

Event B: Sets, Relations, Functions, Data Structures¹

Manuel Carro manuel.carro@upm.es

IMDEA Software Institute & Universidad Politécnica de Madrid

First-order predicate calculus	3	Data Structures	46
Sets	22	Infinite Lists	47
Relations	26	Finite Lists	57
Functions	31	Infinite Trees	58
Example: a strict society	33	Finite Trees	59
Arithmetic	45	Reference	60

¹Many slides borrowed from J. R. Abrial: see http://wiki.event-b.org/index.php/Event-B_Language

・ キョット 4 聞 マス きょう 聞い うみの

wi Mdea

First-order predicate calculus: informal

We have a **universe** of objects. We **make statements** about these objects. *Sweet Reason* [HGTA11] is a delightful introduction to logic with examples.

 $\forall x \cdot P(x)$: For all elements *x*, *P* holds. *P* can be arbitrarily complex.

 $\exists x \cdot P(x)$: For some element *x*, *P* holds. *P* can be arbitrarily complex.

First-order predicate calculus: informal

x loves y

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: informal

l(x,y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	
$\forall x \cdot \exists y \cdot l(x, y)$	
$\exists y \cdot \forall x \cdot l(x, y)$	
$\forall y \cdot \exists x \cdot l(x, y)$	
$\exists x \cdot \forall y \cdot l(x, y)$	
$\forall x \cdot \neg l(x, x)$	
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

🔤 🕅 dea

First-order	predicate	calculus:	informal
$l(\mathbf{x}, \mathbf{y})$		x lo	

((,,,))	
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	everybody loves someone
$\exists y \cdot \forall x \cdot l(x, y)$	
$\forall y \cdot \exists x \cdot l(x, y)$	
$\exists x \cdot \forall y \cdot l(x, y)$	
$\forall x \cdot \neg l(x, x)$	
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: informal

l(x, y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	
$\exists y \cdot \forall x \cdot l(x, y)$	
$\forall y \cdot \exists x \cdot l(x, y)$	
$\exists x \cdot \forall y \cdot l(x, y)$	
$\forall x \cdot \neg l(x, x)$	
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

◆□▶★舂▶★≧▶★≧▶ ≧ のへで

First-order	predicate	calculus:	informal
inst oraci	predicate	curcurus	morman

l(x,y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	everybody loves someone
$\exists y \cdot \forall x \cdot l(x, y)$	there is someone who is loved by everybody
$\forall y \cdot \exists x \cdot l(x, y)$	
$\exists x \cdot \forall y \cdot I(x, y)$	
$\forall x \cdot \neg l(x, x)$	
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: informal

l(x, y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	everybody loves someone
$\exists y \cdot \forall x \cdot l(x, y)$	there is someone who is loved by everybody
$\forall y \cdot \exists x \cdot l(x, y)$	everybody is loved by someone
$\exists x \cdot \forall y \cdot l(x, y)$	
$\forall x \cdot \neg l(x, x)$	
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: informal

l(x, y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	everybody loves someone
$\exists y \cdot \forall x \cdot l(x, y)$	there is someone who is loved by everybody
$\forall y \cdot \exists x \cdot l(x, y)$	everybody is loved by someone
$\exists x \cdot \forall y \cdot l(x, y)$	there is someone who loves everybody
$\forall x \cdot \neg l(x, x)$	
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

・ロト・2000ト・ミン・ミン・ヨー りへぐ

First-order predicate calculus: informal

(日) (個) (目) (日) (日) (の)

l(x, y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	everybody loves someone
$\exists y \cdot \forall x \cdot I(x, y)$	there is someone who is loved by everybody
$\forall y \cdot \exists x \cdot l(x, y)$	everybody is loved by someone
$\exists x \cdot \forall y \cdot l(x, y)$	there is someone who loves everybody
$\forall x \cdot \neg l(x, x)$	no one loves themself
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: informal

l(x, y)	x loves y
$\forall x \cdot \forall y \cdot l(x, y)$	everyone loves everyone else (including themself)
$\exists x \cdot \exists y \cdot l(x, y)$	at least a person loves someone (perhaps themself)
$\forall x \cdot \exists y \cdot l(x, y)$	everybody loves someone
$\exists y \cdot \forall x \cdot l(x, y)$	there is someone who is loved by everybody
$\forall y \cdot \exists x \cdot l(x, y)$	everybody is loved by someone
$\exists x \cdot \forall y \cdot l(x, y)$	there is someone who loves everybody
$\forall x \cdot \neg l(x, x)$	no one loves themself
$\forall x \cdot \exists y \cdot l(x, y) \Rightarrow x \neq y$	everybody loves someone <mark>else</mark>

We usually want to prove these statements true or false. We use inference rules to prove truth or falsehood.

