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"Example and most slides borrowed from J. R. Abrial: see
http://wiki.event-b.org/index.php/Event-B_Language
Purpose of this lecture midea @;m Prerequisites mi dea @;fm
@ Learning a few more modeling conventions.
@ Learning more about abstraction.
@ Formalizing and proving on an interesting structure: a tree. . . . .
@ Will have an intermediate step to review functions, relations, data @ Knowledge of first order logic, set theory, relations, and functions.
structures. @ Rodin (to discharge the proofs).
@ Study a more complicated problem in distributed computing o Slides:
@ Example studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a e Event B: Sets, Relations, Functions, Data Structures
Method of Multi-programming. Springer Verlag, 1999. @ Please go through them.
@ I will review parts of it here, when needed.
As usual:

@ Define the informal requirements
@ Define the refinement strategy
@ Construct the various more and more concrete models


mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language
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Comparison with previous examples

@ Not a transformational system. @ Internal concurrency.
e Not supposed to finish.

@ No final result.

@ Not reactive.
@ No external world that reacts to
system changes.

@ Distributed.
e Different nodes act autonomously.
e With limited information access.
e However, communication assumed @ However, proofs and reasoning
to be reliable. involved.

e Every node has concurrent
processes.

@ Model small: just three events in the
last refinement.
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Requirements (Cont.)

@ All processes are supposed to execute forever the same code.
@ But processes must remain (somewhat) synchronized.
@ For this, each process has (initially) one counter.

‘ ENV 2 ‘ Each process has a counter, which is a natural number

@ A process counter represents its “phase”
(related to the work for which they have to synchronize).

@ Difference between any two counters < one.
@ Each process is thus at most one phase ahead of the others

Requirements |l dea m
‘ ENV 1 | We have a fixed set of processes forming a tree ‘
{ Q‘b i
O /O
SRS
@ Note: they do not need to form a tree from the beginning.
@ A set of communicating processes can coordinate to form a tree.
i =
Requirements (Cont.) @i dea -
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FUN 3 | The difference between any two counters is at most equal to 1




Requirements (Cont.) =i

Steps

@ Reading the counters

FUN 4 | Each process can read the counters of its immediate neigh-
bors only

@ Modifying the counters

O

FUN 5 | The counter of a process can be modified by this process
only

. [Initial model: all nodes access to the state of all nodes.]

. First refinement: restrict access to a single node.

Second refinement: local check, upwards wave.

Third refinement: construct downwards wave.

Fourth refinement: remove upwards and downwards counters.

dea £

dea '

Refinement strategy &l

@ Construct abstract initial model dealing with FUN 3 and FUN 5
@ Improve design to (partially) take care of FUN 4

@ Improve design to better take care of FUN 4

@ (Simplify final design to obtain efficient implementation).

‘ FUN 3 ‘ The difference between any two counters is at most one

‘ FUN 4 ‘ Processes read counters of immediate neighbors only

‘ FUN 5 ‘ A process can modify only its counter(s)

Initial model: the state =l

@ Simplify situation: forget about tree

@ We just define the counters and express the main property: FUN 3

‘ FUN 3 ‘ The difference between any two counters is at most one

@ The initial model is always far more abstract than the final system
@ Other requirements are probably not fulfilled

dea

dea
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Abstract situation
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’ FUN 3 ‘ The difference between any two counters is at most 1
» , i dea (%
Initial model: the state P ea .-
carrier set: P axm0_ 1: finite(P)
inv0.1: ¢ € P—>N
i . reP
variable: c . yeP
inv0 2: Va,y- =

c(z) < c(y) +1

v Create project synch_tree

v’ Create context c0 with set, axiom

v’ Create machine mo with variable, invariants.

Suggest an initial model!

Is that right?
@ inv0_2 may be surprising at first glance:
Vx,y - x EPAy €P=c(x)<c(y)+1

@ IsitthesameasVi,j - |c(i) — c(j)| < 1?
@ Disprove it or convince us!

