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Conventions

I will sometimes use boxes with different meanings.

Quiz to do together during the
lecture.

Q: What happens in this case?

solution
solution
solution

Material / solutions that I want to
develop during the lecture.

Something to complete here
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aaaaaaaaaaaaaaaaaaa

Event B
An industry-oriented method, language, and set
of supporting tools to describe systems of
interacting, reactive software, hardware
components, and their environment, and to
reason about them.
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Sequential vs. reactive software

Specification: remember sorting program.

Sequential vs. reactive software

Sequential vs. reactive software Industrial systems: usual characteristics
Functionality often not too complex.

Algorithms / data structures relatively simple.
Underlying maths of reasonable complexity.

Requirements document usually poor.
Reactive and concurrent by nature.

But often coarse: protecting (large) critical
regions often enough.

Many special cases.
Communication with hardware / environment involved.
Many details (≈ properties to ensure) to be taken into account.
Large (in terms of LOCs).

Producing correct (software) systems hard — but not
necessarily from a theoretical point of view.



Typical approaches and problems

Usual approach
Choose a platform.
Write software specifications
(which often neglect or
under-represent the
environment).
Design by cutting in small
pieces with well-defined
communication.
Code and test / verify units.
Integrate and test.

Pitfalls
Often too many details / interactions /
properties to take into account.
Cutting in pieces: poor job in taming
complexity.

Small pieces: easy to prove them right.
Additional relationships created!
Overall complexity not reduced.

Modeling environment?
E.g., we expect a car driver to stop at a red light.
Result: system as a whole seldom verified.
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Result: system as a whole seldom verified.

The Event B approach

Complexity: Model Refinement
System built incrementally,
monotonically.

Take into account subset of
requirements at each step.
Build model of a partial system.
Prove its correctness.

Add requirements to the model, ensure
correctness:

The requirements correctly captured
by the new model.
New model preserves properties of
previous model.

Details: Tool Support
Tool to edit Event B models (Rodin).
Generates proof obligations:
theorems to be proved to ensure
correctness.
Interfaced with (interactive) theorem
provers.
Extensible.

Basic ideas

Model: formal description of a discrete system.
Formal: sound mechanism to decide whether some properties hold
Discrete: can be represented as a transition system

Formalization contains models of:
The future software components
The future equipments surrounding these components
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Refinement

Refinement allows us to build a model
gradually.
Ordered sequence of more precise
partial models.
Each model is a refinement of the one
preceding it.
Each model is proven:

Correct.
Respecting the boundaries of the
previous one.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention
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Refinement allows us to build a model
gradually.
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partial models.
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Program

Executable code

Translation

Compilation

Models and states

A discrete model is made of states

S0 S1 S2 Sn−1 Sn

G1

G0

G2

G1

What is its relationship with a regular program?

States are represented by constants,
variables, and their relationships

Si = 〈c1, . . . , cn, v1, . . . , vm〉

Relationships among constants and
variables written using set-theoretic
expressions

States and transitions

Transitions between states: triggered
by events

Events: guards and actions
Guard (Gi ) denote enabling
conditions of events
Actions denote how state is modified
by event

Guards and actions written with
set-theoretic expressions (e.g.,
first-order, classical logic).

Event B based on set theory.

Si Sj

G

States

Guard of transition

Examples:
Si ≡ x = 0 ∧ y = 7
Si ≡ x , y ∈ N ∧ x < 4 ∧ y < 5 ∧ x + y < 7

Write extensional definition for the latter

A simple example – informal introduction!
Search for element k in array f of length n, assuming k is in f.

Constants / Axioms

CONST n ∈ N

CONST f∈ 1..n −→ N

CONST k ∈ ran(f)

Variables / Invariants

VARIABLE i ∈ 1..n

Event Search
when

i < n ∧ f(i) 6= k
then

i := i + 1
end

Event Found
when

f(i) = k
then

skip
end

(initialization of i not shown for brevity)



Events

Event EventName
when

guard: G(v, c)
then

action: v := E(v, c)
end

Executing an event (normally)
changes the system state.
An event can fire when its guard
evaluates to true.
G(v, c) predicate that enables
EventName
v := E(v, c) is a state transformer.

