=i dea

Event B: Sets, Relations, Functions, Data Structures’

Manuel Carro
manuel.carro@upm.es

IMDEA Software Institute &
Universidad Politécnica de Madrid

i

[Founccical

"Many slides borrowed from J. R. Abrial: see http://wiki.event-b.org/index.php/Event-B_Language

First-order predicate calculus: informal

=i dea

We have a universe of objects. We make statements about these objects. Sweet
Reason [HGTA11] is a delightful introduction to logic with examples.

Vx - P(x): For all elements x, P holds.
P can be arbitrarily complex.

3x - P(x): For some element x, P holds.
P can be arbitrarily complex.

z
[roirecnica

First-order predicate calculus 3
SelS o 22
Relationsc.coiiiiiiiiiiiiint. 26
Functionsocoiiiiiiiiint, 31
Example: a strict society 33
Arithmetic ...t 45

First-order predicate calculus: informal

I(x.y)
Vx - Yy -
dx - dy -
Vx -3y -
dy - Vx -
Vy - 3x-I(x,y)

x - Vy - I(x,y)

Vx - =l(x, x)
Vx-3Jy-l(x,y) = x#y

x loves y
I(x,y)
I(x,y)
I(x,y)
I(x,y)

Data Structurescoovviiiineinnn.
Infinite Listscovvviniiiiiniinint,
Finite Lists ..oovvninniii i
Infinite Treesvvvviiiiiiinin,

Finite Trees

Referencecovviiiiiiiiiiiinan,

=i dea

i

We usually want to prove these statements true or false. We use inference rules

to prove truth or falsehood.

mailto:manuel.carro@upm.es
http://wiki.event-b.org/index.php/Event-B_Language

First-order predicate calculus: informal

I(x,y)

Vx -
dx -
Vx -
dy -
Vy -
dx -
Vx -
Vx -

Yy - I(
Jy - I(
Jy - I(
Vx - (

(

Jy - I(x,y)=x#y

=i dea

x loves y
everyone loves everyone else (including themself)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

I(x,y)

Vx -
dx -
Vx -
dy -
Yy -
dx -
Vx -
Vx -

Yy - I(
Jy - [(
Jy - [(
Vx - (
Ix - I(

y - I(x,y) = x#y

=i dea

x loves y

everyone loves everyone else (including themself)
at least a person loves someone (perhaps themself)
everybody loves someone

5

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

I(x, y)

Vx -
dx -
Vx -
dy -
Vy -
dx -
Vx -
Vx -

Vy - I(x, y)
Jy - 1(x, y)
Jy - 1(x, y)
Vx - I(x,y)
y)

)

=i dea

x loves y
everyone loves everyone else (including themself)
at least a person loves someone (perhaps themself)

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

I(x, y)

Vx -
dx -

(
(
(
(

Vx

dy -
Yy -
dx -
Vx -
Vx -

Vy -/
=

Vx|
dx -/

dy - I(x,y) = x#y

=i dea

x loves y

everyone loves everyone else (including themself)
at least a person loves someone (perhaps themself)
everybody loves someone

there is someone who is loved by everybody

5

(.

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal

=i dea

I(x,y) x loves y

Vx - Yy - I(x,y) everyone loves everyone else (including themself)
Ix -y - I(x,y) at least a person loves someone (perhaps themself)
Vx -3y - I(x,y) everybody loves someone

Jy -Vx - I(x,y) there is someone who is loved by everybody

Vy - 3x - I(x,y) everybody is loved by someone

Ix-Vy - I(x,y)

Vx - =l(x, x)

Vx-3Jy-l(x,y)=x#y

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal @i dea
I(x,y) x loves y
Vx - Vy - I(x,y) everyone loves everyone else (including themself)
Ix -y - I(x,y) at least a person loves someone (perhaps themself)
Vx -3y - I(x,y) everybody loves someone
Jy -Vx - I(x,y) there is someone who is loved by everybody
Vy - 3x - I(x,y) everybody is loved by someone
Ix - Vy - I(x,y) there is someone who loves everybody
Vx - =l(x, x) no one loves themself