=i dea
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Is that right? Wiiilea @ Initial model: events ascending mi dea (f

[ PouECNICA]
any n where
: - - init nebp
@ inv0_2 may be surprising at first glance: Vm-m € P = c(n) < c(m)
c = P x {0} then =
c(n) :=c(n 1
Vx,y-x€PAyeP=c(x)<c(y)+1 end() (m) +

o IsitthesameasVi,j - |c(i) — c(j)] < 1?
@ Disprove it or convince us!

Proof by double implication.

@ Note any n: itis logically3In-ne PA---
@ Process counter incremented only
when < to all other counters.

@ Non-determinism!

@ A specification of what should happen.

Let us choose two arbitrary nodes with counters a and b. @ Intuition: If I see I can increase @ Not a final state (there is not one): a

@ If the invariant holds, then a < b+ 1 and b < a + 1. From there, without breaking difference procedure that (hopefully) respects
a—b<1andb—a<1,therefore |a—b| < 1. constraint, I do it! the invariant.

@ If |a— b| <1, thenbotha— b <1and b—a<1. Then,inv0 2 is

S . L v Add initialization, event
implied by the intended invariant.

Note: x is entered with *x*, any with pull-down menu, “Add event pa-

rameter”.
; : ; @i dea (X @i dea (X
Proof of invariant preservation - Model so far -
MACHINE m0
. SEES c0
c €EP—-N inv0_1 VARIABLES
x € P
E P - c
Va,y - :y> inv0_2 INVARIANTS
c(z) <c(y)+1 invl: c¢€ P—N
ne€P Guards of event inv2: Va,yx € PAye P=c(z) <1+c(y)
Vm-(m € P=c¢(n) <e¢(m)) ascending CONTEXT c0 EVENTS
a SETS Initialisation
xeP P begin
Vo,y - :Zi er AXIOMS o actl: c:= P x {0}
(c<{n > c(n) +1})(2) < (e < {n = c(n) + 1})(y) +1 o ) Event ascending (ordinary) =
any
ﬂ n
where
ig i i : grdi2: neP
Modified invariant inv0_2 gratt: Vmm € P c(n) < c(m)
then
. . . . act1l: ¢(n) :=c(n) +1
In Rodin: automatic; if not, repeatedly apply lassoing, pO or mO. end




Problem with the current event B/ ea m;m

Steps

ascending
any n where
n € P
vm-m € P = c(n) < c(m)
then
c(n) :==c(n)+1
end

What requirement is this event breaking?

u b~ W N =

=i dea (%
| POLITECNICA

. Initial model: all nodes access to the state of all nodes.

. [First refinement: restrict access to a single node.]

. Second refinement: local check, upwards wave.

. Third refinement: construct downwards wave.

. Fourth refinement: remove upwards and downwards counters.

Problem with the current event mi dea

ascending
any n where
n € P
vm-m € P = c(n) < c(m)
then
c(n):=c(n)+1
end

What requirement is this event breaking?

FUN 2 | Each node can read the counters of its immediate neighbors
only

First refinement: (partially) solving the problem =i dea

@ Introduce a designated process r.
@ We suppose that the counter of r is always minimal

Vm-me P = c(r) < c(m)
@ Rationale:
@ We only synchronize with r — not compliant, but communication
restricted.
@ Helps ensure that difference between any two nodes < one.

e Because: if for any m either ¢(m) = c(r) or ¢(m) = c(r) + 1, then
difference between any m,n < 1.

