
Developing Software Rigorously:Introduction and Motivation1
Manuel Carro Manuel Hermenegildo

manuel.carro@upm.es manuel.hermenegildo@upm.es
Universidad Politécnica de Madrid &IMDEA Software Institute

1Many slides borrowed from J. R. Abrial and M. Butler

Mundane matters . s. 3
Purpose . s. 5
Dependability . s. 7
Pitfalls . s. 18
Narrowing the target . s. 35
Use of specifications . s. 48
Quiz .s. 52

Take notes

Picture & headline ©The Atlantic
https://www.theatlantic.com/technology/archive/2014/05/to-remember-a-lecture-better-take-notes-by-hand/361478/

I will make notes / slides available after the lecturesI will ask you to work during the lectures

Plan

Three-hour lectures: three 50-minute sections with ten-minutebreaks.
Worked well in previous years.

Course: two parts.
Homework + term project with presentation.
Final exam for those who choose not to do HW + project.
Hands-on.

mailto:manuel.carro@upm.es
mailto:manuel.hermenegildo@upm.es
https://www.theatlantic.com/technology/archive/2014/05/to-remember-a-lecture-better-take-notes-by-hand/361478/

Purpose of the course

To give you some insights about modelling and formal reasoning
To show that programs can be correct by construction
To show that modelling can be made practical
To illustrate this approach with many examples

What you will learn

By the end of the course you should be comfortable with:
Modelling (versus programming)
Abstraction and refinement
Some mathematical techniques used to reason about programs
The practice of proving as a means to construct (provably) correctprograms
The usage of some tools to help in the above

Software is omnipresent in everyday life
Today’s car: typically 100+ microprocessors, 100 M. lines of code, 20.000 programmeryears.

Software is omnipresent in everyday life
Plane: computers manage controls, calculate routes, ...

Software is omnipresent in everyday life
Large interconnected systems: independent, isolated, automatic decision making (whichmust be globally correct).

Software is omnipresent in everyday life
Cell phones (from O.S. to compression algorithms to user interfaces).
HDTV (routing, encoding and decoding), Netflix, . . .
Buying and selling on the Internet (web interfaces, databases, encryption).
Stock market (algorithmic trading, high frequency trading).
Skype, Whatsapp, AirBnB, idealista, GroupOn, FB, Steam, Spotify, E-Banking, GoogleMaps / Waze, Uber / Lyft, . . .

√ Managed by extremely complex and intelligentsoftware.
√ All of them critical to a certain degree.
√ Some extremely critical

√ Managed by extremely complex and intelligentsoftware.
√ All of them critical to a certain degree.
√ Some extremely critical
Overall challenge:
How to develop complex software, with resources thatare always limited, ensuring that it will work correctly?

Growth in complexity and expectations

Processes managed by computing systems increasingly complex.
Same software is to run in several platforms.
Computing systems interact more and more with other systems.
They should stay autonomous for longer.
They become reactive.

Then and now

Yesterday Today TomorrowIt’s nice that I cansee my accountthrough my webbrowser!

I am abroad and Ineed to make thisbank transfer now!
?

(but we need to beready to build it)

NetworkprotocolsBrowserOperatingSystem Encoding /cryptography Web server
Database(parallelism,concur-rency)

Then and now

Yesterday Today TomorrowIt’s nice that I cansee my accountthrough my webbrowser!
I am abroad and Ineed to make thisbank transfer now!

?
(but we need to beready to build it)

NetworkprotocolsBrowserOperatingSystem Encoding /cryptography Web server
Database(parallelism,concur-rency)

Then and now

Yesterday Today TomorrowIt’s nice that I cansee my accountthrough my webbrowser!
I am abroad and Ineed to make thisbank transfer now!

?
(but we need to beready to build it)

NetworkprotocolsBrowserOperatingSystem Encoding /cryptography Web server
Database(parallelism,concur-rency)

Then and now

Yesterday Today TomorrowIt’s nice that I cansee my accountthrough my webbrowser!
I am abroad and Ineed to make thisbank transfer now!

?
(but we need to beready to build it)

NetworkprotocolsBrowserOperatingSystem Encoding /cryptography Web server
Database(parallelism,concur-rency)

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo service.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 6, 2012:

Apple fixes App Store DRM error, crash-free downloads resume.

July 5, 2012:

“Find and Call” app becomes first trojan to appear on iOS App Store.