First-order predicate calculus: inference rules

$\frac{ \ H, \ \forall x \cdot P(x), \ P(E) \ \vdash \ Q}{ \ H, \ \forall x \cdot P(x) \ \vdash \ Q} ALL_L$	$\begin{array}{c c} H \vdash P(x) \\ \hline H \vdash \forall x \cdot P(x) \end{array} ALL_R$	
$\begin{array}{c c} \hline H, \ P(x) \ \vdash \ Q \\ \hline H, \ \exists x \cdot P(x) \ \vdash \ Q \end{array} XST_L \end{array}$	$\frac{H \vdash P(E)}{H \vdash \exists x \cdot P(x)} XST_{L}R$	

- **E** is an expression. Nobody tells you which one works.
- In **ALL**_**R**, **x** not free in **H**.
- In **XST_L**, **x** not free in **H** and **Q**.

$\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$

(definition of existential quantifier)

ション・雪・キャー サ・キャー

Some deductions and (non) equivalences

 $\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$

(definition of existential quantifier)

 $\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$

(If LHS true, there some fixed a s.t. $\forall y \cdot P(a, Y)$)

 $\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$ (If LHS true, x may depend on each y, i.e.,

there may **not** be a single a s.t. $\forall y \cdot P(a, Y)$)

software

(日) (個) (目) (日) (日) (の)

Some deductions and (non) equivalences

 $\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$ (definition of existential quantifier)

 $\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$

(If LHS true, there some fixed a s.t. $\forall y \cdot P(a, Y)$)

$\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$

(If LHS true, x may depend on each y, i.e., there may **not** be a single a s.t. $\forall y \cdot P(a, Y)$)

 $P(a) \Rightarrow \exists x \cdot P(x)$

Some deductions and (non) equivalences

Some deductions and (non) equivalences

 $\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$ (definition of existential quantifier)

 $\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$

(If LHS true, there some fixed a s.t. $\forall y \cdot P(a, Y)$)

$\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$

(If LHS true, x may depend on each y, i.e., there may **not** be a single a s.t. $\forall y \cdot P(a, Y)$)

$P(a) \Rightarrow \exists x \cdot P(x)$

When $x \notin vars(B)$: $\forall x \cdot (P(x) \Rightarrow B) \equiv (\exists x \cdot P(x)) \Rightarrow B$ (Prove it!)

・ロト・(部)・(目)・(目)・(ロ)・(ロ)

wi dea

 $\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$ (definition of existential quantifier)

 $\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$

(If LHS true, there some fixed a s.t. $\forall y \cdot P(a, Y)$)

 $\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$

(If LHS true, x may depend on each y, i.e., there may **not** be a single a s.t. $\forall y \cdot P(a, Y)$)

 $P(a) \Rightarrow \exists x \cdot P(x)$

When $x \notin vars(B)$:

 $\forall x \cdot (P(x) \Rightarrow B) \equiv (\exists x \cdot P(x)) \Rightarrow B$ (Prove it!)

Some deductions and (non) equivalences

$$\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$$
(definition of existential quantifier)

 $\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$

(If LHS true, there some fixed a s.t. $\forall y \cdot P(a, Y)$)

$$\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$$

(If LHS true, x may depend on each y, i.e., there may **not** be a single a s.t. $\forall y \cdot P(a, Y)$)

 $P(a) \Rightarrow \exists x \cdot P(x)$

When $x \notin vars(B)$:

 $\forall x \cdot (P(x) \Rightarrow B) \equiv (\exists x \cdot P(x)) \Rightarrow B$ (Prove it!)