@ Treat this property as a new (temporary) invariant.

v' Extend co into c1 (left pane, right click, “Extend”), add constant r, axiom r € PP

v Refine mo into m1 (left pane, right click, “Refine”), add new invariant
v mo should “see” c1



First refinement: proposal for the event refinement =i dea m;m Guard strengthening b
We simplify the guard c €PN inv01
x e P
yeP .
. . Va,y- inv0_2
(abstract-)ascending (concrete-)ascending LY o
any n where any n where c(x) < c(y) +1
neP n e P . . .
Ym-m e P = e(n) < e(m) e(n) = e(r) Vm-(meP = < ¢(m)) new invariant
then then ne€P Guards of corllcrete
c(n) :=c(n)+1 c(n) :=c(n) +1 ‘c(n) = c(r)‘ event ascending
end end [
n P Guards of abstract
Vm-(meP= < ¢(m)) eventascending
@ Note: if ¢(r) minimal, c¢(n) < ¢(r) impossible; therefore c(n) = ¢(r)
v' Change “extended” to “not extended”, change guard In Rodin: lasso + p0
@ We have then to prove guard strengthening. ; . .
P & & & v Go to the proving perspective, discharge proof
@i dea (X : @i
Model so far 4. Pending problems
MACHINE ml
REFINES m0
. . SEES cl i
inv1 not discharged. VARIABLES aSgﬁ;dlrggwhere
c S n e P
INVARIANT c(n) = c(r .
invi: Vm-m € P=c(r) < ¢(m) the|(1 ) ( ) vm-me P = C(’I‘) S c(m)
EVENTS c(n) :=c(n)+1
Initialisation (extended) end
begin
CONTEXT cl act1: c:= P x {0}
EXTENDS c0 end
CONSTANTS ;Eevff::s“::::[‘zfg@"“mw = 1. Prove that new “invariant” is preserved by the event.
AXIOMS any 2. The guard of the event still does not fulfill requirement FUN 4.
axml: re€P n
END where ] FUN 4 \ Each node can read the counters of its immediate neighbors only ‘
grdl: neP
grd2: ¢(r) = c(n)
then ey 1 @ Problem 1 solved in this refinement
end @ Problem 2 solved later
END




First refinement: defining the tree

@ Tree: root r and “pointer” f from each

node in P\ {r} to every node’s parent.

@ Plus some additional properties and
inference rules.

@ Reminder: sets, relations, functions,
specific data structures and their
inference rules.

@ Note: constructing a tree (= root /
leader + links) is a classical problem in
distributed systems.

@ Can also be tackled using Event B.

Minimal counter at the root

=i dea
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Invariant: we have a condition involving
nodes in pairs and we need a condition

that relates a single node r with all the
others.

=i dea

@ We define a weaker, local invariant first.
@ The counter at every node is not greater than its descendants:

invll:Ym-me P\{r} = c(f(m)) < c(m)

v Add it to m1

A
€ /®\ 5 hS
) ) A
(@) ©)
N

Rationale (advancing the algorithm)
@ Assume we can update the tree

keeping a maximum difference
between neighbors.

@ Will be helpful to prove c(r) < ¢(m).

é )

Update model

v  Add to c1 (note f is —, written -->>)
@ Constant f.
@ Axioms:

LCP

feP\{r}>P\L
VS.SCflS|=S=0

o f~Liswritten f~.

@ —: f defined for all P\ {r} and arrives to every elementin P\ L.

Minimal counter at the root

@ Minimality of counter at the root

Vm-me P = c(r) < c(m)

relates c(r) with ¢(m) for every m.

@ Events change local values and consult neighbouring values.
@ We can (easily) prove properties relating neighbouring nodes.
@ How can we relate local properties with global properties?

dea

dea (&
| POLITECNICA



Minimal counter at the root B/ ea m;m Minimal counter at the root: induction B/ ea
@ Minimality of counter at the root o Start with leaves | & [
Vm-me P = c(r) < c(m) @ Prove that for any /, c(f(/)) < c(/), then
relates c(r) with ¢(m) for every m. c(F(F(1) = c(f(N) < e, ...
. . @ Work upwards towards root r.
@ Events change local values and consult neighbouring values. ~ *®
@ We can (easily) prove properties relating neighbouring nodes. O/ S @ OR
@ How can we relate local properties with global properties? VAN e o Start with r.
O O ™ o Prove that for all ms.t. r = f(m), c(r) < c(m).
We need to extend the local property / \ © mis a child of r
O © @ Then, for all m’ s.t. m = f(m’), c(m) < c(m')...
ohip Gal € (i S iG] < G ya \ /\\\\ @ And so on towards the leaves.
to the whole tree. O O O @
@i dea