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

How far are we from giving reasonable guarantees?
(Only showing some types of problems)

July 16, 2012: Skype bug sends messages to unintended recipients.
July 13, 2012: Apple’s “in-app purchase” service for iOS bypassed by Russian hacker.
July 13, 2012: German security experts find major flaw in credit card terminals.
July 13, 2012: Defects leave critical military, industrial infrastructure open to hacks (NiagaraFramework, linking 11+ million devices in 52 countries).
July 12, 2012: Hackers expose 453,000 credentials allegedly taken from Yahoo service.
July 12, 2012: Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep (related tographics drivers).
July 7, 2012: Still infected, 300,000 PCs to lose Internet access.
July 6, 2012: Apple fixes App Store DRM error, crash-free downloads resume.
July 5, 2012: “Find and Call” app becomes first trojan to appear on iOS App Store.
July 5, 2012: iOS, Mac app crashes linked to botched FairPlay DRM.

Just two weeks

The Ariane 5 incident
Example: effect of a single overflow

June 4, 1996: After launch, the Ariane 5 rocketexploded.
This was its maiden voyage.
It flew for about 37 Sec only in Kourou’s sky.
No injury in the disaster.

The Ariane 5 incident
Example: effect of a single overflow

June 4, 1996: After launch, the Ariane 5 rocketexploded.
This was its maiden voyage.
It flew for about 37 Sec only in Kourou’s sky.
No injury in the disaster.

The story

Normal behavior of the launcher for 36 Sec after lift-off
Failure of both Inertial Reference Systems almost simultaneously
Strong pivoting of the nozzles of the boosters and Vulcan engine
Self-destruction at an altitude of 4000 m (1000 m from the pad)

More details

Both inertial computers failed because of overflow on one variable
This caused a software exception that stopped these computers
These computers sent post-mortem info through the bus
Normally, main computer receives velocity info through the bus
The main computer was confused and pivoted the nozzles

More details

The faulty program was working correctly on Ariane 4
The faulty program was not tested for A5 (since it worked for A4)
But the velocity of Ariane 5 was far greater than that of Ariane 4
That caused the overflow in one variable
The faulty program happened to be useless for Ariane 5

Messages

Clear, up to date, realistic requirements
Relationship requirements / programs
Proof that programs were built according to requirements

Note: we will not deal with requirement engineering, which is
related and very interesting in itself.

How?

How can we ensure that a program does what it is supposed todo?

1. How do we state what is it supposed to do?(usually via specifications)2. How do we build the program?3. How do we prove that the program performs according tospecifications?

. . . in a way that is (a) dependable and (b) cost-effective?

How?

How can we ensure that a program does what it is supposed todo?
1. How do we state what is it supposed to do?(usually via specifications)

2. How do we build the program?3. How do we prove that the program performs according tospecifications?
. . . in a way that is (a) dependable and (b) cost-effective?

How?

How can we ensure that a program does what it is supposed todo?
1. How do we state what is it supposed to do?(usually via specifications)2. How do we build the program?

3. How do we prove that the program performs according tospecifications?
. . . in a way that is (a) dependable and (b) cost-effective?

How?

How can we ensure that a program does what it is supposed todo?
1. How do we state what is it supposed to do?(usually via specifications)2. How do we build the program?3. How do we prove that the program performs according tospecifications?

. . . in a way that is (a) dependable and (b) cost-effective?

How?

How can we ensure that a program does what it is supposed todo?
1. How do we state what is it supposed to do?(usually via specifications)2. How do we build the program?3. How do we prove that the program performs according tospecifications?

. . . in a way that is (a) dependable and (b) cost-effective?

How?

How can we ensure that a program does what it is supposed todo?
1. How do we state what is it supposed to do?(usually via specifications)2. How do we build the program?3. How do we prove that the program performs according tospecifications?

. . . in a way that is (a) dependable and (b) cost-effective?

Cost of error fixes 

Reqs  Spec  Design  Impl  Test  
& fix 

Accept 
tes8ng 

Deploy 

Cost 
of fix 

Time of error discovery 

Cost of error fixes

Rate of error discovery 

Reqs  Spec  Design  Impl  Test  
& fix 

Accept 
tes8ng 

Deploy 

Error  
discovery 
rate 

Time of error discovery 

Rate of error discovery

The V model
When are errors discovered in the V Model?What’s wrong with the V model? 

The V model
When are errors discovered in the V Model?What’s wrong with the V model? 