Formally, a predicate ActE(v, c, v ’)
v’ is renamed to v after the predicate.

Intuitive operational interpretation

Initialize;
while (some events have true guards) {

Choose one such event;
Modify the state accordingly;

}

Event EventName
when

guard: G(v, c)
then

action: v := E(v, c)
end

Now: informal Event B semantics.
Actual Event B semantics based on set
theory and invariants — Later!

An event execution takes no time.
No two events occur simultaneously.

If all guards false, system stops.
Otherwise: choose one event with true
guard, execute action, modify state.
Previous phase repeated (if possible).

Fairness: what is it? What should we expect?

Comments on the operational interpretation

Stopping is not necessary: a discrete system may run forever.
This interpretation is just given here for informal understanding
The meaning of such a discrete system will be given by the proofs
which can be performed on it (next lectures).a

On using sequential code
aJ. R. Abrial: The B method: assigning programs to meanings.

To help understanding, we will now write some sequential
code first, translate it into Event B, and then proving correct-
ness. This does not follow Event B workflow, which goes in the
opposite direction: write Event Bmodels and derive sequential
/ concurrent code from them.

Running example (sequential code)

a =

⌊
b

c

⌋
Characterize it: we want to define integer division, without using division.

Q: specification of division

∀b∀c [b ∈ N ∧ c ∈ N ∧ c > 0⇒ ∃a∃r [a ∈ N ∧ r ∈ N ∧ r < c ∧ b = c × a + r ]]

It is useful to categorize the specification as assumptions (preconditions)

b ∈ N ∧ c ∈ N ∧ c > 0

and results (postconditions)

a ∈ N ∧ r ∈ N ∧ r < c ∧ b = c × a + r

Input / output / variables / constants / types?



Two Math Notes

Zero
There is no universal agreement about whether to include zero in the set of nat-
ural numbers. Some authors begin the natural numbers with 0, corresponding
to the non-negative integers 0, 1, 2, 3, . . . , whereas others start with 1, corre-
sponding to the positive integers 1, 2, 3, . . . This distinction is of no fundamental
concern for the natural numbers as such.

I will assume that 0 ∈ N. That is the convention in computer science.

If you write ∀b ∈ N, c ∈ N, c > 0 · ∃a ∈ N, r ∈ N, r < c · b = c × a + r remember:

Commas mean conjunction.
Nesting may need disambiguation.

∀x ∈ D · P(x) means ∀x [x ∈ D ⇒ P(x)]

∃x ∈ D · P(x) means ∃x [x ∈ D ∧ P(x)]

See https://twitter.com/lorisdanto/status/1354128808740327425?s=20
and https://twitter.com/lorisdanto/status/1354214767590842369?s=20
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Programming integer division

We have addition and substracion
We have a simple procedural language
Variables, assignment, loops, if-then-else, + & -, arith. operators, . . .

Q: integer division code

a := 0
r := b
while r >= c

r := r - c
a := a + 1

Init Loop Finish
>

r ≥ c

r < c

Copy the code! We will need it!

This step is not taken in Event B. We are writing this code only for illustration purposes.
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Towards events
Template

Event EventName
when

G(v, c)
then

v := E(v, c)
end

Code
a := 0
r := b
while r >= c

r := r - c
a := a + 1

end

Special initialization event (INIT).

Sequential program (special case):
Finish event, Progress events
Guards exclude each other (determinism) Prove!
Non-deadlock: some guard always true Prove!
A variable is reduced (termination) Prove!

Q: integer division events

Event INIT
a, r = 0, b

end

Event Progress
when

r >= c
then

r, a := r - c, a + 1
end

Event Finish
when

r < c
then

skip
end

Categorizing elements
Constants Axioms (Write them down separately!)

Q: constants

b
c

Q: axioms

b ∈ N
c ∈ N
c > 0

Variables Invariants

Q: variables
a
r Later!