.. . . =i dea (%
Minimal counter at the root: induction -

Induction in Rodin: instantiation
@ Double click in the unproved

-
@ Induction: difficult for theorem provers to do on their own. theorem (left pane). ga e o e =
o Needs to identify base case, property to use for induction — i.e., @ Switch to prover view, lasso. Oa¥ B o e Bl ‘I:[S: ;;m
the strategy. @ Locate induction axiom. Bev <[l . = i —
° Proving’proper.ty for base case & inductive step within theorem o Enter TMie 0 rmes < ’5} s
provers' capabilities. (x1xePAcE <cwl e =

@ In Rodin: needs adding induction scheme:
v Add to c1:
VS:SCPAreSAKNn-ne P\{r}tAf(n)eS=neS)=PCS
v Tip: ctri-Enter breaks text in input box in separate lines.

@ Instantiating it with the property to prove expressed as a set:
{x | x€P A c(r) < cx)}(nextslide)

v' In m1: ensure you haveinvl 1: Vm-m € P\{r} = c(f(m)) < c(m)
v Ensurethml 1: Vm-m € P = c(r) < c(m) below invariant, marked as theorem

@ Return and pO0.

@ The theorem should be
proved now.

Oa ¥ x 2NN Oa¥ x[ . y[ |-
c(x)=c(y)+1 c(x)sc(y)+1

Selected Hypotheses Selected Hypotheses

¥ Goal B Goal®

ct c(rsc(m) ot c(rsc(m)

Invariant inv1_1 not yet proved. Requires order between
parent and children c¢(f(m)) < ¢(m) that ascending cannot
guarantee: guard c(r) = c¢(n) allows updates in arbitrary
order. Will enforce through more local comparison.

L]



More local comparison

@ Nodes with difference < one from r.
@ When can we update looking locally?

ascending
any n where
neP
c(r) = c(n)
Vm-me f{n}] = c(n) < c(m)
then
c(n) == c(n) +1
end
Ensure invl_1 is preserved: double click,
prover view, lasso, p0 should do it.

How it is expected to work

Update order restricted:

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

=i dea (%

cCm)=Cl) 2 V- Wfﬂiwﬂ] = C(m) > c(m)

=i dea (%
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How it is expected to work

Update order restricted:

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose

counters are, in addition, smaller than e

all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work

Update order restricted:

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose

counters are, in addition, smaller than

all its descendants.

@ Updates will go in waves towards the
root.




How it is expected to work m How it is expected to work

Update order restricted: - - Update order restricted: -

@ Before: any node whose counter is @ Before: any node whose counter is
equal to the root (the one with the equal to the root (the one with the
minimum). minimum).

@ Now: only those nodes whose @ Now: only those nodes whose
counters are, in addition, smaller than counters are, in addition, smaller than
all its descendants. all its descendants.

@ Updates will go in waves towards the @ Updates will go in waves towards the
root. root.

i =
How it is expected to work midea e How it is expected to work
Update order restricted: - - Update order restricted: -
@ Before: any node whose counter is @ @ Before: any node whose counter is @

equal to the root (the one with the / equal to the root (the one with the / \
minimum). (2 minimum). (2] (;)
@ Now: only those nodes whose /\4 \ @ Now: only those nodes whose /\ /
counters are, in addition, smaller than ) D (2% 2) counters are, in addition, smaller than D 2 >3
all its descendants. - - \4” — all its descendants. — /x 4’
@ Updates will go in waves towards the e A = @ Updates will go in waves towards the /* 'y 3
\ ) N

YR
root. — — / \ root. — ~ /\
I >N — \-
(2) (2 /‘ ‘\

=i dea £



How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the

/‘/\
minimum). (27 {5)
- A
@ Now: only those nodes whose / \ /
counters are, in addition, smaller than = ™~ > >
_/ < J

all its descendants.