Vx -

y - I(x,y) = x#y

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal @i dea (£
I(x,y) x loves y
Vx - Yy - I(x,y) everyone loves everyone else (including themself)
Ix -y - I(x,y) at least a person loves someone (perhaps themself)
Vx -3y - I(x,y) everybody loves someone
Jy -Vx - I(x,y) there is someone who is loved by everybody
Vy - 3x - I(x,y) everybody is loved by someone
Ix-Vy - I(x,y) there is someone who loves everybody
Vx - =l(x, x)
Vx-3Jy-l(x,y) = x#y

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: informal @i dea (£
I(x,y) x loves y
Vx -y - I(x,y) everyone loves everyone else (including themself)
Ax -y - I(x,y) at least a person loves someone (perhaps themself)
Vx -3y - I(x,y) everybody loves someone
Jy -Vx - I(x,y) there is someone who is loved by everybody
Vy - 3x - I(x,y) everybody is loved by someone
Ix - Vy - I(x,y) there is someone who loves everybody
Vx - =l(x, x) no one loves themself

Vx -

Jy - I(x,y) = x £y everybody loves someone else

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.

First-order predicate calculus: inference rules

H, vx-P(x), P(E) + Q ALL L H + P(x) ALL R
H, vx-P(x) - Q - H + Vvx-P(x) -
H, P(x) - Q XST L H + P(E) XST R
H, 3x-P(x) - Q h H +~ 3x-P(x) -

@ Eis an expression. Nobody tells you which one works.
@ In ALL R, x not free in H.
@ In XST_L, x not freein H and Q.

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Ix -Vy - P(x,y) = Vy-3x- P(x,y)
(If LHS true, there some fixed a s.t. Vy - P(a, Y))
Yy - 3x - P(x,y) # Ix-Vy - P(x,y)

(If LHS true, x may depend on each y, i.e.,
there may not be a single as.t. Vy - P(a, Y))

dea

[POLITECNICA

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)
Ix -Vy - P(x,y) = Vy-3x- P(x,y)
(If LHS true, there some fixed a s.t. Vy - P(a, Y))

Yy - 3x- P(x,y) # Ix-Vy - P(x,y)

(If LHS true, x may depend on each y, i.e.,
there may not be a single as.t. Vy - P(a, Y))

P(a) = 3x - P(x)

dea

i

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Ix -Vy - P(x,y) = Vy-3Ix-P(x,y)
(If LHS true, there some fixed a s.t. Vy - P(a, Y))

Vy - 3x - P(x,y) # 3x-Vy - P(x, y)

(If LHS true, x may depend on each y, i.e.,
there may not be a single as.t. Vy - P(a, Y))

P(a) = 3x - P(x)
When x & vars(B):

Vx-(P(x)= B)=(3x-P(x)) =B
(Prove it!)

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Ix -Vy - P(x,y) = Vy-3x- P(x,y)
(If LHS true, there some fixed a s.t. Vy - P(a, Y))

Yy - 3x- P(x,y) # Ix-Vy - P(x,y)

(If LHS true, x may depend on each y, i.e.,
there may not be a single as.t. Vy - P(a, Y))

P(a) = 3x - P(x)
When x & vars(B):

Vx - (P(x) = B) = (3x- P(x)) = B
(Prove it!)

