ⇒ ml_pass = 1
inv2_9: il_tl = red ⇒ il_pass = 1

Note: we are not forcing ml_pass = 1 when ml_tl = red .
But if it is true (⇒ invariant preservation), then we can prove non-divergence.

No-deadlock

All axioms, invariants,
theorems `

(ml_tl = green ∧ a + b + 1 < d) ∨
(ml_tl = green ∧ a + b + 1 = d) ∨
(il_tl = green ∧ b > 1) ∨ (il_tl = green ∧ b = 1) ∨
(ml_tl = red ∧ a + b < d ∧ c = 0 ∧ il_pass = 1) ∨
(il_tl = red ∧ 0 < b ∧ a = 0 ∧ml_pass = 1) ∨
0 < a ∨ 0 < c

Lengthy, but mechanical.
Copy and paste from guards, add invariant, mark as theorem.
Left as exercise! (but use the guards in your model, in case they
differ from the ones above)

Conclusion of second refinement

We discovered four errors.
We introduced several additional invariants.
We corrected four events.
We introduced two more variables to model the system.
An two additional variables to control divergence.

Analysis of second refinement

ML_in Car leaves bridge to mainland.

IL_in Car bridge leaves to island.

ML_tl_green Controls ML traffic light.

Dep. on # of cars, turn.

IL_tl_green Same for island traffic light.

{M,I}L_out_{1,2} Cars enter bridge.
Depending on traffic light.
Traffic light, turn changes
depending on # of cars.

How do we know # of cars?

Sensors!

Analysis of second refinement

ML_in Car leaves bridge to mainland.

IL_in Car bridge leaves to island.

ML_tl_green Controls ML traffic light.

Dep. on # of cars, turn.

IL_tl_green Same for island traffic light.

{M,I}L_out_{1,2} Cars enter bridge.
Depending on traffic light.
Traffic light, turn changes
depending on # of cars.

How do we know # of cars?
Sensors!

Invariant / variant summary

ml_tl ∈ {red , green} Possible colors .
il_tl ∈ {red , green} Possible colors.
ml_tl = green⇒ a + b < d ∧ c = 0 If TL to enter island is green, there is space in the

island and no car is leaving.
il_tl = green⇒ 0 < b ∧ a = 0 If TL to exit island is green, at least on car is in the

island and no car is coming in through the bridge.
ml_tl = red ∨ il_tl = red Both traffic lights cannot be green at the same time.
ml_pass ∈ {0, 1} A car entered bridge from ML since ML TL turned

green.
il_pass ∈ {0, 1} A car entered bridge from IL since IL TL turned

green.
ml_tl = red ⇒ ml_pass = 1 Captures technical invariant
il_tl = red ⇒ il_pass = 1 Captures technical invariant
variant: ml_pass + il_pass To ensure that traffic lights do not alternate forever.

Summary of events (1)

Event ML_out_1
where

ml_tl = green
a + 1 + b < d

then
a := a + 1
ml_pass := 1

end

Event ML_out_2
where

ml_tl = green
a + 1 + b = d

then
a := a + 1
ml_pass := 1
ml_tl := red

end

Summary of events (2)

Event IL_out_1
where

i l _ t l = green
b 6= 1

then
b := b − 1
c := c + 1
i l_pa s s := 1

end

Event IL_out_2
where

i l _ t l = green
b = 1

then
b := b − 1
c := c + 1
i l_pa s s := 1
i l _ t l := red

end

Summary of events (3)

Event ML_tl_green
where

ml_tl = red
a + b < d
c = 0
i l_pa s s = 1

then
ml_tl := green
i l _ t l := red
ml_pass := 0

end

Event IL_t l_green
where

i l _ t l = red
0 < b
a = 0
ml_pass = 1

then
i l _ t l := green
ml_tl := red
i l_pa s s := 0

end

Summary of events (4)

These are identical to their abstract versions

Event ML_in
where

0 < c
then

c := c − 1
end

Event IL_in
where

0 < a
then

a := a − 1
b := b + 1

end

Strategy

Initial model Limiting the number of cars (FUN-2).
First refinement Introducing the one-way bridge (FUN-3).
Second refinement Introducing the traffic lights (EQP-1,2,3).
Third refinement Introducing the sensors (EQP-4,5) .

Reminder of system

Third Refinement: Adding Car Sensors 241

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

241

Environment and control

We need to identify:

The controller.

The environment.

The communication channels.