@ Updates will go in waves towards the
root.

=i dea
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How it is expected to work

Update order restricted: -
@ Before: any node whose counter is (2)

\_
equal to the root (the one with the / \
minimum). (2 )

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.

How it is expected to work

Update order restricted: -

@ Before: any node whose counter is
equal to the root (the one with the
minimum).

@ Now: only those nodes whose
counters are, in addition, smaller than
all its descendants.

@ Updates will go in waves towards the
root.



How it is expected to work B/ ea - Neighborhood checking B/ ea e
Update order restricted: - -
@ Before: any node whose counter is @)
equal to the root (the one with the — . .
minimum). FUN 4 Ealch process can read the counters of its immediate neighbors
only
@ Now: only those nodes whose 4
counters are, in addition, smaller than @ Vm-me f~1[{n}] = c(n) < c¢(m) uses only local comparisons.
all its descendants. A @ c(r) = ¢(n) uses non-local comparisons.
@ Updates will go in waves towards the @ We will tackle that in the next refinement.
root.
. = i H
Model so far @i dea - Steps @i dea @
MACHINE ml
REFINES m0
CONTEXT cl SEES cl
EXTENDS c0 VARIABLES
CONSTANTS ¢
. INVARIANTS .
c vl Vmem e P\ {r} = o(f(m)) < c(m) 1. Initial model: all nodes access to the state of all nodes.
L inv2: (theorem) Vm-m € P = ¢(r) < ¢(m) . . . . .
AXIOMS EVENTS 2. First refinement: restrict access to a single node.
axnt: reP Initiatl)isafion {extended) 3. [Second refinement: local check, upwards wave.|
axm3: LCP egin - -
Leaves g e 4. Third refinement: construct downwards wave.
. SN en .
v e {fl}l[SQSL:g Event ascending (ordinary) = 5. Fourth refinement: remove upwards and downwards counters.
ame; B refines ascending
VS-SCPA any
reSA n
(Vnne P\{r}Anf(n)eS=neS) where R
grdl: ne€
:2 s grd2: ¢(r) = c¢(n)
END grd3: Vm-m € f'[{n}] = c(n) < c(m)
then
actl: ¢(n) :=c¢(n)+1
end
END




Second refinement

@ Replace the guard c(r) = ¢(n).
@ Processes must be aware when this situation does occur.
@ Add second counter d(-) to each node to capture value of ¢(r).

Updating d

This refinement captures:
@ The existence of d.
@ How its update can proceed not to break its invariant.

Event descending
any n where
neP
Vm-meée P = d(n) <d(m)
then
d(n) := d(n)+1
end

v' Add event to m2
v Initialize d to 0 (copy the initialization of c)

dea

dea £

Second refinement: the state

carrier set: P

constants: r, f

Invariant inv2_2
is as inv0_2

=i dea

d has an overall property similar
toc:

Vx,y-x € PAy e P=c(x) <

variables: c¢,d c(y) +1

@ d will capture the value of
c(r).

@ It will be updated in a
downward wave.

inv21: d € P—»N

x € P

i €p v Refine m1 into m2

d(z) < d(y) +1 v Add variable d and invariants

inv22: Va,y-

. Initial model: all nodes access to the state of all nodes.

. First refinement: restrict access to a single node.

. Second refinement: local check, upwards wave.

. [Third refinement: construct downwards wave.]

. Fourth refinement: remove upwards and downwards counters.

u b~ W N =

=
t
2
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Third refinement

@ We extend the invariant of counter d.
@ We establish the relationship between both counters ¢ and d.
@ This will allow us to refine event ascending

@ We construct the descending wave (by refining event descending).
@ Remark: this is the most difficult refinement.

v' Refine m2 into m3

Idea behind third refinement @i

dea

EEY

Idea behind third refinement @
YR
- 2/\/
1(2] 2)
/\/ﬁ*?\/\ /\/) N
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Idea behind third refinement

~ -
22) ‘/x 282) 2 \;/ 22)
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12) 12)

dea
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Idea behind third refinement m tea (2 Idea behind third refinement mi dea (%

| POLITECNICA | | POLITECNICA |
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i ; ; @mi dea (% i i ; @i dea X
Idea behind third refinement - Idea behind third refinement -

@mi dea (% P @mi dea %
- State and invariants E

Idea behind third refinement
@ Recall local condition for c:

invl1l:Ym-me P\{r} = c(f(m)) < c(m)

Every node’s counter is smaller than or equal to its children’s.