 $\exists x \cdot P(x) \lor Q(x) \equiv (\exists x \cdot P(x)) \lor (\exists x \cdot Q(x))$

🔤 i Mdea (🎩

 $\forall x \cdot P(x) \land Q(x) \equiv (\forall x \cdot P(x)) \land (\forall x \cdot Q(x))$

◆□ > ◆母 > ◆目 > ◆目 > ◆日 > ◆ ● ◆ ● ◆ ●

Some deductions and (non) equivalences $\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$ $\forall x \cdot P(x) \land Q(x) \equiv (\forall x \cdot P(x)) \land (\forall x \cdot Q(x))$ (definition of existential quantifier) $\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$ $\exists x \cdot P(x) \lor Q(x) \equiv (\exists x \cdot P(x)) \lor (\exists x \cdot Q(x))$ (If LHS true, there some fixed a s.t. $\forall y \cdot P(a, Y)$) $\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$ $\forall x \cdot P(x) \lor Q(x) \not\equiv (\forall x \cdot P(x)) \lor (\forall x \cdot Q(x))$ (If LHS true, x may depend on each y, i.e., there may **not** be a single *a* s.t. $\forall y \cdot P(a, Y)$) (example?) $P(a) \Rightarrow \exists x \cdot P(x)$ When $x \notin vars(B)$: $\forall x \cdot (P(x) \Rightarrow B) \equiv (\exists x \cdot P(x)) \Rightarrow B$ (Prove it!)

 $\forall x \cdot P(x) \land Q(x) \equiv (\forall x \cdot P(x)) \land (\forall x \cdot Q(x))$

So

ome deductions and (non) equivalences	software Pourcence	Set theory: membership	software Fourtenica
$\forall x \cdot P(x) \equiv \neg \exists x \cdot \neg P(x)$ (definition of existential quantifier)	$\forall x \cdot P(x) \land Q(x) \equiv (\forall x \cdot P(x)) \land (\forall x \cdot Q(x))$	 Set: well-defined collection of distinct objects. Can be finite or infinite. Primary predicate: membership 	
$\exists x \cdot \forall y \cdot P(x, y) \Rightarrow \forall y \cdot \exists x \cdot P(x, y)$ If LHS true, there some fixed <i>a</i> s.t. $\forall y \cdot P(a, Y)$)	$\exists x \cdot P(x) \lor Q(x) \equiv (\exists x \cdot P(x)) \lor (\exists x \cdot Q(x))$		
$\forall y \cdot \exists x \cdot P(x, y) \not\Rightarrow \exists x \cdot \forall y \cdot P(x, y)$		F ⊂ S	
(If LHS true, x may depend on each y, i.e., there may not be a single a s.t. $\forall y \cdot P(a, Y)$)	$\forall x \cdot P(x) \lor Q(x) \not\equiv (\forall x \cdot P(x)) \lor (\forall x \cdot Q(x))$ (example?)	$L \in J$	
$P(a) \Rightarrow \exists x \cdot P(x)$	$\exists x \cdot P(x) \land Q(x) \not\equiv (\exists x \cdot P(x)) \land (\exists x \cdot Q(x))$	• <i>E</i> is an expression, <i>S</i> is a set.	
When $x \notin vars(B)$:	(example?)		
$\forall x \cdot (P(x) \Rightarrow B) \equiv (\exists x \cdot P(x)) \Rightarrow B$ (Prove it!)			
	(ロ) (雪) (言) (言) き の(の		・ロ>・(型>・(三)・(三)・(三)・)

Set theory: basic co	nstructs			Set theory: basic constructs Examples
$S = \{1, 2, 3, 4, 5, 6\}$	$\mathcal{T} = \{ a, b, c \}$	z, d}	$R(x) \equiv x \mod 2 = 0$	·
S and T are <mark>sets</mark> , R is	a predicate, <i>x</i> is a variable	е.		
Basic constructs				Short
Cartesian product Power set Comprehension Comprehension 2	$egin{aligned} & S imes T \ & \mathcal{P}(S) \ & \{x x \in S \wedge R(x)\} \ & \{x \cdot x \in S \wedge R(x) x * x\} \end{aligned}$	$\{(a, 1), (a, 2), \{\emptyset, \{a\}, \{a, b\}, \{a, b\}, \{a, 4, 6\}, \{4, 16, 36\}\}$	$\dots, (a, 6), (b, 1), \dots, (d, 6)$ b , $\dots, \{a, e\}, \dots, \{a, b, c, d\}$	• $\{x \mid x \in \mathbb{N} \land x < 2\} \times 810$ • $\{x \cdot x \in 35 \mid x \mapsto x * x\}$

Shortcut: $m..n \equiv \{x \in \mathbb{Z} \mid m \le x \land x \le n\}$

 $\mathbb{N} \wedge x < 2\} imes 8..10$

 $..5 \mid x \mapsto x * x \}$ γ

• $\{n \cdot n \in \mathbb{N} \mid (0..n) \mapsto n\}$

• { $x, y \cdot x \mapsto y \in 1..3 \times 2..4 \mid x + y$ }

Notation: tuples (a, 1) are written $a \mapsto 1$.