Environment: deals with physical cars.
Controller: deals with logical cars.
Communication channels: keep
relationship among them.

Physical reality / logical view not
always in sync!

Closed Model 242

-We want to clearly identify in our model:

- The controller

- The environment

- The communication channels between the two

CONTROLLER

software

ENVIRONMENT

traffic lights sensors

cars

 sensor

 light

from the

to the traffic

242

Controller and environment variables

Controller variables
(used to decide traffic light colors)

a,
b,
c ,
ml_pass,
il_pass

Environment variables
(denote physical objects):

A,
B,
C ,
ML_OUT _SR,
ML_IN_SR,
IL_OUT _SR,
IL_IN_SR

A,B,C : physical cars.
∗_ ∗ _SR : state of physical sensors.

Channels

Output channels
(send state / signal to traffic lights)

ml_tl ,
il_tl

Input channels
(receive signals from sensors):

ml_out_10,
ml_in_10,
il_out_10,
il_in_10

Sensors: a mes-
sage is sent when
it changes from
on to off.

Output Channel Variables 246

Input channels: ml out 10,

ml in 10,

il in 10,

il out 10

A message is sent when a sensor moves from "on" to "off":

off

on

off

sending a message
to the controller

246

Summary Summary 247

ml_pass il_pass
a b c

ENVIRONMENT
A B C

ml_in_10

il_out_10
il_in_10

ml_tl

il_tl

ml_out_10

ML_OUT_SR ML_IN_SR

IL_OUT_SR IL_IN_SR

CONTROLLER

247

Enlarging the refined model

The possible states of a sensor:

Carrier sets: . . . , SENSOR .
Constants: on, off .

axm3_1: SENSOR = {on, off }
axm3_2: on 6= off

Type invariants:
inv3_1: ML_OUT _SR ∈ SENSOR

inv3_2: ML_IN_SR ∈ SENSOR

inv3_3: IL_OUT _SR ∈ SENSOR
inv3_4: IL_IN_SR ∈ SENSOR
inv3_5: A ∈ N
inv3_6: B ∈ N
inv3_7: C ∈ N
inv3_8: ml_out_10 ∈ BOOL
inv3_9: ml_in_10 ∈ BOOL
inv3_10: il_out_10 ∈ BOOL
inv3_11: il_in_10 ∈ BOOL

BOOL is a built-in set: BOOL = {TRUE,FALSE}.

Invariants capturing behavior, relationship with environment

When sensors are on, there are cars on
them:

inv3_12: IL_IN_SR = on⇒ A > 0

inv3_13: IL_OUT _SR = on⇒ B > 0

inv3_14: ML_IN_SR = on⇒ C > 0

Third Refinement: Adding Car Sensors 241

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

241
The sensors are used to detect the presence of cars en-
tering or leaving the bridge

EQP-5

(We do not count / control cars in mainland)

Invariants capturing behavior, relationship with environment

Drivers obey traffic lights (e.g., they cross
with green traffic light):

inv3_15: ml_out_10 = TRUE⇒ ml_tl = green

inv3_16: il_out_10 = TRUE⇒ il_tl = green

Third Refinement: Adding Car Sensors 241

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

241

Cars are supposed to pass only on a green traffic light EQP-3

Linking hardware sensor information and logical representation

When sensor on, its logical representation should have been updated.
Note: this does not update variables – it only checks they were.

inv3_17: IL_IN_SR = on⇒ il_in_10 = FALSE
inv3_18: IL_OUT _SR = on⇒ il_out_10 = FALSE
inv3_19: ML_IN_SR = on⇒ ml_in_10 = FALSE
inv3_20: ML_OUT _SR = on⇒ ml_out_10 = FALSE

Output Channel Variables 246

Input channels: ml out 10,

ml in 10,

il in 10,

il out 10

A message is sent when a sensor moves from "on" to "off":

off

on

off

sending a message
to the controller

246

The controller must be fast enough so as to be able to treat all the in-
formation coming from the environment