@ Local condition for d is similar:
2 \2\@ inv3_1:Ym-me P\{r} = d(m) < d(f(m))

Every node’s counter is smaller than or equal to its parent (if it has
a parent). This is what makes the wave descending.

@ inv3_1 and tree induction proves that the root has the highest
value of d(-):

thm3_.1:Vn-ne P = d(n) <d(r)

(remember: root had the smallest value of c(-))



i 1 i =
Proving theorem and invariant @i dea (2 Refining ascending @i dea (2

EENEY
Event (abstract—)ascending Event (concrete—)ascending
any n where any n where
\/AddtOmS.‘ neP neP
inv3.1: VYm-me P \ {r} = d(m) < d(f(m)) c(n) _ C(I’) C(n) _ d(n)
thm3_1 : Vn-ne P=d(n)<d(r) VYm-me f~[{n}] = c(n) < c(m) VYm-me f~[{n}] = c(n) < c(m)
then then
v' Mark the latter as theorem c(n) :==c(n) +1 c(n) :==c(n) +1
v Double click on the PO for THM end end
v' Go to proving perspective; locate induction axiom
v’ Instantiate with {x|x € P A d(x) < d(r)}, invoke pO ) ) )
v That should prove thm3 1 @ Downward wave d will eventually ascending: only local comparisons now!
v inv3_1 cannot be proved yet - reasons similar to c. propagate d(r). .
We will deal with that later v Change event guard in m3
Refining ascending midea m*;m Refining ascending mi dea m‘im
Event (abstract—)ascending Event (concrete—)ascending Event (abstract—)ascending Event (concrete—)ascending
any n where any n where any n where any n where
neP neP neP neP
c(n) = ¢(r) c(n) = d(n) c(n) = ¢(r) c(n) = d(n)
VYm-me f{n}] = c(n) < c(m) Vm-m e f[{n}] = c(n) < c(m) Vm-m € f[{n}] = c(n) < c(m) Vm-m € f[{n}] = c(n) < c(m)
then then then then
c(n):=c(n)+1 c(n):=c(n)+1 c(n):==c(n)+1 c(n):=c(n)+1
end end end end
@ Downward wave d will eventually ascending: only local comparisons now! @ Downward wave d will eventually ascending: only local comparisons now!
propagate d(r). propagate d(r).
v' Change event guard in m3 v' Change event guard in m3
@ Need to prove guard strengthening. @ Need to prove guard strengthening.

@ We cannot. ¢ and d unrelated so far!
v Relate c and d:inv3.2 : d(r) < c(r)

@ Now: proving perspective, lasso + p0
proves strengthening.