Event INIT
a, r = 0, b

end

Event Progress
when r >= c
then

r, a := r - c, a + 1
end

Event Finish
when r < c
then

skip
end

Proving correctness

How do you prove your programs correct?

Correctness in sequential programs: post-condition holds.
Easy if no (or statically bound) loops.
Prove that this code swaps x and y:

x := x + y ;
y := x − y ;
x := x − y ;
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Proving correctness: invariants in a nutshell

Loops: much more difficult
# iterations unknown.
(remember Collatz’s conjecture)

wh i l e r >= c do

r := r − c
a := a + 1

end

Invariant: formula that is “always” true.
Procedural code: beginning and end
of every loop iteration.
Event-B: after initialization, after every
event (essentially same idea).

Intuitition:
If invariant implies postcondition,
then we can prove postcondition.
Nobody gives us invariants.

We have to find them.
We have to prove they are invariants.
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# iterations unknown.
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{I (a, r)}
wh i l e r >= c do

{I (a, r)}
r := r − c
a := a + 1
{I (a, r)}

end
{I (a, r) ∧ r < c ⇒ a =

⌊
b
c

⌋
}

Invariant: formula that is “always” true.
Procedural code: beginning and end
of every loop iteration.
Event-B: after initialization, after every
event (essentially same idea).
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We have to prove they are invariants.

Finding invariants

Which assertions are invariant in our model?

Q: model invariants

I1: a ∈ N // Type invariant
I2: r ∈ N // Type invariant
I3: b = a× c + r

One formula that is an invariant for any
Event-B model / loop.

Q: trivial invariant

>

Event INIT
a, r = 0, b

end

Event Progress
when r >= c
then

r, a := r - c, a + 1
end

Event Finish
when r < c
then

skip
end

Copy invariants somewhere else – we will need to have them handy
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Invariant preservation in Event B
Invariants must be true before and
after event execution.
For all event i , invariant j :

Establishment:
A(c) ` Ij(Einit(v , c), c)

Preservation:
A(c),Gi (v , c), I1...n(v , c) ` Ij(Ei (v , c), c)

A(c) axioms
Gi (v , c) guard of event i
Ij(v , c) invariant j
I1...n(v , c) all the invariants
Ei (v , c) result of action i

Sequent
Γ ` ∆

Show that ∆ can be proved using
assumptions Γ

Invariant preservation
If an invariant holds and the guards of
an event are true and we execute the
event’s action, the invariant should
hold.

Invariant preservation proofs

Invariant preservation proven using
model and math axioms.
Three invariants & three events: nine

proofs
Named as e.g. EProgress/I2/INV

Other proofs will be necessary later

EINIT / I1 / INV
INIT I1 invariant proof

P0

` 0 ∈ N

MON

b ∈ N, c ∈ N, c > 0 ` 0 ∈ N

EINIT / I2 / INV
INIT I2 invariant proof

HYP

b ∈ N ` b ∈ N

MON

b ∈ N, c ∈ N, c > 0 ` b ∈ N

Event INIT
a, r = 0, b

end

Event Progress
when r >= c
then

r, a := r - c, a + 1
end
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Invariant preservation proofs
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Sequents

Mechanize proofs
Humans “understand”; proving is tiresome and error-prone
Computers manipulate symbols

How can we mechanically construct correct proofs?
Every step crystal clear
For a computer to perform

Several approaches

For Event B: sequent calculus
To read: [Pau] (available at course web page), at least Sect. 3.3 to
3.5 , 5.4, and 5.5. Note: when we use Γ ` ∆, Paulson uses Γ⇒ ∆.
Also: [Orib, Oria], available at the course web page.

Admissible deductions: inference rules.

Inference rules

An inference rule is a tool to build a formal proof.
It not only tells you whether Γ ` ∆: it tells you how.

It is denoted by:
A RC

A is a (possibly empty) collection of sequents: the antecedents.
C is a sequent: the consequent.
R is the name of the rule.