Vx - P(x) A Q(x) = (Vx - P(x)) A (Vx - Q(x))

Ix - P(x)V Q(x) = (Ix - P(x)) Vv (Ix - Q(x))

=i dea (%

e Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

(definition of existential quantifier)

Ix-Vy - P(x,y) = Vy-3Ix-P(x,y)
(If LHS true, there some fixed a s.t. Vy - P(a, Y))

Vy - 3x- P(x,y) # Ix-Vy - P(x,y)

(If LHS true, x may depend on each y, i.e.,
there may not be a single as.t. Vy - P(a, Y))

P(a) = Ix - P(x)
When x & vars(B):

Vx-(P(x)= B)=(3x-P(x)) =B
(Prove it!)

i T
mi dea (2 Some deductions and (non) equivalences
Vx - P(X) = —dx- ‘\P(X)

(definition of existential quantifier)

Ix -Vy - P(x,y) = Vy-3x- P(x,y)
(If LHS true, there some fixed a s.t. Vy - P(a, Y))

Yy - 3x- P(x,y) # Ix-Vy - P(x,y)

(If LHS true, x may depend on each y, i.e.,
there may not be a single as.t. Vy - P(a, Y))

P(a) = 3x - P(x)
When x ¢ vars(B):

Vx - (P(x) = B) = (3x- P(x)) = B
(Prove it!)

=i dea

Vx - P(x) A Q(x) = (Vx - P(x)) A (Vx - Q(x))

=i dea

Vx - P(x) A Q(x) = (Vx - P(x)) A (Vx - Q(x))

Ix - P(x)V Q(x) = (Ix- P(x)) VvV (Ix - Q(x))

Vx - P(x) V Q(x) Z (Vx - P(x)) V (¥x - Q(x))
(example?)

i

Some deductions and (non) equivalences

Vx - P(x) = —3x - =P(x)

Vx
(definition of existential quantifier)
Ix -Vy - P(x,y) = Vy-3Ix-P(x,y) I
(If LHS true, there some fixed a s.t. Vy - P(a, Y))
Vy - 3x - P(x,y) # 3x-Vy - P(x, y)
(If LHS true, x may depend on each y, i.e., Vx
there may not be a single as.t. Vy - P(a, Y))
P(a) = 3x - P(x) Jx
When x & vars(B):
Vx-(P(x)= B)=(3x- P(x)) = B
(Prove it!)
Set theory: basic constructs
5=1{1,2,3,4,5,6} T ={ab,c,d}

Sand T are sets, R is a predicate, x is a variable.

Basic constructs

Cartesian product SxT
Power set P(S)
Comprehension {x|x € S A R(x)}

=i dea

=

- P(x) A Q(x) = (Vx - P(x)) A (Vx - Q(x))

-P(x)V Q(x) = (3x - P(x))V (3x - Q(x))

-P(x) vV Q(x) # (Vx - P(x)) v

(example?)

(Vx - Q(x))

PO A Q) # (3x - P(x)) A (Fx- Q(x))

(example?)

=i dea

i

EEY

R(x)=x mod2=0

{(a,1),(a,2),...,(a,6),(b,1),...,(d,6)}
{@,{a},{a,b},...,{a,¢e},...,{a,b,c,d}}
{2,4,6}
Comprehension2 {x-xe SAR(x)|x*x} {4,16,36}

Notation: tuples (a, 1) are written a +— 1.

See the reference card for information on how to input these in Rodin.

Set theory: membership @i dea

@ Set: well-defined collection of distinct objects.
@ Can be finite or infinite.
@ Primary predicate: membership

EeS

@ E is an expression, S is a set.

Set theory: basic constructs =i dea
Examples

Shortcut: m.n={x€Z | m<xAx<n}

@ {x|xeNAx<2}x8.10
® {x-x€3.5| x> xx*x}

@ {n-neN|(0..n) — n}
@ {x,y - x> yel3x2.4|x+y}

i

https://wp.software.imdea.org/cbc/wp-content/uploads/sites/5/2020/01/EventB-Summary.pdf

Operations on sets

n non
NN
-~

SUT
SNT
S\T
Ec{a,...,z}
Eco
5]

Types of relations

Inclusion

Equality

Strict inclusion
Union

Intersection
Difference
Membership

1

number of elements

Total S« T
Surjective S<» T
Both S«» T

dea

@ Operators based on membership and

logic operations (see the reference

slide).
@ EZT=~(EecT).