Refining descending mitea @ Proving guard strengthening mi dea (2

[ POLITECNICA]
@ A different case.
@ Two situations raise a change ?f d: Note: the steps below do not seem to be necessary in Rodin 3.6 with
1. For a non-root node: parent’s d change. the Atelier B provers installed. Strengthening is proven automatically.
2. For the root node: ¢(r) changes.
@ Different guards. We show here non-root case.
ne€ P\{r},d(n) =d(f(n)),me P Fd(n) <d(m)
Event (abstract—)descending Event (concrete—)descending
any n where any n where We need some magic mushrooms to help the provers:
nepP ne P\{r}
i vm-me N = d(n) < d(m) i d(n) # d(f(n)) thm3.2: Vn-ne P\{r} = d(f(n)) € d(n)..d(n) + 1
then then
d(n) = d(n) + 1 d(n) == d(n) + 1 thm3.3: Vn-ne P=d(r)ed(n).d(n)+1
end end X
thm3_2 downward wave, parent is at most one more than
v' Change (concrete) descending event to non-extended children (when it has just been increased)
V' Update guards thm3_3 special case for root (the first one to be increased)
Guard strengthening needs to be proved.
L : @mi dea (® PR @i dea (®
Refining descending (Cont. — the root case.) - Finishing proofs -
I needed two more magic pills:
Event (abstract—)descending Event (concrete—)descending inv33: Vn-nec P= c(n)€d(n).d(n)+1 To prove GRD
any n where refines ) . .
ne P descending thm34: VYn-ne P = c(r) € d(n)..d(n)+1 To proveinv3_3
VYm-mée P = d(n) <d(m) when Plus, if not added before:
then _ d(r) # c(r) thm3.2: Vn-ne P\{r} = d(f(n)) € d(n)..d(n) +1
d(n) := d(n) +1 with thm33:  Vn-ne P = d(r) € d(n).d(n) + 1
end n.n=r
) , then After this, the invariant can be proved with a combination of several steps:
v' Rename descending to descending_nr d(r) == d(r) + 1
v Copy event “descending.r": end @ Apply lasso. @ Do POinc(n) <d(n)+1+1goal.
Left click on circle left of name to select ; hili i
v — @ Instantiate Vn - d(n)..d 1 @ Note that only possibility to prove is
R  Change name to“descending.r (\rl]vshlac?m Irael(:\ter; cCaE;)ded) \Svr:zh n(n) ’ d(n) = c(n). ’F P
@ Parameter n disappeared! @ Note with label: specific Rodin idiom. @ Remove € in goal @ Do case distinction with d(n) = c(n),
@ Substitute (witness) for GRD, SIM. @ Need to prove (c(n) e d(n) +1..d(n)+1+1)tocreate @ Apply PO to one goal, ML (any force) to

@ We are particularizing for r. d(r) #c(r), me P +d(r) < d(m) inequalities. the other.



Third refinement: invariants |l dea m Third refinement: events ml dea &
ascending
inv3.1: Vm-(m € P\ {r} = d(m) <d(f(m))) any n where
neP
inv3 2: d(r) < c(r) c(n) = d(n)
Vm - (m e f {n}] = c(n) #c(m))
invd3: Vn:(ne€P = c(n) € dn)..dn)+1) then
c(n) :=c(n)+1
thm31: Vm.(m e P = d(m) < d(r)) end
thm32: Vn-(ne P\ {r} = d(f(n)) € d(n)..d(n)+1) de:ﬁi“?i”g;;ere descending 2
hen
. n e P\{r} -
thm3.3: Vn.(n€ P = d(r) € d(n)..d(n)+1) d(n) # d(f(n)) thergr) # c(r)
then d(r) == d(r) + 1
thm34: Vvn:-(ne€ P = c(r) € d(n)..d(n)+1) d(n) == d(n) + 1 end
end
i = i =
Third refinement: events midea - Steps mi e &
Event descending_r Event descending_nr
when any n where
d(r) # c(r) ne P\{r}
ith
e d(n) # d(f(n)) N
hel then 1. Initial model: all nodes access to the state of all nodes.
en
d(r) = d(r) + 1 d(n) :=d(n)+1 2. First refinement: restrict access to a single node.
end end 3. Second refinement: local check, upwards wave.
. 4. Third refinement: construct downwards wave.
Event ascending - -
any n where 5. [Fourth refinement: remove upwards and downwards counters.
neP
c(n) =d(n)
Vm-m e f{n}] = c(n) < c(m)
then

c(n):=c(n)+1
end




Observation

@ The difference among counters is at most one.
@ That has been proven by construction.

@ In the guards, we only care whether they are equal or not.