The proofs of each sequent of A
together give you

a proof of sequent C

An example of inference rule

Note: not exactly the inference rules we will use.
Only an intuitive example.

A(lice) and B(ob) are siblings:

C is mother of A C is mother of B Sibling-MA and B are siblings

C is father of A C is father of B Sibling-FA and B are siblings

Note: we do not consider the case that, e.g., C is a father and a
mother.



Proof of sequent S1 9

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
?

9

Proof of Sequent S1 10

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
? ? ?
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Proof of Sequent S1 11

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 ? ?
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Proof of Sequent S1 12

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
? ?

12



Proof of Sequent S1 13

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
r4 ?
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Proof of Sequent S1 14

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 ?
↗ ↑

S5 S6
r4 r6

14

Proof of Sequent S1 15

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 ?
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Proof of Sequent S1 16

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

16



Recording the Proof of Sequent S1 17

S2r1 S7
S4r2 S2 S3 S4

S1 r3 S5r4 S5 S6
S3 r5 S6r6 S7r7

S1
r3

↗ ↑ ↖
S2 S3 S4
r1 r5 r2
↗ ↑ ↑

S5 S6 S7
r4 r6 r7

- The proof is a tree

17

Deduction systems

There are many formal deduction systems [Ben12, Sect. 3.9].
We will use a variant of the so-called Gentzen deduction systems.

Sequent Γ ` ∆ in a Gentzen system
Γ: (possibly empty) collection of
formulas (the hypotheses)
∆: collection of formulas (the goal)

Objective: show that, under
hypotheses Γ, some formula(s) in ∆
can be proven.

Γ ≡ P1,P2, . . . ,Pn stands for P1 ∧ P2 ∧ . . . ∧ Pn

∆ ≡ Q1,Q2, . . . ,Qm s.f. Q1 ∨ Q2 ∨ . . . ∨ Qm

P1,P2, . . . ,Pn ` Q1,Q2, . . . ,Qm

is
P1 ∧ P2 ∧ . . . ∧ Pn ` Q1 ∨ Q2 ∨ . . . ∨ Qm

We will use a proof calculus where the goal is a single formula.
More constructive proofs — but see [Oria, Section 11.2] for interesting remarks.

Inside a sequent

We need a language to express hypothesis and goals.
Not formally defined yet
We will assume it is first-order, classical logic
Recommended references: [Pau, HR04, Ben12]

We need a way to determine if (and how) ∆ can prove Γ.
Inference rules.

Logic and inference rules

Inference rules

Structural Depending on logic For specific theories

- Hypothesis
- Monotony
- Cut

- Propositional
- First order
- Temporal
- Higher order
- . . .

- Sets
- Relations
- Functions
- (Linear)
Arithmetic

- Reals
- Strings
- Arrays
- Bitvectors

- Records

- Difference
logic

- Inductive
data types

- Empty
theory

- . . .



Structural inference rules

Three structural inference rules, independent of the predicate language.

HYPothesis

HYP
H,P ` P

If the goal is among the
hypothesis, we are done.

MONotony

H ` Q MON
H,P ` Q

If goal proven without
hypothesis P , then can be
proven with P .

CUT

H ` P H,P ` Q
CUT

H ` Q

A goal can be proven with
an intermediate deduction
P . Nobody tells us what is P
or how to come up with it.
It cuts the proof into
smaller pieces.
(Cut Elimination Theorem)

More rules

There are many other inference rules for:
Logic itself (propositional / predicate logic)

Look at the slides / documents in the course web page
reasoning on arithmetic (Peano axioms),
reasoning on sets,
reasoning on functions,
. . .

We will not list all of them here (see online documentation).
We may need to explain them as they appear.
But a mechanical prover has them as “inside knowledge” (plus
tactics, strategies)

The propositional language: basic constructs

Basic Constructs of Propositional Calculus 25

- Given predicates P and Q, we can construct:

- NEGATION: ¬P

- CONJUNCTION: P ∧Q

- IMPLICATION: P ⇒ Q

25

Precedence: ¬,∧,⇒.
Examples

Parenthesis added when needed.
If in doubt: add parentheses!