See the reference card for information on how to input these in Rodin.

∞i dea

Operations on sets

|--|

| ↓ □ ▶ ★ ፼ ▶ ★ 厘 ▶ ★ 厘 ▶ ↓ 厘 → りへで

$S \subseteq T$ $S = T$ $S \subset T$ $S \cup T$ $S \cap T$ $S \setminus T$ $E \in \{a, \dots, z\}$ $E \in \emptyset$	Inclusion Equality Strict inclusion Union Intersection Difference Membership ⊥
$E \in \varnothing$ S	\perp number of elements

- Operators based on membership and logic operations (see the reference slide).
- $E \notin T \equiv \neg (E \in T)$.
- Also: generalized / conditional union and intersection (see reference cards).

Binay relations

- A binary relation r is a set of tuples: $r \subset S \times T$
- Notation: $r \in \overline{S} \leftrightarrow T$
 - *S* ↔ *T*: the set of all the possible relationships between *S* and *T*.
 - $S \leftrightarrow T \equiv \dot{\mathcal{P}}(S \times T)$
 - The relation *r* would be one of these relationships.
- $r \in 1..3 \leftrightarrow 7..11$
 - $r = \{1 \mapsto 10, 2 \mapsto 7, 2 \mapsto 11\}$ • $4 \mapsto 10 \notin r$
- $dom(r) = \{1, 2\}$ (note $3 \notin dom(r)$)
- $ran(r) = \{10, 7, 11\}$ (note $8, 9 \notin ran(r)$)
- $r^{-1} = \{10 \mapsto 1, 7 \mapsto 2, 11 \mapsto 2\}$
- r ∈ {meat, fish, pasta, bacon} ↔ {carbs, protein, fat}
 write one relation.
- Relation of *dom*(*r*), *ran*(*r*) with *S* and *T*
- Given *S* and *T*, how many different *r* may there be?

・ロト・聞ト・声・・声・のへの

wi dea

wi Mdea

Types of	relations				softw	idea (E) are pointement	Operations on relations	
		Total Surjective Both	$S \Leftrightarrow T$ $S \Leftrightarrow T$ $S \Leftrightarrow T$ $S \Leftrightarrow T$	$r \in S \Leftrightarrow T \land dom(r) = S$ $r \in S \Leftrightarrow T \land ran(r) = T$ $r \in S \Leftrightarrow T \land r \in S \Leftrightarrow T$			Domain restriction Domain subtraction Range restriction Range subtraction	

Sets and relations are very useful modeling tools!

Choosing the right type of relation helps (automatically) capture problem conditions.

operations on relations		2011MAI 6	POLITÉCNICA
Domain restriction Domain subtraction Range restriction Range subtraction	$S \lhd r$ $S \lhd r$ $r \triangleright T$ $r \triangleright T$	Tuples in <i>r</i> with first component in <i>S</i> Tuples in <i>r</i> with first component not in <i>S</i> Tuples in <i>r</i> with second component in <i>T</i> Tuples in <i>r</i> with second component not in <i>T</i>	

Let us study the relation $Prey \in Animal \leftrightarrow Animal.$

Operations on relations

Domain restriction	<i>S</i> ⊲ <i>r</i>	Tuples in <i>r</i> with first component in <i>S</i>
Domain subtraction	S ⊲ r	Tuples in <i>r</i> with first component not in <i>S</i>
Range restriction	$r \rhd T$	Tuples in <i>r</i> with second component in <i>T</i>
Range subtraction	$r \triangleright T$	Tuples in r with second component not in T

Let us study the relation $Prey \in Animal \leftrightarrow Animal$.

We assume Prey contains hunter \mapsto hunted.

- Mammal <> Prey
- *Mammal ⊲ Prey*
- Prey ⊳ Spiders
- Fish \triangleleft (Prey \triangleright Spiders)
- Spiders \triangleleft (Prey \triangleright Spiders)

