

Synchronizing Processes on a Tree Network¹

Manuel Carro

manuel.carro@upm.es

IMDEA Software Institute & Universidad Politécnica de Madrid

¹Example and most slides borrowed from J. R. Abrial: see http://wiki.event-b.org/index.php/Event-B_Language

Purpose of this lecture

- Learning more about abstraction.
- Formalizing and proving on an interesting structure: a tree.
 - Will have an intermediate step to review functions, relations, data structures.
- Study a more complicated problem in distributed computing
- Example studied in: W.H.J. Feijen and A.J.M. van Gasteren. On a Method of Multi-programming. Springer Verlag, 1999.

As usual:

- Define the informal requirements
- Define the refinement strategy
- Construct the various more and more concrete models

Prerequisites

Knowledge of first order logic, set theory, relations, and functions.

 Goals
 3

 Requirements
 6

Third refinement 56

Fourth refinement 80

- Rodin (to discharge the proofs).
- Slides:
 - Event B: Sets, Relations, Functions, Data Structures
- Please go through them.
- I will review parts of it here, when needed.

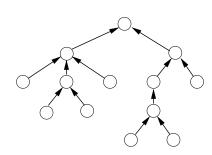
Comparison with previous examples

Requirements

- Not a transformational system.
 - Not supposed to finish.
 - No final result.
- Not reactive.
 - No external world that reacts to system changes.
- Distributed.
 - Different *nodes* act autonomously.
 - With limited information access.
 - However, communication assumed to be reliable.

- Internal concurrency.
 - Every node has concurrent processes.
- Model small: just three events in the last refinement.
- However, proofs and reasoning involved.

We have a fixed set of processes forming a tree



- Note: they do not need to form a tree from the beginning.
- A set of communicating processes can coordinate to form a tree.

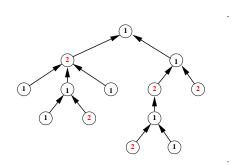
Requirements (Cont.)

- All processes are supposed to execute forever the same code.
- But processes must remain (somewhat) synchronized.
- For this, each process has (initially) one counter.

Each process has a counter, which is a natural number

- A process counter represents its "phase" (related to the work for which they have to synchronize).
- Difference between any two counters ≤ one.
- Each process is thus at most one phase ahead of the others

Requirements (Cont.)



The difference between any two counters is at most equal to 1

Requirements (Cont.)

Steps

Reading the counters

FUN	4	Each process can read the counters of its immediate neigh-
		bors only

Modifying the counters

FUN 5	The counter of a process can be modified by this process
	only

Co	onstruct	abstract in	itial mod	el deal	ing with	FUN 3 and	FUN 5
----------------------	----------	-------------	-----------	---------	----------	-----------	-------

- Improve design to (partially) take care of FUN 4
- Improve design to better take care of FUN 4
- (Simplify final design to obtain efficient implementation).

The difference between any two counters is at most one

Processes read counters of immediate neighbors only

FUN 5 A process can modify only its counter(s)

1. Initial model: all nodes access to the state of all nodes.

- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

- Simplify situation: forget about tree
- We just define the counters and express the main property: FUN 3

FUN 3 The difference between any two counters is at most one

- The initial model is always far more abstract than the final system
- Other requirements are probably not fulfilled

Abstract situation

(1)

2

(1)

1

1

1

2

(1)

2

(1)

2

1

FUN 3 The difference between any two counters is at most 1

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q C ・

Suggest an initial model!

Initial model: the state

carrier set: P

 $axm0_1: finite(P)$

variable: c

inv0_1: $c \in P \to \mathbb{N}$

$$\mathsf{inv0_2:} \quad \forall \, x,y \cdot \begin{pmatrix} x \in P \\ y \in P \\ \Rightarrow \\ c(x) \leq c(y) + 1 \end{pmatrix}$$

- ✓ Create project synch_tree
- ✓ Create context c0 with set, axiom
- ✓ Create machine m0 with variable, invariants.

Is that right?

• inv0_2 may be surprising at first glance:

$$\forall x, y \cdot x \in P \land y \in P \Rightarrow c(x) \leq c(y) + 1$$

- Is it the same as $\forall i, j \cdot |c(i) c(j)| \leq 1$?
- Disprove it or convince us!

Is that right?

• inv0_2 may be surprising at first glance:

$$\forall x, y \cdot x \in P \land y \in P \Rightarrow c(x) \leq c(y) + 1$$

- Is it the same as $\forall i, j \cdot |c(i) c(j)| \leq 1$?
- Disprove it or convince us!

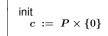
Proof by double implication.

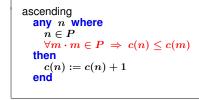
Let us choose two arbitrary nodes with counters *a* and *b*.