@ Also: generalized / conditional union
and intersection (see reference cards).

reS« T Adom(r)=S
reS«< TAran(r)=T
reS«» TAreS« T

Sets and relations are very useful modeling tools!

Choosing the right type of relation helps (automatically) capture prob-

lem conditions.

dea

Binay relations

@ Abinary relation r is a set of tuples: 0 rel.3+7.11

rcSxT @ r={1+10,2+ 7,2+ 11}

@ Notation: re S« T
@ S+ T:the set of all the possible
relationships between S and T.
@S T=PSxT)
@ The relation r would be one of these

0 4—~10¢r

@ r € {meat, fish, pasta, bacon} > {carbs, protein, fat}
write one relation.

@ Relation of dom(r), ran(r) with Sand T
@ Given S and T, how many different r may there be?

Operations on relations

Domain restriction S<r Tuples in r with first component in S

Domain subtraction S<r Tuples in r with first component not in S
Range restriction ri>T Tuplesin r with second componentin T

dea

@ dom(r) = {1,2} (note 3 & dom(r))
@ ran(r) = {10,7,11} (note 8,9 ¢ ran(r))

relationships. @ r1={10—1,7+211+ 2}

dea

Range subtraction re T Tuples in r with second component notin T

Let us study the relation
Prey € Animal <> Animal.

é (g

Operations on relations

=i dea

Domain restriction S<r Tuples in r with first componentin S
Domain subtraction S <r Tuplesin r with first component notin S
Range restriction ri>T Tuplesin r with second componentin T

Range subtraction re& T Tuples in r with second component notin T

Let us study the relation
Prey € Animal <> Animal.

We assume Prey contains
hunter — hunted.

Functions

Functions: one type of relation.
Function f: set of tuples x — y
Notation: f(x) =y

Every element in domain relates only
to one element in range.

f(x)=yNf(x)=z=y==2

@ WD conditions to evaluate f(x):

o feS+»T
@ x € dom(f)

@ Use right kind of function: captures
conditions, makes it possible to use
specific inference rules.

@ Mammal <1 Prey

@ Mammal < Prey

@ Prey >> Spiders

@ Fish < (Prey > Spiders)

@ Spiders < (Prey t> Spiders)

=i dea

Total function (dom(f)=S) S—T
Partial function ST

Injection: if f(x) = f(y), then x = y.

Partial injection ST
Total injection S—T

Surjection: f € S<» T, ran(f) = T.

Partial surjection ST
Total surjection S—>T

Injective and surjective

Bijection S—»T

m Operations on relations |l dea m
Image r[S] Set of rhs of tuples with lhs in S
Composition p; g Chain the relations p and g
Overriding p < g Addtuplesin g to p, override whose with same lhs
Identity id(S) Relate every element with itself

{1—a,l—c2— b2+ c3—d}{1,2}]={a,b,c}
{l—al—c2—bh{a—raa—f,b—=db—al={1—al— 2062 a}
{l—»al—=c2—=b3—dla{l—d2—ed—fl={1—d2—e3—d4d—f}
id({a,b,c}0={a— a, b+ b,c— c}

Image: r[S] =ran(S < r)

2 Defining and using functi i mldea @
e g and using functions Misc. examples e
fel.5+{a,b,c} (partial) @ Computing differences:

ge€l.5—{a, b,c} (total) fel.K—N

dfel.K-1—-7%Z

© Initialization: of = {i i € dom(df) | i > F(i+1) — F(i)}

o fi =0 (f is a set!)