FUN-5

Physical and logical cars

inv3_21: il_in_10 = TRUE ∧ml_out_10 = TRUE⇒ A = a

inv3_22: il_in_10 = FALSE ∧ml_out_10 = TRUE⇒ A = a + 1
inv3_23: il_in_10 = TRUE ∧ml_out_10 = FALSE⇒ A = a− 1
inv3_24: il_in_10 = FALSE ∧ml_out_10 = FALSE⇒ A = a

inv3_25: il_in_10 = TRUE ∧ il_out_10 = TRUE⇒ B = b

inv3_26: il_in_10 = TRUE ∧ il_out_10 = FALSE⇒ B = b + 1
inv3_27: il_in_10 = FALSE ∧ il_out_10 = TRUE⇒ B = b − 1
inv3_28: il_in_10 = FALSE ∧ il_out_10 = FALSE⇒ B = b

inv3_29: il_out_10 = TRUE ∧ml_out_10 = TRUE⇒ C = c

inv3_30: il_out_10 = TRUE ∧ml_out_10 = FALSE⇒ C = c + 1
inv3_31: il_out_10 = FALSE ∧ml_out_10 = TRUE⇒ C = c − 1
inv3_32: il_out_10 = FALSE ∧ml_out_10 = FALSE⇒ C = c

Rationale

inv3_21: il_in_10 = TRUE ∧ml_out_10 = TRUE⇒ A = a

inv3_22: il_in_10 = FALSE ∧ml_out_10 = TRUE⇒ A = a+ 1

inv3_23: il_in_10 = TRUE ∧ml_out_10 = FALSE⇒ A = a− 1

inv3_24: il_in_10 = FALSE ∧ml_out_10 = FALSE⇒ A = a

Third Refinement: Adding Car Sensors 241

Reminder of the physical system

BridgeIsland Mainland

traffic light
sensor

241

A: physical # cars. Updated by events
representing cars entering.
a: controller (logical) view.
When ml_out_10 = TRUE: other

events will update logical # of cars, set
ml_out_10 = FALSE.
In the meantime, logical and physical
cars may be out of sync.

One event represents car entering bridge. Increases A. Simulates sensorML_OUT going
from off to on. Another even registers change. Sets logicalml_out_10 to TRUE. Here,
A = a + 1 Then another event seesml_out_10 = FALSE and updates a. Here A = a.
When ml_out_10 = TRUE ∧ il_out_10 = TRUE, they balance each other.

New (physical) events (examples)

Event ML_out_arr
where // No ca r on s e n s o r

ML_OUT_SR = o f f
ml_out_10 = FALSE

then
ML_OUT_SR := on

end

Event ML_out_dep
where

ML_OUT_SR = on
ml_tl = green

then
ML_OUT_SR := o f f
ml_out_10 := TRUE
A := A + 1

end

Event IL_in_arr
where

IL_IN_SR = o f f
i l_in_10 = FALSE
A > 0

then
IL_IN_SR := on

end

Event IL_in_dep
where

IL_IN_SR = on
then

IL_IN_SR := o f f
i l_in_10 := TRUE
A := A − 1
B := B + 1

end

Refining abstract events (example)

Event ML_out_1 (a b s t r a c t)
where

ml_tl = green
a + b + 1 6= d

then
a := a + 1
ml_pass := 1

end

Event ML_out_1
where

ml_out_10 = TRUE
a + b + 1 6= d

then
a := a + 1
ml_pass := 1
ml_out_10 := FALSE

end

Basic properties

inv3_33: A = 0 ∨ C = 0
inv3_34: A + B + C ≤ d

The number of cars on the bridge and the island is limited FUN-2

The bridge is one-way FUN-3

Variant

Ensure new events converge.

The (somewhat surprising) variant expression is

12− (ML_OUT _SR + ML_IN_SR + IL_OUT _SR + IL_IN_SR+
2× (ml_out_10 + ml_in_10 + il_out_10 + il_in_10))

Note: formally incorrect. Booleans have to be converted to integers in the usual
way.

Variant

Ensure new events converge.
The (somewhat surprising) variant expression is

12− (ML_OUT _SR + ML_IN_SR + IL_OUT _SR + IL_IN_SR+
2× (ml_out_10 + ml_in_10 + il_out_10 + il_in_10))

Note: formally incorrect. Booleans have to be converted to integers in the usual
way.

Final structure Final Structure of the Controller 263

Constant: d
Variables: a, b, c,

il_pass, ml_pass

ml_in_10

ml_out_10

il_in_10

il_out_10
IL_OUT_SR

IL_IN_SR

ML_IN_SR

ML_OUT_SR

A,B,C

8 physical Events

8 logical Events

il_tl ml_tl

263

	Goals
	Requirements
	Initial model
	First refinement: one-way bridge
	Second refinement: traffic lights
	Third refinement: sensors