- If the invariant holds, then a < b + 1 and b < a + 1. From there, a-b < 1 and b-a < 1, therefore |a-b| < 1.
- If |a-b| < 1, then both a-b < 1 and b-a < 1. Then, inv0_2 is implied by the intended invariant.

4□ > 4個 > 4 = > 4 = > = 9 < ○</p>

Initial model: events



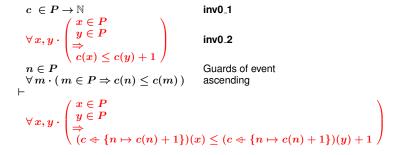


- Note any n: it is logically $\exists n \cdot n \in P \land \cdots$
- Process counter incremented only when < to all other counters.
- Intuition: *If I see I can increase* without breaking difference constraint. I do it!
- Non-determinism!
- A specification of what should happen.
- Not a final state (there is not one): a procedure that (hopefully) respects the invariant.

✓ Add initialization, event

Note: × is entered with **, any with pull-down menu, "Add event parameter".

Proof of invariant preservation

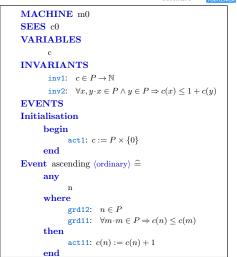


Modified invariant inv0_2

In Rodin: automatic; if not, repeatedly apply lassoing, p0 or m0.

Model so far

CONTEXT c0 SETS AXIOMS axm1: finite(P)END



Problem with the current event

Problem with the current event


```
ascending
  any n where
    n \in P
    \forall m \cdot m \in P \implies c(n) \le c(m)
  then
    c(n) := c(n) + 1
  end
```

What requirement is this event breaking?

What requirement is this event breaking?

ascending

then

end

any n where $n \in P$

Each node can read the counters of its immediate neighbors only

c(n) := c(n) + 1

 $\forall m \cdot m \in P \implies c(n) \le c(m)$

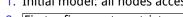
Steps

- Introduce a designated process r.
- We suppose that the counter of r is always minimal

$$\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$$

- Rationale:
 - We only synchronize with r not compliant, but communication restricted.
 - Helps ensure that difference between any two nodes ≤ one.
 - Because: if for any m either c(m) = c(r) or c(m) = c(r) + 1, then difference between any m, n < 1.
- Treat this property as a new (temporary) invariant.

```
✓ Extend c0 into c1 (left pane, right click, "Extend"), add constant r, axiom r \in PP
✓ Refine m0 into m1 (left pane, right click, "Refine"), add new invariant
```



1. Initial model: all nodes access to the state of all nodes.

2. First refinement: restrict access to a single node.

3. Second refinement: local check, upwards wave.

4. Third refinement: construct downwards wave.

5. Fourth refinement: remove upwards and downwards counters.

[√] m0 should "see" c1

First refinement: proposal for the event refinement

We simplify the guard

```
(abstract-)ascending
  any n where
    n \in P
    \forall m \cdot m \in P \implies c(n) \le c(m)
     c(n) := c(n) + 1
  end
```

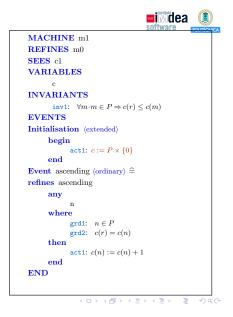
```
(concrete-)ascending
 any n where
    n \in P
    c(n) = c(r)
  then
    c(n) := c(n) + 1
  end
```

- Note: if c(r) minimal, c(n) < c(r) impossible; therefore c(n) = c(r)✓ Change "extended" to "not extended", change guard
- We have then to prove guard strengthening.

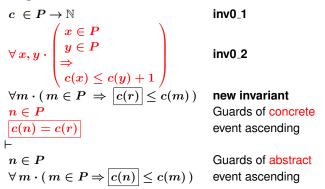
Model so far

inv1 not discharged.

```
CONTEXT c1
EXTENDS c0
CONSTANTS
AXIOMS
     \texttt{axm1:} \quad r \in P
END
```



Guard strengthening

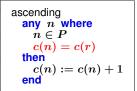


In Rodin: lasso + p0

√ Go to the proving perspective, discharge proof

<u>™</u>i √dea

Pending problems



$$\forall m \cdot m \in P \ \Rightarrow \ c(r) \leq c(m)$$

- 1. Prove that new "invariant" is preserved by the event.
- 2. The guard of the event still does not fulfill requirement FUN 4.