▲□▶▲舂▶▲≧▶▲≧▶ ≧ めへで

Operations on relations

Image	r[S]	Set of rhs of tuples with lhs in <i>S</i>
Composition	p; q	<i>Chain</i> the relations <i>p</i> and <i>q</i>
Overriding	$p \Leftrightarrow q$	Add tuples in <i>q</i> to <i>p</i> , override whose with same lhs
Identity	id(S)	Relate every element with itself

$$\{1 \mapsto a, 1 \mapsto c, 2 \mapsto b, 2 \mapsto c, 3 \mapsto d\} [\{1, 2\}] = \{a, b, c\}$$

$$\{1 \mapsto a, 1 \mapsto c, 2 \mapsto b\}; \{a \mapsto \alpha, a \mapsto \beta, b \mapsto \delta, b \mapsto \alpha\} = \{1 \mapsto \alpha, 1 \mapsto \beta, 2 \mapsto \delta, 2 \mapsto \alpha\}$$

$$\{1 \mapsto a, 1 \mapsto c, 2 \mapsto b, 3 \mapsto d\} \Leftrightarrow \{1 \mapsto d, 2 \mapsto e, 4 \mapsto f\} = \{1 \mapsto d, 2 \mapsto e, 3 \mapsto d, 4 \mapsto f\}$$

$$id(\{a, b, c\}0 = \{a \mapsto a, b \mapsto b, c \mapsto c\}$$

Image: $r[S] \equiv ran(S \lhd r)$

▲日▶▲舂▶▲臣▶▲臣▶ 臣 のへの

Functions

- Functions: one type of relation.
- Function *f*: set of tuples $x \mapsto y$
- Notation: f(x) = y
- Every element in domain relates only to one element in range.

 $f(x) = y \wedge f(x) = z \Rightarrow y = z$

- WD conditions to evaluate *f*(*x*):
 - $f \in S \Rightarrow T$
 - $x \in dom(f)$
- Use right kind of function: captures conditions, makes it possible to use specific inference rules.

	Software POLITÉCNICA
Total function ($dom(f) = S$) Partial function	$S \rightarrow T$ $S \rightarrow T$
Injection: if $f(x) = f(y)$, then	x = y.
Partial injection Total injection	$\begin{array}{ccc} S \rightarrowtail T \\ S \rightarrowtail T \end{array}$
Surjection: $f \in S \leftrightarrow T$, ran (f)	= T.
Partial surjection Total surjection	$S \xrightarrow{+} T$ $S \xrightarrow{-} T$
Injective and surjective	
Bijection	$S \rightarrowtail T$

Defining and using functions

 $f \in 1..5
ightarrow \{a, b, c\}$ (partial) $g \in 1..5
ightarrow \{a, b, c\}$ (total)

- Initialization:
 - $f := \emptyset$ (f is a set!) • f(2) := b ($\equiv f = \{2 \mapsto b\}$)
 - $g := 1..5 \times \{a\}$ $g = \{1 \mapsto a, \dots, 5 \mapsto a\}$
 - $\mathsf{ran}(g) = \{a\}$

Update:

• $g(2) := b \equiv$ $g := (\{2\} \triangleleft g) \cup \{2 \mapsto b\} \equiv$ $g := g \triangleleft \{2 \mapsto b\}$ • $g(2) := g(2) + 1 \equiv$ $g := (\{2\} \triangleleft g) \cup \{2 \mapsto g(2) + 1\} \equiv$ $g := g \triangleleft \{2 \mapsto g(2) + 1\}$

Misc. examples

- Computing differences: $f \in 1..K \rightarrow \mathbb{N}$ $df \in 1..K - 1 \rightarrow \mathbb{Z}$
- $df := \{i \cdot i \in \mathsf{dom}(df) \mid i \mapsto f(i+1) f(i)\}$
- Characteristic function of a set: $s \subseteq T$ $f_s \in T \rightarrow 0..1$ $f_s := (\{i \mid i \in s\} \times \{1\}) \cup$ $(\{i \mid i \in T \setminus s\} \times \{0\})$
- Higher order:
- $\begin{aligned} & so \in \mathbb{N} \leftrightarrow (\mathbb{N} \leftrightarrow \mathbb{N}) \\ & so := \{1 \mapsto \{10 \mapsto 5, 11 \mapsto 4\}, \\ & 2 \mapsto \{10 \mapsto 4, 12 \mapsto 3\} \} \\ & so(2) \rightsquigarrow \{10 \mapsto 4, 12 \mapsto 3\} \\ & so(2)(10) \rightsquigarrow 4 \end{aligned}$

An example of functions and relations: a strict society

An example of functions and relations: a strict society

Every person is man or woman Every person is man or woman $men \subseteq PERSON$

No person is man and woman

 $men \subseteq PERSON$ *women* = *PERSON* \setminus *men*

(日) (個) (目) (日) (日) (の)

・ロト・(部・・モト・モー・)のべつ

An example of functions and relations: a strict society

Every person is man or woman No person is man and woman Women have husbands (men) At most one husband per woman Men at most one wife

