

Sequential programs, refinement, and proof obligations¹

Manuel Carro manuel.carro@upm.es

Universidad Politécnica de Madrid & IMDEA Software Institute

Installing and using Rodins. 3	Refinement: the sorted array cases. 25
Sequential programs: specification and	Guard strengthenings. 32
propertiess. 4	Simulations. 38
Specification of searching in arrays. 7	Rodin and refinements. 41
Refinement of searchs. 12	Rodin proof of INVs. 43
Termination and correctnesss. 17	Reviewed hypothesess. 57
Well-definedness and feasibilitys. 20	Theoremss. 58

Appetizer Let us use Rodin with the Integer Division example.

Specification of a sequential program

INITIALISATION
a, r := 0, bTwo types of co
project:ENDContext(s) Co
axiEVENT Progress
WHERE $r \ge c$ THEN
r, a := r - c, a + 1Machine(s) Val
eventhat
eventhat
CoEVENT Finish
WHERE r < c THEN
skipSwitching to Ro

Two types of components in a Rodin project:

Context(s) Contains constants and axioms.

Machine(s) Variables, invariants, and events (and some other things). Machines *see* Contexts.

Switching to Rodin. The example I will type is available as part of the course material.

◆□▶★舂▶★≧▶★≧▶ ≧ のへで

- Sequential programs are usually specified by means of:
 - A precondition
 - And a postcondition
- Represented with a Hoare triple

 $\{Pre\} P \{Post\}$

wi Mdea

Searching in an array

END

We are given as **preconditions**:

- A natural, non-zero number: $n \in \mathbb{N}1$.
- An array *f* of *n* elements of naturals: $f \in 1..n \rightarrow \mathbb{N}$.
- A value v known to be in the array: $v \in ran(f)$.

We are looking for (postconditions):

- An index r in the array: $r \in \text{dom}(f)$
- Such that f(r) = v

$$\left\{\begin{array}{l} n \in \mathbb{N}1\\ f \in 1..n \to \mathbb{N}\\ v \in \operatorname{ran}(f) \end{array}\right\} \text{ search } \left\{\begin{array}{l} r \in \operatorname{dom}(f)\\ f(r) = v \end{array}\right\}$$

Encoding a Hoare-triplet Preconditions Program Postconditions $(n \in \mathbb{N}1)$)

 $\begin{cases} f \in 1..n \to \mathbb{N} \\ v \in \operatorname{ran}(f) \end{cases}$ search $\begin{cases} r \in \operatorname{dom}(f) \\ f(r) = v \end{cases}$ Axioms
Guards, invariants
Variables

• Ensuring (total) correctness:

- post-condition implied by invariants and guard of (unique) final event: Axioms, Invs, ¬Guard ⊢ Post.
- Non-final events terminate.
- Events are deterministic.
- Events do not deadlock.
- We will see later how to formally express the last two properties.

Encoding search

 $n \in \mathbb{N}1$ search $\left\{\begin{array}{c} r \in \operatorname{dom}(f) \\ f(r) = v \end{array}\right\}$ $f \in 1..n \rightarrow \mathbb{N}$ $v \in \operatorname{ran}(f)$

Constants: *n*, *f*, *v* Axiom 1: $n \in \mathbb{N}1$ Axiom 2: Axiom 3: $v \in \operatorname{ran}(f)$

 $f \in 1..n \rightarrow \mathbb{N}$

r := dom(f) assigns to r a number randomly chosen from the set dom(f).

```
VARIABLES r
INVARIANTS r \in \text{dom}(f)
INIT
  r :\in \operatorname{dom}(f)
END
EVENT Finish
  WHERE f(r) = v
  THEN
     skip
END
EVENT Progress
  WHERE f(r) \neq v
  THEN
     r :\in \operatorname{dom}(f)
```

END

| ↓ □ ▶ ★ ፼ ▶ ★ 厘 ▶ ★ 厘 ▶ ↓ 厘 → りへで

Encoding search (cont.)

- Does not capture a *good* computation method (Why?).
- Let us write it in Rodin.
- Entering symbols:

To enter	type
\in	:
:∈	::
\mathbb{N}	NAT
\rightarrow	>
\neq	/=

 $f \in \mathbb{N} \to 1..n$ would be typed f : NAT --> 1..n

Open Rodin and let start typing it together.

・ロト・(部)・(目)・(目)・(日)・