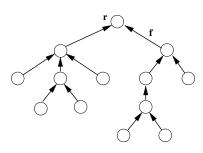
FUN 4 Each node can read the counters of its immediate neighbors only

- Problem 1 solved in this refinement
- Problem 2 solved later

First refinement: defining the tree

Update model

- Tree: root r and "pointer" f from each node in P \ {r} to every node's parent.
- Plus some additional properties and inference rules.
- Reminder: sets, relations, functions, specific data structures and their inference rules.
- Note: constructing a tree (≡ root / leader + links) is a classical problem in distributed systems.
- Can also be tackled using Event B.



Invariant: we have a condition involving nodes in pairs and we need a condition that relates a single node r with all the others.

$L \subseteq P$ $f \in P \setminus \{r\} \rightarrow P \setminus L$ $\forall S \cdot S \subseteq f^{-1}[S] \Rightarrow S = \emptyset$

• f^{-1} is written f^{-1} .

Constant f.

Axioms:

√ Add to c1 (note f is →, written -->>)

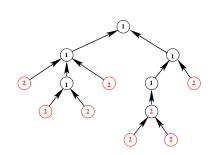
• \rightarrow : f defined for all $P \setminus \{r\}$ and arrives to every element in $P \setminus L$.

Minimal counter at the root

- We define a weaker, local invariant first.
- The counter at every node is not greater than its descendants:

$$inv1_1: \forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$$

✓ Add it to m1



Rationale (advancing the algorithm)

- Assume we can update the tree keeping a maximum difference between neighbors.
- Will be helpful to prove $c(r) \le c(m)$.

Minimal counter at the root

• Minimality of counter at the root

$$\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$$

relates c(r) with c(m) for every m.

- Events change local values and consult neighbouring values.
- We can (easily) prove properties relating neighbouring nodes.
- How can we relate local properties with global properties?

Minimal counter at the root

Minimal counter at the root: induction

Minimality of counter at the root

$$\forall m \cdot m \in P \Rightarrow c(r) \leq c(m)$$

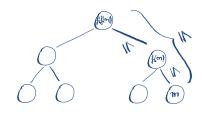
relates c(r) with c(m) for every m.

- Events change local values and consult neighbouring values.
- We can (easily) prove properties relating neighbouring nodes.
- How can we relate local properties with global properties?

We need to extend the local property

$$\forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$$

to the whole tree.



◆申 → ←置 → ← 差 → 一差 → 夕久 ○

- Start with leaves $l \in L$.
- Prove that for any l, $c(f(l)) \le c(l)$, then $c(f(f(I))) \leq c(f(I)) \leq c(I), \dots$
- Work upwards towards root r.

OR

- Start with r.
- Prove that for all m s.t. r = f(m), $c(r) \le c(m)$. m is a child of r
- Then, for all m' s.t. m = f(m'), c(m) < c(m')...
- And so on towards the leaves.

Minimal counter at the root: induction

- Induction: difficult for theorem provers to do on their own.
 - Needs to identify base case, property to use for induction i.e., the *strategy*.
- Proving property for base case & inductive step within theorem provers' capabilities.
- In Rodin: needs adding induction scheme:

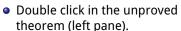
 $\forall S \cdot S \subseteq P \land r \in S \land (\forall n \cdot n \in P \setminus \{r\} \land f(n) \in S \Rightarrow n \in S) \Rightarrow P \subseteq S$ ✓ Tip: Ctrl-Enter breaks text in input box in separate lines.

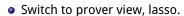
• Instantiating it with the property to prove expressed as a set: $\{x \mid x \in P \land c(r) < c(x)\}$ (next slide)

✓ In m1: ensure you have inv1_1: $\forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$

✓ Ensure thm1_1: $\forall m \cdot m \in P \Rightarrow c(r) < c(m)$ below invariant, marked as theorem

Induction in Rodin: instantiation

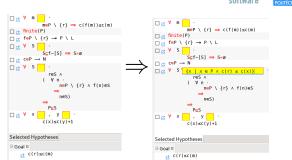




Locate induction axiom.

Enter $\{x \mid x \in P \land c(r) \leq c(x)\}.$

- Return and p0.
- The theorem should be proved now.



Invariant inv1_1 not yet proved. Requires order between parent and children $c(f(m)) \le c(m)$ that ascending cannot guarantee: guard c(r) = c(n) allows updates in arbitrary order. Will enforce through more local comparison.

More local comparison

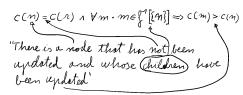
- <u>∞</u>i √dea
- How it is expected to work

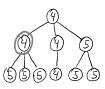
- Nodes with difference \leq one from r.
- When can we update looking locally?