 $men \subseteq PERSON$ *women* = *PERSON* \setminus *men*

 $husband \in women \rightarrowtail men$

An example of functions and relations: a strict society

Every person is man or woman No person is man and woman Women have husbands (men) At most one husband per woman Men at most one wife Mother are married women

 $men \subseteq PERSON$ *women* = *PERSON* \setminus *men*

 $husband \in women \rightarrowtail men$

mother \in *PERSON* \rightarrow dom(*husband*)

An example of functions and relations: a strict society

An example of functions and relations: a strict society

	Every person is man or woman No person is man and woman Women have husbands (men) At most one husband per woman Men at most one wife Mother are married women	$men \subseteq PERSON$ $women = PERSON \setminus men$ $husband \in women ightarrow men$ $mother \in PERSON ightarrow dom(husband)$	Every person is man or woman No person is man and woman Women have husbands (men) At most one husband per woman Men at most one wife Mother are married women	$men \subseteq PERSON$ $women = PERSON \setminus men$ $husband \in women \rightarrowtail men$ $mother \in PERSON \rightarrow dom(husband)$
Some d	lerived relations		Some derived relations	
wife = spouse = father = children	= = ! =	daughter = sibling = brother =	wife = husband ⁻¹ spouse = father = children =	daughter = sibling = brother =

| ◆ □ ▶ ★ 個 ▶ ★ 目 ▶ ★ 目 ● ● ● ●

An example of functions and relations: a strict society

Every person is man or woman
No person is man and woman
Women have husbands (men)
At most one husband per woman
Men at most one wife
Mother are married women

Some derived relations

wife = $husband^{-1}$ $spouse = husband \cup wife$ *father* = children =

$\textit{men} \subseteq \textit{PERSON}$ women = $\textit{PERSON} \setminus \textit{men}$	
husband ∈ women →→ men	

mother \in *PERSON* \rightarrow dom(*husband*)

daughter = sibling = brother =

An example of functions and relations: a strict society

(1日) (四) (日) (日) (日) (日)

Every person is man or woman	$men \subseteq PERSON$
No person is man and woman	women = $PERSON \setminus men$
Women have husbands (men)	
At most one husband per woman	$husband \in women ightarrow men$
Men at most one wife	
Mother are married women	$\textit{mother} \in \textit{PERSON} \rightarrow \textit{dom}(\textit{husband})$
Some derived relations	

wife = $husband^{-1}$ $spouse = husband \cup wife$ father = mother; husband *children* =

daughter = sibling = brother =

An example of functions and relations: a strict society

Every person is man or woman No person is man and woman Women have husbands (men) At most one husband per woman Men at most one wife Mother are married women

Some derived relations

wife = husband⁻¹ spouse = husband \cup wife father = mother; husband children = (mother \cup father)⁻¹ $men \subseteq PERSON$ women = $PERSON \setminus men$

 $\mathit{husband} \in \mathit{women} \rightarrowtail \mathit{men}$

 $mother \in PERSON \rightarrow dom(husband)$

daughter = sibling = brother =

▲□▶▲舂▶▲≧▶▲≧▶ ≧ めへで

wi dea

An example of functions and relations: a strict society

Every person is man or woman	$men \subseteq PERSON$
No person is man and woman	women = $PERSON \setminus men$
Women have husbands (men)	
At most one husband per woman	$\mathit{husband} \in \mathit{women} \rightarrowtail \mathit{men}$
Men at most one wife	
Mother are married women	$\textit{mother} \in \textit{PERSON} \leftrightarrow \textsf{dom}(\textit{husband})$
Some derived relations	

daughter = women ⊲ children sibling = brother =

▲□ ▶ ▲∰ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → りへで

An example of functions and relations: a strict society

Every person is man or woman		
No person is man and woman		
Women have husbands (men)		
At most one husband per woman		
Men at most one wife		
Mother are married women		

Some derived relations

wife = husband⁻¹ spouse = husband \cup wife father = mother; husband children = (mother \cup father)⁻¹

$men \subseteq PERSON$
women = $PERSON \setminus men$

 $\mathit{husband} \in \mathit{women} \rightarrowtail \mathit{men}$

 $mother \in PERSON \rightarrow dom(husband)$

 $\begin{array}{l} \textit{daughter} = \textit{women} \lhd \textit{children} \\ \textit{sibling} = (\textit{children}^{-1};\textit{children}) \setminus \textit{id}(\textit{PERSON}) \\ \textit{brother} = \end{array}$