° f(2):=b (=f={2b}) @ Characteristic function of a set:
0?5{11'12{3} 50 a) sCT fieT—0.1
ran(g) = {37}”.7 for=({iliestx{1}) U
({ilieT\s}x{0})
@ Update: .
0 g2)=b = @ Higher order:
g=({2}<gg)u{2—~b} = so € N-» (N+N)
g =g< {2 b} so :={1— {10+ 5,11 — 4},
° g(2)=g2)+1 = 2+—{10— 4,12+ 3}}
g:=({2}<g)u{2—g(2)+1} = 50(2) ~ {10+ 4,12 — 3}

g=g<{2—g(2)+1} 50(2)(10) ~ 4

An example of functions and relations: a strict society

Every person is man or woman men C PERSON

An example of functions and relations: a strict society

Every person is man or woman men C PERSON

No person is man and woman women = PERSON \ men
Women have husbands (men)

At most one husband per woman husband € women -+ men
Men at most one wife

dea

An example of functions and relations: a strict society

Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men

An example of functions and relations: a strict society pr

Every person is man or woman men C PERSON

No person is man and woman women = PERSON \ men
Women have husbands (men)

At most one husband per woman husband € women -+ men

Men at most one wife
Mother are married women mother € PERSON -+ dom(husband)

dea

EENY

= =
An example of functions and relations: a strict society B/ ea e An example of functions and relations: a strict society B/ ea o
Every person is man or woman men C PERSON Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men No person is man and woman women = PERSON \ men
Women have husbands (men) Women have husbands (men)
At most one husband per woman husband € women -+ men At most one husband per woman husband € women =+ men
Men at most one wife Men at most one wife
Mother are married women mother € PERSON -+ dom(husband) Mother are married women mother € PERSON -+ dom(husband)
Some derived relations Some derived relations
wife = daughter = wife = husband ™1 daughter =
spouse = sibling = spouse = sibling =
father = brother = father = brother =
children = children =
. = . =
An example of functions and relations: a strict society midea o An example of functions and relations: a strict society mi dea .-
Every person is man or woman men C PERSON Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men No person is man and woman women = PERSON \ men
Women have husbands (men) Women have husbands (men)
At most one husband per woman husband € women ~ men At most one husband per woman husband € women ~ men
Men at most one wife Men at most one wife
Mother are married women mother € PERSON -+ dom(husband) Mother are married women mother € PERSON -+ dom(husband)
Some derived relations Some derived relations
wife = husband ! daughter = wife = husband ! daughter =
spouse = husband U wife sibling = spouse = husband U wife sibling =
father = brother = father = mother; husband brother =

children = children =

= =
An example of functions and relations: a strict society B/ ea i An example of functions and relations: a strict society B/ ea o
Every person is man or woman men C PERSON Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men No person is man and woman women = PERSON \ men
Women have husbands (men) Women have husbands (men)
At most one husband per woman husband € women -+ men At most one husband per woman husband € women =+ men
Men at most one wife Men at most one wife
Mother are married women mother € PERSON -+ dom(husband) Mother are married women mother € PERSON -+ dom(husband)
Some derived relations Some derived relations
wife = husband ™1 daughter = wife = husband ™1 daughter = women <1 children
spouse = husband U wife sibling = spouse = husband U wife sibling =
father = mother; husband brother = father = mother; husband brother =
children = (mother U father) ™1 children = (mother U father) ™1
. = . =
An example of functions and relations: a strict society midea .- An example of functions and relations: a strict society mi dea .-
Every person is man or woman men C PERSON Every person is man or woman men C PERSON
No person is man and woman women = PERSON \ men No person is man and woman women = PERSON \ men
Women have husbands (men) Women have husbands (men)
At most one husband per woman husband € women ~ men At most one husband per woman husband € women ~ men
Men at most one wife Men at most one wife
Mother are married women mother € PERSON -+ dom(husband) Mother are married women mother € PERSON -+ dom(husband)
Some derived relations Some derived relations
wife = husband 1 daughter = women < children wife = husband 1 daughter = women < children
spouse = husband U wife sibling = (children—1; children) \ id(PERSON) spouse = husband U wife sibling = (children—1; children) \ id(PERSON)
father = mother; husband brother = father = mother; husband brother = sibling > men

children = (mother U father) ™1 children = (mother U father) ™1

@ Data structures with pointers: formalized with relations, functions.
@ Axioms give properties of the functions that model data

structures.