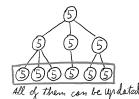
ascending

any
$$n$$
 where $n \in P$ $c(r) = c(n)$ $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)$ then $c(n) := c(n) + 1$ end

Ensure inv1_1 is preserved: double click, prover view, lasso, p0 should do it.

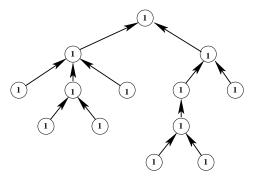






Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



◆申 → ←置 → ← 差 → 一差 → 夕久 ○

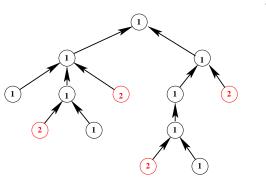
How it is expected to work

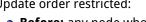
Update order restricted:

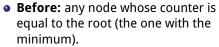
- equal to the root (the one with the minimum).
- Now: only those nodes whose all its descendants.
- Updates will go in waves towards the root.

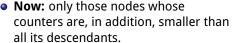
Update order restricted:

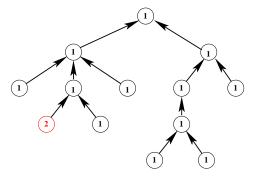
- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.











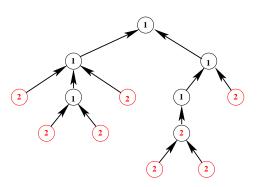
How it is expected to work

How it is expected to work

∞i∭dea

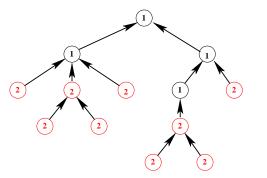
Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- **Now:** only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



Update order restricted:

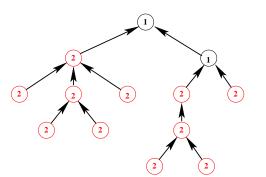
- Before: any node whose counter is equal to the root (the one with the minimum).
- **Now:** only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



How it is expected to work

Update order restricted:

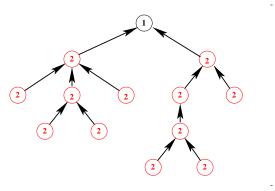
- Before: any node whose counter is equal to the root (the one with the minimum).
- **Now:** only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



How it is expected to work

Update order restricted:

- Before: any node whose counter is equal to the root (the one with the minimum).
- **Now:** only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

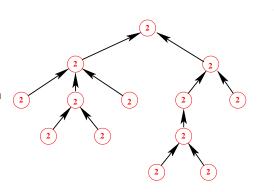


How it is expected to work

How it is expected to work

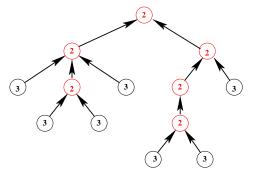
Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

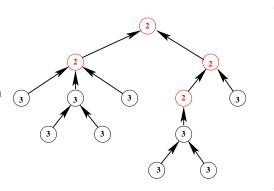


◆申 → ←置 → ← 差 → 一差 → 夕久 ○

How it is expected to work

Update order restricted:

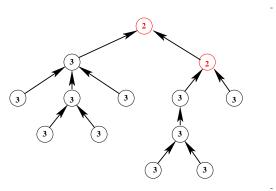
- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



How it is expected to work

Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.

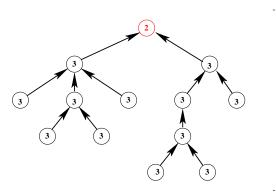


How it is expected to work

Neighborhood checking

Update order restricted:

- **Before:** any node whose counter is equal to the root (the one with the minimum).
- Now: only those nodes whose counters are, in addition, smaller than all its descendants.
- Updates will go in waves towards the root.



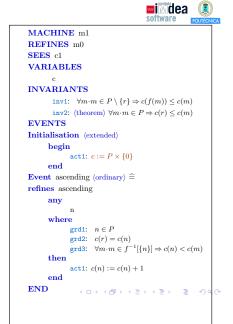
4□ > 4個 > 4 = > 4 = > = 9 < ○</p>

Each process can read the counters of its immediate neighbors only

- $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)$ uses only local comparisons.
- c(r) = c(n) uses non-local comparisons.
- We will tackle that in the next refinement.