Can you build the truth tables?
∨,⇔ are defined based on them.

Define them
Can we use a single connective?

The propositional language: rules for conjunction

H ` Q H ` P AND-R
H ` P ∧ Q

A conjunction on the RHS needs both
branches of the conjunction be proven inde-
pendently of each other.
x ∈ N1, y ∈ N1, x + y < 5 ` x < 4 ∧ y < 4

H,P,Q ` R
AND-L

H,P ∧ Q ` R
By definition of sequent.



The propositional language: rules for conjunction

H ` Q H ` P AND-R
H ` P ∧ Q

A conjunction on the RHS needs both
branches of the conjunction be proven inde-
pendently of each other.
x ∈ N1, y ∈ N1, x + y < 5 ` x < 4 ∧ y < 4

H,P,Q ` R
AND-L

H,P ∧ Q ` R
By definition of sequent.

The propositional language: rules for disjunction

H,Q ` R H,P ` R
OR-L

H,P ∨ Q ` R

A disjunction on the LHS needs both branches of
the disjunction be discharged separately.
(x < 0 ∧ y < 0) ∨ x + y > 0 ` x × y > 0
Counterxample?

LHS: all conditions in which RHS has to hold.
Removing part of disjunction makes “condition
space” smaller (removing part of conjunction makes
the “condition space” larger, more general). Proofs
with more general assumptions are valid for less
general assumptions, not the other way around.

A ` C B ` C

A B ` C

A ` C B ` C

A ∨B ` C

The propositional language: rules for disjunction (cont.)

H ` P OR-R1
H ` P ∨ Q

H ` Q OR-R2
H ` P ∨ Q

A disjunction on the RHS only needs one
of the branches to be proven. There is a
rule for each branch.

H,¬P ` Q
NEG

H ` P ∨ Q

Part of a disjunctive goal can be negated, moved to
the hypotheses, and used to discharge the proof. Re-
lated to ¬P ∨ Q being P ⇒ Q.
x ∈ N, y ∈ N, x + y > 1, y > x ` x > 0 ∨ y > 1

The propositional language: rules for disjunction (cont.)

H ` P OR-R1
H ` P ∨ Q

H ` Q OR-R2
H ` P ∨ Q

A disjunction on the RHS only needs one
of the branches to be proven. There is a
rule for each branch.

H,¬P ` Q
NEG

H ` P ∨ Q

Part of a disjunctive goal can be negated, moved to
the hypotheses, and used to discharge the proof. Re-
lated to ¬P ∨ Q being P ⇒ Q.
x ∈ N, y ∈ N, x + y > 1, y > x ` x > 0 ∨ y > 1



The propositional language: rules for negation

CNTR⊥ ` Q

NOT-L
P,¬P ` Q

If we reach to a contradiction in the hy-
potheses, anything can be proven (principle
of explosion). Note: not everyone accepts
this – more on that later.

H,¬P ` ¬Q H,¬P ` Q
NOT-R

H ` P
Reductio ad absurdum: assume the nega-
tion of what we want to prove and reach a
contradiction. Similarly with H ` ¬P .

P ∧ ¬P ≡ ⊥ (Falsehood) P ∨ ¬P ≡ > (Truth) > = ¬⊥

The propositional language: rules for implication

H ` P H,Q ` R
IMP-L

H,P ⇒ Q ` R
If we want to use P ⇒ Q , we show that P is
deducible from H and that, assuming Q , we
can infer R .

H,P ` Q
IMP-R

H ` P ⇒ Q
Wemove the LHSP to the hypotheses. Note
that since P ⇒ Q is ¬P∨Q , we are applying
the NEG rule in disguise.
x ∈ N, y ∈ N, x + y > k ` x = k ⇒ y > 0

Additional rules

Equality axiom

EQL` E = E

Equality propagation

H(F ),E = F ` P(F )
EQL-LR

H(E ),E = F ` P(E )

First Peano axiom

P0` 0 ∈ N

Second Peano axiom

P1
n ∈ N ` n + 1 ∈ N

Forthcoming proofs and propositional rules
The following proofs feature variables. Strictly speaking, they are not propositional. We
will however not use quantifiers, so we will treat formulas as propositions when
applying the previous rules.
We will assume the existence of simple, well-known arithmetic rules.