Many specifica8on errors are detected only 
aAer a lot of development has been 
undertaken  

Some sources of errors

Lack of precision
AmbiguitiesInconsistencies

Too much complexity
Complexity of requirementsComplexity of operating environmentComplexity of designs

Some preventive measures

Early stage analysis
Precise descriptions of intentAmenable to analysis by toolsIdentify and fix ambiguities andinconsistencies as early as possible

Mastering complexity
Encourage abstractionFocus on what a system doesEarly focus on key / critical featuresIncremental analysis and design

Some sources of errors

Lack of precision
AmbiguitiesInconsistencies

Too much complexity
Complexity of requirementsComplexity of operating environmentComplexity of designs

Some preventive measures

Early stage analysis
Precise descriptions of intentAmenable to analysis by toolsIdentify and fix ambiguities andinconsistencies as early as possible

Mastering complexity
Encourage abstractionFocus on what a system doesEarly focus on key / critical featuresIncremental analysis and design

Formal methods

Rigorous techniques for formulation and analysis of systems
They facilitate:

Clear specifications (contract)Rigorous validation and verification
If we do not capture precisely what a system ought to do,
there is little chance that we may really decide whether it fits the bill

Validation: does the contract specify the right system?
Answered informally

Verification: does the finished product satisfy the contract?
Can be answered formally

Specifications and the real world?

How can specifications be used?
Use a specification to build tests
Use a specification to check that a program computes what itshould (verification, model checking)
Use a specification to compute (functional / logic / equationalprogramming)
Use specifications to drive the generation of a program(correctness by construction, automatic code generation)

How can guarantees be given?

Enlightened management: of little help.
Convincing arguments beyond any reasonabledoubt:

Formal basis.Proofs based on rigorous methods.
Carefully prove that programs will behave asexpected.

For every single program?

How can guarantees be given?

Enlightened management: of little help.
Convincing arguments beyond any reasonabledoubt:

Formal basis.Proofs based on rigorous methods.
Carefully prove that programs will behave asexpected.
For every single program?

It’s too difficult for humans to do!

Methodologies
Mechanization
Automation
Computer-aided softwaredevelopment

Correctness by constructionAutomatic analysisVerification (model checking,deductive verification)Automated testing

A basic property: termination

Termination is often expected.
How easy is it to decide whether a program terminates?

input n;

while n > 1 do
if n mod 2 = 0 then

n:= n / 2
else

n:= 3*n + 1
end if

end while

Question: will it finish for any input value n?

A specification example

procedure whatAmI(A: Array)
repeat

swapped := false
for i := 1 to length(A) - 1 do

if A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped := true

end if
end for

until not swapped
end procedure

What does this program do?

Can you specify (using FOL) the property that characterizes a sorted array?Can we prove that, after executing the code above, array A meets that property?Can we use specifications to derive a correct sorting program?

A specification example

procedure whatAmI(A: Array)
repeat

swapped := false
for i := 1 to length(A) - 1 do

if A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped := true

end if
end for

until not swapped
end procedure

What does this program do?Can you specify (using FOL) the property that characterizes a sorted array?

Can we prove that, after executing the code above, array A meets that property?Can we use specifications to derive a correct sorting program?

A specification example

procedure whatAmI(A: Array)
repeat

swapped := false
for i := 1 to length(A) - 1 do

if A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped := true

end if
end for

until not swapped
end procedure

What does this program do?Can you specify (using FOL) the property that characterizes a sorted array?Can we prove that, after executing the code above, array A meets that property?

Can we use specifications to derive a correct sorting program?

A specification example

procedure whatAmI(A: Array)
repeat

swapped := false
for i := 1 to length(A) - 1 do

if A[i-1] > A[i] then
swap(A[i-1], A[i])
swapped := true

end if
end for

until not swapped
end procedure

What does this program do?Can you specify (using FOL) the property that characterizes a sorted array?Can we prove that, after executing the code above, array A meets that property?Can we use specifications to derive a correct sorting program?

Jean-Raymond Abrial.Faultless systems: Yes we can!
IEEE Computer, 42(9):30–36, 2009.
Jean-Raymond Abrial.
Modeling in Event-B - System and Software Engineering.Cambridge University Press, 2010.

	Mundane matters
	Purpose
	Dependability
	Pitfalls
	Narrowing the target
	Use of specifications
	Quiz