Model so far

```
CONTEXT c1
EXTENDS c0
CONSTANTS
AXIOMS
           axm1: r \in P
           axm3: L \subseteq P
           \mathtt{axm2:} \quad f \in P \setminus \{r\} \twoheadrightarrow P \setminus L
           \mathtt{axm4:} \ \forall S \cdot S \subseteq f^{-1}[S] \Rightarrow S = \varnothing
                 \forall S \cdot S \subseteq P \land
                  (\forall n\!\cdot\! n\in P\setminus\{r\}\wedge f(n)\in S\Rightarrow n\in S)
                  P\subseteq S
END
```

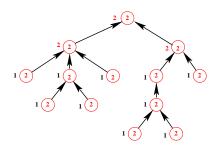


- 1. Initial model: all nodes access to the state of all nodes.
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

Second refinement

Second refinement: the state

- Replace the guard c(r) = c(n).
- Processes must be aware when this situation does occur.
- Add second counter $d(\cdot)$ to each node to capture value of c(r).



constants: r, fvariables: c, d

carrier set: P

Invariant inv2 2 is as inv0_2

inv2_1: $d \in P \rightarrow \mathbb{N}$

inv2.2:
$$\forall x,y \cdot \begin{pmatrix} x \in P \\ y \in P \\ \Rightarrow \\ d(x) \leq d(y) + 1 \end{pmatrix}$$

d has an overall property similar to c:

$$\forall x, y \cdot x \in P \land y \in P \Rightarrow c(x) \le c(y) + 1$$

- *d* will capture the value of c(r).
- It will be updated in a downward wave.
- ✓ Refine m1 into m2
- ✓ Add variable d and invariants

Updating *d*

◆申 → ←置 → ← 差 → 一差 → 夕久 ○

This refinement captures:

- The existence of *d*.
- How its update can proceed not to break its invariant.

Event descending

any
$$n$$
 where $n \in P$ $\forall m \cdot m \in P \Rightarrow d(n) \leq d(m)$ then $d(n) := d(n) + 1$ end

- ✓ Add event to m2
- \checkmark Initialize d to 0 (copy the initialization of c)

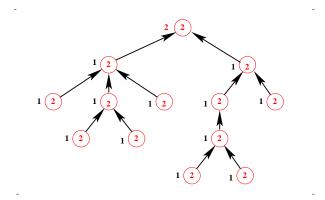
- 1. Initial model: all nodes access to the state of all nodes.
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

Third refinement

Idea behind third refinement

- We extend the invariant of counter *d*.
- We establish the relationship between both counters c and d.
 - This will allow us to refine event ascending
- We construct the descending wave (by refining event descending).
- Remark: this is the most difficult refinement.

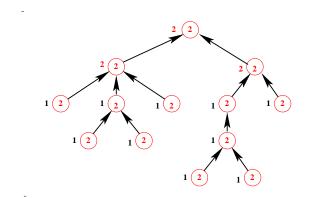
√ Refine m2 into m3



オロトオ部トオミトオミト ミーのなべ

Idea behind third refinement

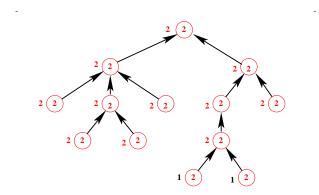
Idea behind third refinement

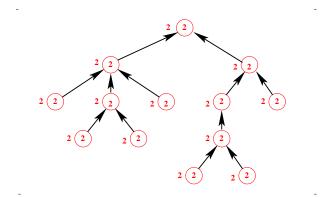




Idea behind third refinement

Idea behind third refinement

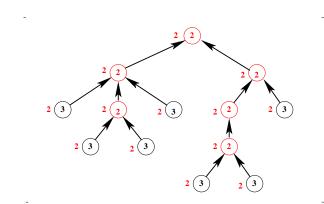


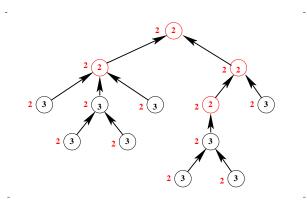


4 D > 4 B > 4 E > 4 E > E 990

Idea behind third refinement

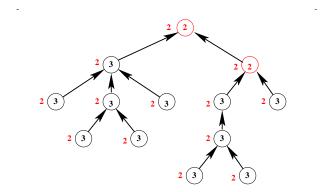
Idea behind third refinement

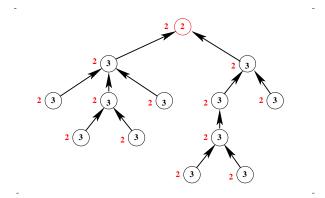




Idea behind third refinement

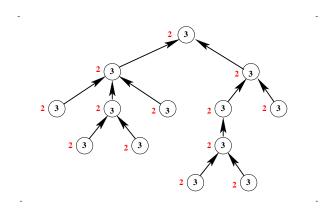
Idea behind third refinement





4日 → 4億 → 4 差 → 4 差 → 9 9 0 0

Idea behind third refinement



State and invariants

• Recall local condition for *c*:

$$\mathsf{inv1}_{-}\mathbf{1} : \forall m \cdot m \in P \setminus \{r\} \Rightarrow c(f(m)) \leq c(m)$$

Every node's counter is smaller than or equal to its children's.

