
Sequential programs, refinement, and proof obligations1

Manuel Carro
manuel.carro@upm.es

Universidad Politécnica de Madrid &
IMDEA Software Institute

1Several slides, examples, borrowed from J. R. Abrial

Installing and using Rodin s. 3
Sequential programs: specification and
properties . s. 4
Specification of searching in array s. 7
Refinement of search s. 12
Termination and correctness s. 17
Well-definedness and feasibility s. 20

Refinement: the sorted array cases. 25
Guard strengthening s. 32
Simulation . s. 38
Rodin and refinement s. 41
Rodin proof of INV s. 43
Reviewed hypotheses s. 57
Theorems . s. 58

All you ever wanted to know about installing Rodin...

. . . is at

https://wp.software.imdea.org/cbc/#tools

and

https://wp.software.imdea.org/cbc/rodin-installation-and-tips/

Sequential programs and Event B

Sequential programs can be transpiled
into Event B.
Correctness, termination, etc. proven
with Event B tools.
However, underuse of Event B.
Other approaches are very good at this.

Better approach: design with Event B
from the beginning.
Apply to reactive and concurrent
systems – strong points of Event B.
For illustration: will develop several
sequential programs.

mailto:manuel.carro@upm.es
https://wp.software.imdea.org/cbc/#tools
https://wp.software.imdea.org/cbc/rodin-installation-and-tips/

Appetizer
Let us use Rodin with the Integer Division example.

INITIALISATION
a, r := 0, b

END

EVENT Prog r e s s
WHERE r >= c THEN

r , a := r − c , a+ 1
END

EVENT F i n i s h
WHERE r < c THEN

s k i p
END

Two types of components in a Rodin
project:

Context(s) Contains constants and
axioms.

Machine(s) Variables, invariants, and
events (and some other
things). Machines see
Contexts.

Switching to Rodin. The example I will type
is available as part of the course material.

Specification of a sequential program

Sequential programs are usually specified by
means of:

A precondition
And a postcondition

Represented with a Hoare triple

{Pre} P {Post}

Searching in an array

We are given as preconditions:
A natural, non-zero number: n ∈ N1.
An array f of n elements of naturals: f ∈ 1..n→ N.
A value v known to be in the array: v ∈ ran(f).

We are looking for (postconditions):
An index r in the array: r ∈ dom(f)

Such that f (r) = v
n ∈ N1
f ∈ 1..n→ N
v ∈ ran(f)

 search
{

r ∈ dom(f)
f (r) = v

}

Encoding a Hoare-triplet

Preconditions Program Postconditions
n ∈ N1
f ∈ 1..n→ N
v ∈ ran(f)

 search
{

r ∈ dom(f)
f (r) = v

}
Axioms Guards, invariants

Input parameters, constants Variables

Ensuring (total) correctness:
post-condition implied by invariants and guard of (unique) final
event: Axioms, Invs,¬Guard ` Post.
Non-final events terminate.
Events are deterministic.
Events do not deadlock.

We will see later how to formally express the last two properties.

Encoding search
n ∈ N1
f ∈ 1..n→ N
v ∈ ran(f)

 search
{

r ∈ dom(f)
f (r) = v

}

Constants: n, f , v
Axiom 1: n ∈ N1
Axiom 2: f ∈ 1..n→ N
Axiom 3: v ∈ ran(f)

r :∈ dom(f) assigns to r a number
randomly chosen from the set dom(f).

VARIABLES r
INVARIANTS r ∈ dom(f)
INIT

r :∈ dom(f)
END

EVENT F i n i s h
WHERE f (r) = v
THEN

s k i p
END

EVENT Prog r e s s
WHERE f (r) 6= v
THEN

r :∈ dom(f)
END

Encoding search (cont.)

Does not capture a good computation method (Why?).
Let us write it in Rodin.
Entering symbols:

To enter. . . type
∈ :
:∈ ::
N NAT
→ -->
6= /=

f ∈ N→ 1..n would be typed f : NAT --> 1..n

Open Rodin and let start typing it together.

	Installing and using Rodin
	Sequential programs: specification and properties
	Specification of searching in array
	Refinement of search
	Termination and correctness
	Well-definedness and feasibility
	Refinement: the sorted array case
	Guard strengthening
	Simulation
	Rodin and refinement
	Rodin proof of INV
	Reviewed hypotheses
	Theorems