Invariant preservation proofs

EProgress / I2 / INV

Progress I2 invariant proof

P0

` 0 ∈ N

Arith

` c − c ∈ N

MON

c ∈ N, c ∈ N ` c − c ∈ N

EQ-LR

c ∈ N, r = c, r ∈ N ` r − c ∈ N

Arith∗

r − c > 0 ` r − c ∈ N

MON

c ∈ N, r − c > 0, r ∈ N ` r − c ∈ N

Simp-M-Minus

c ∈ N, r − c > c − c, r ∈ N ` r − c ∈ N

Arith-M-M-R

c ∈ N, r > c, r ∈ N ` r − c ∈ N

OR-L

c ∈ N, r = c ∨ r > c, r ∈ N ` r − c ∈ N

Arith

c ∈ N, r ≥ c, r ∈ N ` r − c ∈ N

MON
b ∈ N, c ∈ N, c > 0, r ≥ c, a ∈ N, b = a× c + r , r ∈ N ` r − c ∈ N

I2: r ∈ N Event Progress
when r >= c
then

r, a := r - c, a + 1
end
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end
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end

Invariant preservation proofs

EProgress / I3 / INV

Progress I3 invariant proof

HYP
b = a× c + r ` b = a× c + r Arith-M-Pl-Dist

b = a× c + r ` b = a× c+c + r−c Arith-M-Pl-Dist
b = a× c + r ` b = (a + 1)× c + r − c

Arith-Pl-M
b = a× c + r ` b = (a + 1)× c+(r − c)

MON
b ∈ N, c ∈ N, c > 0, r ≥ c , a ∈ N, r ∈ N, b = a× c + r ` b = (a + 1)× c + (r − c)

I3: b = a× c + r Event Progress
when r >= c
then

r, a := r - c, a + 1
end

Invariant preservation proofs

Proofs for Finish

EFinish/I1/INV
EFinish/I2/INV
EFinish/I3/INV

are trivial (Finish does not change anything)

Correctness: when Finish is executed, I3 ∧ GFinish ⇒ a =
⌊
b
c

⌋
(with the

definition given for integer division).



Inductive and non-inductive invariants

We want to prove
A(c) ` Ij(Einit(v , c), c)

A(c),Gi (v , c), I1...n(v , c) ` Ij(Ei (v , c), c)

Ij : inductive invariant (base case + inductive case)

Invariants can be true but non-inductive if they cannot be proved from program

Event INIT
a: x := 1

end

Event Loop
a: x := 2*x - 1

end

x ≥ 0 looks like an invariant.
Prove it is preserved.
It is not inductive (Loop:
x ≥ 0 ` 2 ∗ x − 1 ≥ 0?)
x > 0 is inductive (Prove it!)

x > 0 is stronger than x ≥ 0 (if A⇒ B , A stronger than B .)
Stronger invariants are preferred.
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Proof by contradiction: why?

CNTR⊥ ` P

Common sense:
if we are in an impossible situation,
just do not bother.

Proof-based:
Let’s assume Q and ¬Q.
Then ¬Q.
Then ¬Q ∨ P ≡ Q ⇒ P .
But since Q ∧ (Q ⇒ P), then P .

Model-based:
If Q ⇒ P , then Q ` P .
Extension: Ext(P) = {x |P(x)} (id. Q).
Q ⇒ P iff Ext(Q) ⊆ Ext(P). Why???

Ext(P)

Ext(Q)

If Q ≡ R ∧ ¬R , Ext(Q) = ∅.
∅ ⊆ S , for any S .
Therefore, Ext(R ∧ ¬R) ⊆ Ext(P) for
any P .
Thus, R ∧ ¬R ⇒ P and then ⊥ ` P .
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