• Local condition for *d* is similar:

$$\mathsf{inv3}_{-}\mathbf{1}: \forall m \cdot m \in P \backslash \{r\} \Rightarrow d(m) \leq d(f(m))$$

Every node's counter is smaller than or equal to its parent (if it has a parent). This is what makes the wave descending.

• inv3_1 and tree induction proves that the root has the highest value of $d(\cdot)$:

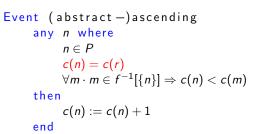
thm3_**1**:
$$\forall n \cdot n \in P \Rightarrow d(n) \leq d(r)$$

(remember: root had the smallest value of $c(\cdot)$)

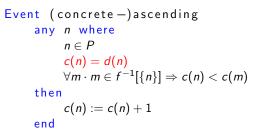
Proving theorem and invariant


```
✓ Add to m3:
                inv3_{-1}: \forall m \cdot m \in P \setminus \{r\} \Rightarrow d(m) < d(f(m))
                                      \forall n \cdot n \in P \Rightarrow d(n) < d(r)
               thm3_1:
```

- √ Mark the latter as theorem
- ✓ Double click on the PO for THM
- ✓ Go to proving perspective; locate induction axiom
- ✓ Instantiate with $\{x | x \in P \land d(x) \le d(r)\}$, invoke p0
- ✓ That should prove thm3_1
- \checkmark inv3_1 cannot be proved yet reasons similar to c.
- We will deal with that later



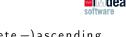
- Downward wave *d* will eventually propagate d(r).
 - ✓ Change event guard in m3



ascending: only local comparisons now!

→□▶→□▶→□▶→□▶ □ りへ⊙

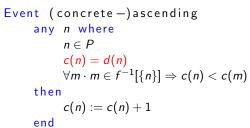
Refining ascending



Event (abstract -) ascending any n where $n \in P$ c(n) = c(r) $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)$ then c(n) := c(n) + 1end

- Downward wave *d* will eventually propagate d(r).
- Need to prove guard strengthening.

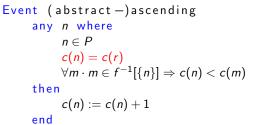
✓ Change event guard in m3



ascending: only local comparisons now!

4□ > 4酉 > 4 亘 > 4 亘 > □ ■ 9 Q @

Refining ascending



- Downward wave d will eventually propagate d(r).
 - ✓ Change event guard in m3
- Need to prove guard strengthening.
- We cannot, c and d unrelated so far! ✓ Relate c and d: inv3_2 : d(r) < c(r)
- Now: proving perspective, lasso + p0 proves strengthening.


```
Event (concrete -) ascending
      any n where
           n \in P
           c(n) = d(n)
           \forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)
      then
            c(n) := c(n) + 1
      end
```

ascending: only local comparisons now!

Refining descending

- <u>∞</u>i √dea

- - A different case.
 - Two situations raise a change of *d*:
 - 1. For a non-root node: parent's *d* change.
 - 2. For the root node: c(r) changes.
 - Different guards. We show here non-root case.

```
Event (abstract —) descending
                                                 Event (concrete -) descending
                                                       any n where
     any n where
           n \in P
                                                            n \in P \setminus \{r\}
           \forall m \cdot m \in N \Rightarrow d(n) \leq d(m)
                                                             d(n) \neq d(f(n))
     then
                                                      then
           d(n) := d(n) + 1
                                                             d(n) := d(n) + 1
                                                      end
     end
```

✓ Change (concrete) descending event to non-extended √ Update guards

Guard strengthening needs to be proved.

Proving guard strengthening

Note: the steps below do not seem to be necessary in Rodin 3.6 with the Atelier B provers installed. Strengthening is proven automatically.

$$n \in P \setminus \{r\}, d(n) = d(f(n)), m \in P \vdash d(n) \leq d(m)$$

We need some magic mushrooms to help the provers:

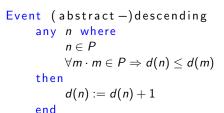
thm3_2:
$$\forall n \cdot n \in P \setminus \{r\} \Rightarrow d(f(n)) \in d(n)..d(n) + 1$$

thm3_3: $\forall n \cdot n \in P \Rightarrow d(r) \in d(n)..d(n) + 1$

thm3_2 downward wave, parent is at most one more than children (when it has just been increased)

thm3_3 special case for root (the first one to be increased)

Refining descending (Cont. — the root case.)