@ For this, we only need parity!

a,beNAlJa—b| <1= (a= b« parity(a) = parity(b))

@ We will prove that this is a valid refinement.
v' Extend context c1 into c2

V' Refine m3 into m4,
V' m4 should see c2

The definitions that replace ¢(-) and d(-)

- We replace c and d by p and ¢

variables: p,q

invd_1:

inv4_2:

inv4_3:

inv4 4:

p€ P —{0,1}
qg € P—{0,1}
Vn.(n € P = p(n) = parity(c(n)))

Vn.(n € P = q(n) = parity(d(n)))

v' Do it in m4. Note the gluing invariants! p and q really syntactic sugar.

@i dea Formalizing parity

é (g

- We replace the counters by their parities

- we add the constant parity

carrier set: P

constants: r, f, parity

axm4_1: parity € N— {0,1}
axm4 2: parity(0) =0

axm4.2: Vz.(z €N = parity(z + 1) = 1 — parity(x))

v' Add parity and axioms to c2. Note: parity is a function!
v' Need some clicking to prove WD

. % .
@i dea New events: counters replaced by parity

ascending
any n where
n P
p(n) = q(n)
vm - (m € f7[{n}] = p(m) # p(n))
then

en%(n) i=1-p(n)

d ding_1 )
e:gsnnmevhere de‘?v?]eenr:jmg,z
n € P\ {r} p(r) # q(r)
thglgn) # q(f(n)) thon
=1
o) =1 - q(n) Ay q(r)

dea



A note on the guard of ascending mi tea = Proving remaining POs (in ascending) mi dea 2

Ascending's guard was:
VYm-me f{n}] = c(n) < c(m) GRD of g(n) = p(n) @ «—: rewrite in two implications.

@ par(x) = par(y) = x = y: ah with

A direct translation would be © Needs additional property possible values of x.
vm-me Y [{n}] = p(n) < p(m) Y.y yeNAxey.y+1 = @ Prove ah with ML.
@ This would be wrong: (parity(x) = parity(y) < x = y) @ Goal y =y + 1: do dc with par(y) = 0.
e p(n) < p(m) does notimply c(n) < c(m). @ We could make it axiom, but it can be @ PO works for both branches.
e If p(n) < p(m), it could also happen c(n) > ¢(m)! proven as theorem (better!).

@ Proving it is not difficult.
@ However, we know that |c(n) — ¢(m)| < 1. WD: PO takes care of it
@ So, c(n) < ¢(m) = c(n) # c(m). ) : .
@ We could have used it throughout the model. THM: éfj?sl:ipr:cet%fnsg;ifs;esv\\j\:g:rlzgs

@ Then, p(n) # p(m) can (and should) be used.

i 3 . . i ]
Proving remaining POs (in ascending) midea & Proving POs (in ascending) B ea =
GRD of g(n) = p(n) GRD of ¥m - m € £~[n] = p(n) # p(m)
With th v:sllsmlp/idz e Two paths that work:
o Wi eorem ~osl/ds
e ey 1. Add two new THM:
v yp (inst n
Vx,y -y NAXxEy.. 1 = oT goal
Xy Y ENNAXEY.y+ =2 it Vn-ne P\ {r} = c(n) e c(f(n)..c(f(n)+1
= = OT goa
(parity(x) = parity(y) & x = y) ~ @Y hyp (1im n) Vn-neP = c(n)e€c(r).c(r)+1
9T goa
° Instant!ate with c(n), d(n). etz Then introduce the hypothesis n = f(m) (which comes from
@ Instantiate defs. of p(n), g(n). ”;T’;l;“fam" revrites m € f~1[n]) and use ML. See recording at course web.
) InVOke PO. v wgeneralized MP
o T @simplification rewrites , 2. Introduce n = f(m). Work more by hand to deduce that
@ See recording linked from course web 0= b m (3(n)ehespority(<(n)arity () c(F(m) < c(n) < c(F(n)) + 1. Deduce that p(m) % p(#(m)). Deduce
age. ~@functional image goal for d(n . . . ’ . :
pag ponetional inage goat for d(m) the relationship parity(c(m)) = parity(c(f(m)) < c(m) = c(f(m)).

opPP

Launch a theorem prover. See recording.
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