An example of functions and relations: a strict society

Every person is man or woman	
No person is man and woman	WO
Women have husbands (men)	
At most one husband per woman	hu
Men at most one wife	
Mother are married women	mother (

Some derived relations

wife = $husband^{-1}$

 $spouse = husband \cup wife$

father = mother: husband

children = $(mother \cup father)^{-1}$

wife = husband⁻¹ spouse = husband \cup wife father = mother; husband children = (mother \cup father)⁻¹ $men \subseteq PERSON$ $women = PERSON \setminus men$

 $\textit{husband} \in \textit{women} \rightarrowtail \textit{men}$

 $mother \in PERSON \rightarrow dom(husband)$

 $\begin{array}{l} \textit{daughter} = \textit{women} \lhd \textit{children} \\ \textit{sibling} = (\textit{children}^{-1};\textit{children}) \setminus \textit{id}(\textit{PERSON}) \\ \textit{brother} = \textit{sibling} \vartriangleright \textit{men} \end{array}$

Δr	ith	m	oti	C
	I CI I			

• The usual (+, -, *, ÷) plus: mod, ^ (power).

card(set), min(set), max(set)

Data structures

- Data structures with pointers: formalized with relations, functions.
- Axioms give *properties* of the functions that model data structures.
- Specific forms of these axioms (capturing induction on the data structures) well-suited to be used in automated proofs.
- We will formalize:
 - (In)Finite lists.
 - (In)Finite trees.
- Others (circular lists, graphs) possible, more involved.

Avoiding cycles

- If a list has a cycle, then there is a $S \subseteq V$ s.t. $S \subseteq n[S]$.
- On the other hand, it is always the case that $\emptyset \subseteq n[\emptyset]$.
- So we insist that this is the only case:

 $\mathsf{axm}_{-3}: \forall S \cdot S \subseteq V \land S \subseteq n[S] \Rightarrow S = \emptyset$

- It can be used to prove properties in infinite lists!
- In particular, to derive an scheme for (strong) induction.

$$\forall S \cdot S \leq \forall AS \leq m[S] \Rightarrow S = 0$$

$$S \ can \ be \cdot written \ S = V \setminus T$$

$$(for \ Some \ T) \ Then:$$

$$\forall S \cdot S = V \setminus T AS \leq m[S] \Rightarrow S = 0$$

$$\forall S \cdot S = V \setminus T AS \leq m[S] \Rightarrow S = 0$$

$$V \setminus T = 0 = V \leq T$$

$$\forall S \cdot S = V \setminus T AS \leq m[S] \Rightarrow V \in T$$

・ロト・雪・・雪・・雪・ のへの

・ キョット 御マ キョット ほう もくの

From absence of cycles to induction

VS·S=VNTASEm[5]⇒VET

n bijective: n[V\T]=n[V]\n[T] (because n[S] and n[T] don't intersect)

From absence of cycles to induction

 $S \subseteq n[S] \rightarrow V \setminus T \subseteq n[V \setminus T] = n[V] \setminus n[T]$ By definition: $f \in V$, $f \notin n[V \setminus T]$ Since $V \setminus T \subseteq n[V \setminus T]$, $f \notin V \setminus T$ Therefore $f \in T$ so that $f \notin V \setminus T$ And $n[V] = V \setminus \{j\}$

∞i∭dea	
sottware	POLITÉCNICA

$$V \setminus T \subseteq m[V] \setminus m[T]$$

 $V \setminus T \subseteq (V \setminus \{ \} \}) \setminus m[T]$
... we will have If we remove
no elements here too much from here...
Condition: $m[T] \subseteq T$

All together:

$$\forall S \cdot S = \{V \mid T \mid f \in T \land m[T] \subseteq T \Rightarrow V \subseteq T$$

Fisced Voriable
 $\forall T \cdot f \in T \land m[T] \subseteq T \Rightarrow V \subseteq T$
 $T = x tension of a predicate:$
 $x \in T \leftrightarrow P(x) \text{ or } T = \{x \mid P(x)\}$

+ ロ > + 個 > + 目 > + 目 > 目 の へ ()

From absence of cycles to induction

$$\forall T \cdot f \in T \land n[T] \subseteq T \Rightarrow V \subseteq T$$

If we expand $n[T] \subseteq T$:

- $\forall T \cdot f \in T \land (\forall x \cdot x \in T \Rightarrow n(x) \in T) \Rightarrow V \subseteq T$
- *T* set of elements with some property *P*: $T = \{x | P(x)\}$
- If:
 - Initial node f has property P ($f \in T$), and
 - For every element with property $P(x \in T)$, the next one has property $P(n(x) \in T)$, then
 - All elements have property $P(V \subseteq T)$.
- Equivalently:
 - $\underline{\forall P} \cdot P(f) \land (\forall x \cdot P(x) \Rightarrow P(n(x))) \Rightarrow (\forall x \cdot x \in V \Rightarrow P(x))$

- We want to prove P(x) for all $x \in V$.
- Elements for which *P* holds:
- $T = \{x | x \in V \land P(X)\}.$
- We want to prove that T = V.

・ロト・(部)・(目)・(目)・(日)・

- Since clearly *T* ⊆ *V*, it is enough to prove *V* ⊆ *T*.
- We do that by instantiating *T*: $T \equiv \{x | x \in V \land P(x)\}.$

$$f \in \{x | x \in V \land P(x)\} \land \land \\ (\forall x \cdot x \in \{x | x \in V \land P(x)\} \Rightarrow n(x) \in \{x | x \in V \land P(x)\}) \Rightarrow \\ V \subseteq \{x | x \in V \land P(x)\}$$

- *f* ∈ {*x*|*x* ∈ *V* ∧ *P*(*x*)} ≡ *P*(*f*).
 Second part equivalent to ∀*x* ⋅ *x* ∈ *V* ∧ *P*(*x*) ⇒ *P*(*n*(*x*)).
- The RHS is equivalent to $\forall x \cdot x \in V \Rightarrow P(x).$
- Instantiating thm_2 gives a scheme to prove by induction in infinite lists.

Finite lists

Infinite trees

Relations

$$S \subseteq T \equiv S \in \mathbb{P}(T)$$

$$S = T \equiv S \subseteq T \land T \subseteq S$$

$$S \subset T \equiv S \in \mathbb{P}(T) \land \neg (S = T)$$

$$S \cup T \equiv \{x \mid x \in S \lor x \in T\}$$

$$S \cap T \equiv \{x \mid x \in S \land x \in T\}$$

$$S \land T \equiv \{x \mid x \in S \land x \notin T\}$$

$$E \in \{a, \dots, z\} \equiv E = a \lor \dots \lor E = z$$

$$E \in \emptyset \equiv \bot$$

 $x \in dom(r) \equiv \exists y \cdot x \mapsto y \in r$ $y \in ran(r) \equiv \exists x \cdot x \mapsto y \in r$ $r^{-1} \equiv \{ y \mapsto x \mid x \mapsto y \in r \}$ Domain restriction $S \triangleleft r \quad \{x \mapsto y \in r \mid x \in S\}$ Domain subtraction $S \triangleleft r \quad \{x \mapsto y \in r \mid x \notin S\}$ Range restriction $r \triangleright T \quad \{x \mapsto y \in r \mid y \in T\}$ Range subtraction $r \triangleright T \quad \{x \mapsto y \in r \mid y \notin T\}$ r[S] $\{y \mid x \mapsto y \in r \land x \in S\}$ Image Composition $p; q \qquad \{x \mapsto z \mid x \mapsto y \in p \land y \mapsto z \in q\}$ Overriding $p \Leftrightarrow q$ $q \cup (dom(q) \triangleleft p)$ Identity id(S) $\{x \mapsto x \mid x \in S\}$

- + ロ + + 個 + + 主 + ・ 主 - の 4 @

For reference: some useful results and definitions

Set-theoretic notation more readable than predicate calculus

 $r = r^{-1} \equiv \forall x, y \cdot x \in S \land y \in S \Rightarrow (x \mapsto y \in r \Leftrightarrow y \mapsto x \in r)$

・ロト・個ト・ヨト・ヨト 一日 のべや

Properties

mother

mother	=	father; wife
spouse	=	spouse ⁻¹
sibling	=	$sibling^{-1}$
cousin	=	$cousin^{-1}$
father; father $^{-1}$	=	mother; mother $^{-1}$
father; mother $^{-1}$	=	Ø
mother; father $^{-1}$	=	Ø
father; children	=	mother; children

James M. Henle, Jay L. Garfield, Thomas Tymoczko, and Emily Altreuter. Sweet Reason: A Field Guide to Modern Logic. Wiley-Blackwell, 2nd edition, 211. ISBN: 978-1-444-33715-0.

・ロン・1日と(山下・1日) しょう