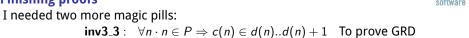
√ Rename descending to descending_nr √ Copy event "descending_r": Left click on circle left of name to select Ctrl-C to copy, Ctrl-V to paste

- Parameter n disappeared!
- Substitute (witness) for GRD, SIM.
- We are particularizing for r.

- Event (concrete -) descending refines descending when $d(r) \neq c(r)$ with n: n = rthen d(r) := d(r) + 1end
- √ Change name to "descending_r"
- Note with label: specific Rodin idiom.
- Need to prove $d(r) \neq c(r), m \in P \vdash d(r) \leq d(m)$

4□ > 4酉 > 4 亘 > 4 亘 > □ ■ 9 Q @

Finishing proofs



thm3_4:
$$\forall n \cdot n \in P \Rightarrow c(r) \in d(n)..d(n) + 1$$
 To prove inv3_3

Plus, if not added before:

$$\textbf{thm3_2}: \ \forall n \cdot n \in P \backslash \{r\} \Rightarrow d(f(n)) \in d(n)..d(n) + 1$$

thm3_3:
$$\forall n \cdot n \in P \Rightarrow d(r) \in d(n)..d(n) + 1$$

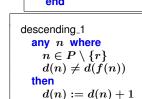
After this, the invariant can be proved with a combination of several steps:

- Apply lasso.
- Instantiate $\forall n \cdot c(r) \in d(n)..d(n) + 1$ (which relates c and d) with n.
- Remove ∈ in goal $(c(n) \in d(n) + 1..d(n) + 1 + 1)$ to create inequalities.
- Do P0 in c(n) < d(n) + 1 + 1 goal.
- Note that only possibility to prove is d(n) = c(n).
- Do case distinction with d(n) = c(n),
- Apply P0 to one goal, ML (any force) to the other.

Third refinement: invariants

Third refinement: events

$$\begin{array}{lll} & \text{inv3.1:} & \forall m \cdot (m \in P \setminus \{r\} \, \Rightarrow \, d(m) \leq d(f(m))\,) \\ & \text{inv3.2:} & d(r) \leq c(r) \\ & \text{inv3.3:} & \forall n \cdot (n \in P \, \Rightarrow \, c(n) \, \in \, d(n) \ldots d(n) + 1\,) \\ & \text{thm3.1:} & \forall m \cdot (m \in P \, \Rightarrow \, d(m) \leq d(r)\,) \\ & \text{thm3.2:} & \forall n \cdot (n \in P \setminus \{r\} \, \Rightarrow \, d(f(n)) \, \in \, d(n) \ldots d(n) + 1\,) \\ & \text{thm3.3:} & \forall n \cdot (n \in P \, \Rightarrow \, d(r) \, \in \, d(n) \ldots d(n) + 1\,) \\ & \text{thm3.4:} & \forall n \cdot (n \in P \, \Rightarrow \, c(r) \, \in \, d(n) \ldots d(n) + 1\,) \end{array}$$



ascending

any n where $n \in P$ c(n) = d(n)

c(n) := c(n) + 1

 $\forall m \cdot (m \in f^{-1}[\{n\}] \Rightarrow c(n) \neq c(m))$

descending 2
$$\begin{array}{c} \textbf{when} \\ d(r) \neq c(r) \\ \textbf{then} \\ d(r) := d(r) + 1 \\ \textbf{end} \end{array}$$

Third refinement: events

Event ascending any *n* where $n \in P$ c(n) = d(n) $\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)$ then c(n) := c(n) + 1end

- 1. Initial model: all nodes access to the state of all nodes.
- 2. First refinement: restrict access to a single node.
- 3. Second refinement: local check, upwards wave.
- 4. Third refinement: construct downwards wave.
- 5. Fourth refinement: remove upwards and downwards counters.

Observation

- The difference among counters is at most one.
 - That has been proven by construction.
- In the guards, we only care whether they are equal or not.
- For this, we only need parity!

$$a, b \in \mathbb{N} \land |a - b| \le 1 \Rightarrow (a = b \Leftrightarrow parity(a) = parity(b))$$

- We will prove that this is a valid refinement.
- ✓ Extend context c1 into c2
- ✓ Refine m3 into m4
- √ m4 should see c2

4日 → 4億 → 4 差 → 4 差 → 9 9 0 0

∞i Mdea

Formalizing parity

- We replace the counters by their parities
- we add the constant *parity*

carrier set: P

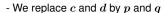
constants: r, f, parity

```
axm4_1: parity \in \mathbb{N} \to \{0,1\}
axm4_2: parity(0) = 0
axm4_2: \forall x. (x \in \mathbb{N} \Rightarrow parity(x+1) = 1 - parity(x))
```