@ We will formalize:
o (In)Finite lists.
@ (In)Finite trees.

@ Others (circular lists, graphs) possible, more involved.

Arithmetic |l dea m Data structures
@ The usual (+, -, *, =) plus: mod, ~ (power).
@ card(set), min(set), max(set)
ST @mi dea (® ‘i
Infinite lists - Avoiding cycles
@ Set V of list nodes.
@ Initial node f. axm._1 : fFev
@ Bijective next function axm2: ne V- V\{f}
I,
@,) > =) > o o0 o

Note: isomorphic to natural numbers with V =N, f = 0, n = succ.

t- c 4 \e i ¥
6 ——F 06— Po ——p e—— 0
S=9bod] ML_S]=§£;C,0Q
s ¢ mlsl
- c ya e aG/ '3’

m

o—p 6 ———F ’———P?\V’-‘———P R

L

s=ibed] mis)={ode]
s¢ m[s]

@ Specific forms of these axioms (capturing induction on the data
structures) well-suited to be used in automated proofs.

8L o

800

dea

dea

é (g

Avoiding cycles @i dea From absence of cycles to induction |l dea Q
VS-ScyaScals]=s=0
e Ifalist has a cycle, then thereisa S C Vs.t. S C nl[S]. S Can be unillen S= VAT
@ On the other hand, it is always the case that @ C n[]. (go“ Nome T) . TMI

@ So we insist that this is the only case: WZ
V-5 V\T ABSYA

cafs]=$=0
axm3:¥S-SCVASCn[S|=S=02 Scafs]=

@ It can be used to prove properties in infinite lists! VS-S=V\TASES m[$]
@ In particular, to derive an scheme for (strong) induction. 2
VAT= =vV=T

VS-s=V\TAScals]=VsT

From absence of cycles to induction =i dea m"i: From absence of cycles to induction mi dea %

VS-s=V\TAaschls]|=VeT

Scafsl~V\T em[W[]=nlV]\n][T]
m Lgecdive: mVNT]=n[VI\m[T]
becsune M[ST and MIT] don't itiret) By defimilion: <V, f¢m[V\T]

Sine V\T€ M [WNT], JeVNT

T e KT ve Lhal f£VNT
--anV\TJ: W 5 j
mOI\n[T] And mIv] = V[

=i dea (% =i dea (%

From absence of cycles to induction From absence of cycles to induction

| POLITECNICA] EENEY
WT = mlv)Am[T] W
) VS'SMQ&?TAQ{T]ET@ VeT
Wile (N) \In [T]) J
| "\ Fosed Voriake
e wWill have T we nemeue N
m6 dberminds fune /(;v/mu%ywn%w Vi 'XéTA‘"[T]ETﬂ’ Vel
Co%o@iffw'q: m[T]cT T onfension, Of ” 'wgé,-w&;
xe T e>P(R) T:{x | i’cx)]
From absence of cycles to induction =i dea m’;fm Using thm 2 to prove list properties =i dea mm
@ We want to prove P(x) for all x € V. @ Since clearly T C V, itis enough to
VI-feTAnTICT=VCT @ Elements for which P holds: prove V C T.
] T = {x|x € VAP(X)}. @ We do that by instantiating T
If we expand n[T] C T: @ We want to prove that T = V. T ={x|xe VAPKX)}
VT - feTA(Wx-xeT=nx)eT)=VCT
: ITf'set of elements with some property P: T = {x|P(x)} felxxe VAP A
'o Initial node f has property P (f € T), and (vx-x € {xlx € VAP(x)} = n(x) € {x]x € VAP(x)}) =
@ For every element with property P (x € T), the next one has V C {x|]x e VAP(x)}

property P (n(x) € T), then
@ All elements have property P (V C T).
e Equivalently: @ fe{xlxe VAPX)}=P(f). @ The RHS is equivalent to
VP - P(f) A (Vx - P(x) = P(n(x))) = (¥x-x € V = P(x)) @ Second part equivalent to Vx-x eV = P(x).
Vx-x € VA P(x) = P(n(x)).