- ✓ Add parity and axioms to c2. Note: parity is a function!
- √ Need some clicking to prove WD

<u>™i</u> Mdea

The definitions that replace $c(\cdot)$ and $d(\cdot)$



variables: p, q

inv4_1:
$$p \in P \rightarrow \{0,1\}$$

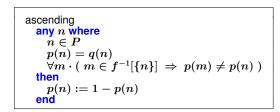
inv4_2:
$$q \in P \to \{0, 1\}$$

inv4_3:
$$\forall n . (n \in P \Rightarrow p(n) = parity(c(n)))$$

inv4_4:
$$\forall n . (n \in P \Rightarrow q(n) = parity(d(n)))$$

✓ Do it in m4. Note the gluing invariants! p and q really syntactic sugar.

New events: counters replaced by parity



```
descending_1
 any n where
   n \in P \setminus \{r\}
   q(n) \neq q(f(n))
 then
    q(n) := 1 - q(n)
```

$$\begin{array}{c} \text{descending.2} \\ \textbf{when} \\ p(r) \neq q(r) \\ \textbf{then} \\ q(r) := 1 - q(r) \\ \textbf{end} \end{array}$$

A note on the guard of ascending

Proving remaining POs (in ascending)

<u>∞</u>i√dea

Ascending's guard was:

$$\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow c(n) < c(m)$$

A direct translation would be

$$\forall m \cdot m \in f^{-1}[\{n\}] \Rightarrow p(n) < p(m)$$

▼ ⊘ simplification rewrites

▼ ⊗ simplification rewrites

▼ Øsl/ds

▼ Øsl/ds **y** Ø∀ hyp (inst n)

⊘T goal

⊕⊤ goal

▼ Ø ∀ hyp (inst n)

∀ Ø∀ hyp (inst n)

 $\neg \varnothing \forall$ hyp (inst c(n),d(n))

hyp

▼⊘simplification rewrites

▼ Ø generalized MP

⊘T goal

@ PP

▼ Ø generalized MP **▼** ∅ simplification rewrites

∀ Øsl/ds

- This would be wrong:
 - p(n) < p(m) does not imply c(n) < c(m).
 - If p(n) < p(m), it could also happen c(n) > c(m)!
- However, we know that $|c(n) c(m)| \le 1$.
 - So, $c(n) < c(m) \equiv c(n) \neq c(m)$.
 - We could have used it throughout the model.
- Then, $p(n) \neq p(m)$ can (and should) be used.

GRD of q(n) = p(n)

Needs additional property

$$\forall x, y \cdot y \in \mathbb{N} \land x \in y..y + 1 \Rightarrow (parity(x) = parity(y) \Leftrightarrow x = y)$$

- We could make it axiom, but it can be proven as theorem (better!).
- Proving it is not difficult.

WD: P0 takes care of it.

THM: A couple of simple rewritings + distinction by cases work.

- : rewrite in two implications.
- $par(x) = par(y) \Rightarrow x = y$: ah with possible values of x.
- Prove ah with ML.
- Goal y = y + 1: do dc with par(y) = 0.
- P0 works for both branches.

Proving remaining POs (in ascending)

With theorem

$$\forall x, y \cdot y \in \mathbb{N} \land x \in y..y + 1 \Rightarrow$$

$$(parity(x) = parity(y) \Leftrightarrow x = y)$$

- Instantiate with c(n), d(n).
- Instantiate defs. of p(n), q(n).
- Invoke P0.
- See recording linked from course web page.

4□ > 4個 > 4 = > 4 = > = 9 < ○</p>

Proving POs (in ascending)

GRD of $\forall m \cdot m \in f^{\sim}[n] \Rightarrow p(n) \neq p(m)$

Two paths that work:

1. Add two new THM:

$$\forall n \cdot n \in P \setminus \{r\} \Rightarrow c(n) \in c(f(n))...c(f(n)) + 1$$

$$\forall n \cdot n \in P \Rightarrow c(n) \in c(r)...c(r) + 1$$

Then introduce the hypothesis n = f(m) (which comes from $m \in f^{-1}[n]$) and use ML. See recording at course web.

2. Introduce n = f(m). Work more by hand to deduce that $c(f(n)) \le c(n) \le c(f(n)) + 1$. Deduce that $p(m) \ne p(f(m))$. Deduce the relationship $parity(c(m)) = parity(c(f(m)) \Leftrightarrow c(m) = c(f(m))$. Launch a theorem prover. See recording.

 $\neg \varnothing \Rightarrow \text{hyp mp } (d(n) \in \mathbb{N} \Rightarrow \neg \text{parity}(c(n)) = \text{parity}(d(n)))$

▼ Ø functional image goal for d(n)

▼⊘functional image goal for d(n)