Instantiating thm_2 gives a scheme to prove by induction in infinite lists.

=i dea (2

Finite lists - Infinite trees B/ ea m;m
t @ There should not be cycles.
/ P axm_1: teV
@ As infinite lists, but including a last (/) element. @) axm2: peV\{t}—»V
@ This needs a different axiom 2: . axm3: VS-SCplS]=S=02
o
axm4: eV . Induction rule:
axmb5: finite(V) VT teTAp Y T]CT=VCT
axm_2' : ne V\{l} —» V\{f} ° o o
° ° ° Instantiation to prove properties:
° [] L]
@ tis the root. VI- TCVALETA
@ prelates every node with its parent (it (Vx-xe V\{t}Ap(x) e T=x€T)
is a surjection). =VCT
Finite trees =i dea m;m Set theory: basic constructs @i dea m;fm
Definitions
@ tisthe root. Defined by equivalences (included here for reference)
@ prelates every node with its parent. axml: teV EFESRT = EcGAFET
2: LCV _
@ Lis the set of tree leaves. m . = SeP(T) = Vx-xeS=xeT
axm3: pe V\{t} » V\L Ec{x-xeSAPX)|F(x)} = Ix-xeSAP(x)AE=F(x)

@ There should not be cycles. axm4: VS -SCpllS]=S=0 Ec{x|xe€SAP(x)} = EecSAP(E)

Operations on sets: definitions

For reference: some useful results and definitions

(rH™
dom(r_l)
(S« r)*1

(piq)"

p;(q;r)
pi(qur)

(p: q)[S]

r[SU T]

=i dea (%

- Relations
SCT = SeP(T7)
S=T = SCTATCS
SCT = SeP(T)A—(S5=T)
SUT = {x|xeSVvxeT}
SNT = {x|xeSAxeT}
S\T = {x|xeSAx¢&T}
Ee{a...,z} = E=aVv...VE=z
Eco = 1
u deam:!jxm Properties

r r=rt symmetric

ran(r) rnrl=g asymmetric

s id(S)Cr refle>§i\./e
11 r;rCr o transitive

qip

(pig)ir

(pia) U (p:r)

qlp[S]]

r[S]U r[T]

Set-theoretic notation more readable than predicate calculus

r =

rl=Vx,y-x€SAyeS=(x—ye€rey—xcr)

x € dom(r) =
y €ran(r) =

rto=

Domain restriction
Domain subtraction
Range restriction
Range subtraction

Image r[S]
Composition p; g
Overriding p<gq
Identity id(S)
mother
spouse
sibling
cousin

father; father 1
father; mother™*
mother: father !

father; children

Jy-x—yer
Ix-x—=yer
{y=x|x—yer}

S<r {x—yer|xeS}
S<ar {x—yer|x¢gS}
r>T {x—yer|yeT}
reT {x—yer|ygT}

{y|x—yernxeS}

{x—z|x—yepAy—zeEq}

q U (dom(q) < p)
{x—x|xeS}

= father; wife
= spouse_1
sibling™!

cousin™ 1

mother; mother ™!
%)
(%)

= mother; children

dea

dea

é (g

[§ James M. Henle, Jay L. Garfield, Thomas Tymoczko, and Emily Altreuter. Bi dea (X
Sweet Reason: A Field Guide to Modern Logic.
Wiley-Blackwell, 2nd edition, 211.

ISBN: 978-1-444-33715-0.

	First-order predicate calculus
	Sets
	Relations
	Functions
	Example: a strict society
	Arithmetic
	Data Structures
	Infinite Lists
	Finite Lists
	Infinite Trees
	Finite Trees
	Reference

