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First-order predicate calculus: informal

We have a universe of objects. We make statements about these objects. Sweet
Reason [HGTA11] is a delightful introduction to logic with examples.

∀x · P(x): For all elements x , P holds.
P can be arbitrarily complex.

∃x · P(x): For some element x , P holds.
P can be arbitrarily complex.

First-order predicate calculus: informal

l(x , y) x loves y

∀x · ∀y · l(x , y)
∃x · ∃y · l(x , y)
∀x · ∃y · l(x , y)
∃y · ∀x · l(x , y)
∀y · ∃x · l(x , y)
∃x · ∀y · l(x , y)
∀x · ¬l(x , x)
∀x · ∃y · l(x , y)⇒ x 6= y

We usually want to prove these statements true or false. We use inference rules
to prove truth or falsehood.
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First-order predicate calculus: inference rulesComparing the Quantification Rules 45

H, ∀x · P(x), P(E) ` Q
H, ∀x · P(x) ` Q

ALL L
H ` P(x)

H ` ∀x · P(x)
ALL R

H, P(x) ` Q
H, ∃x · P(x) ` Q

XST L
H ` P(E)

H ` ∃x · P(x)
XST R

45

E is an expression. Nobody tells you which one works.
In ALL R, x not free in H.
In XST L, x not free in H and Q.

Some deductions and (non) equivalences

∀x · P(x) ≡ ¬∃x · ¬P(x)

(definition of existential quantifier)

∃x · ∀y · P(x , y)⇒ ∀y · ∃x · P(x , y)

(If LHS true, there some fixed a s.t. ∀y ·P(a,Y ))

∀y · ∃x · P(x , y) 6⇒ ∃x · ∀y · P(x , y)

(If LHS true, x may depend on each y , i.e.,
there may not be a single a s.t. ∀y · P(a,Y ))

P(a)⇒ ∃x · P(x)

When x 6∈ vars(B) :

∀x · (P(x)⇒ B) ≡ (∃x · P(x))⇒ B
(Prove it!)

∀x · P(x) ∧ Q(x) ≡ (∀x · P(x)) ∧ (∀x · Q(x))

∃x · P(x) ∨ Q(x) ≡ (∃x · P(x)) ∨ (∃x · Q(x))

∀x · P(x) ∨ Q(x) 6≡ (∀x · P(x)) ∨ (∀x · Q(x))
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Set theory: membership

Set: well-defined collection of distinct objects.
Can be finite or infinite.
Primary predicate: membership

E ∈ S

E is an expression, S is a set.

Set theory: basic constructs

S = {1, 2, 3, 4, 5, 6} T = {a, b, c , d} R(x) ≡ x mod 2 = 0

S and T are sets, R is a predicate, x is a variable.

Basic constructs
Cartesian product S × T {(a, 1), (a, 2), . . . , (a, 6), (b, 1), . . . , (d , 6)}
Power set P(S) {∅, {a}, {a, b}, . . . , {a, e}, . . . , {a, b, c , d}}
Comprehension {x |x ∈ S ∧ R(x)} {2, 4, 6}
Comprehension 2 {x · x ∈ S ∧ R(x)|x ∗ x} {4, 16, 36}

Notation: tuples (a, 1) are written a 7→ 1.

See the reference card for information on how to input these in Rodin.

Set theory: basic constructs
Examples

Shortcut: m..n ≡ {x ∈ Z | m ≤ x ∧ x ≤ n}

{x | x ∈ N ∧ x < 2} × 8..10

{x · x ∈ 3..5 | x 7→ x ∗ x}
{n · n ∈ N | (0..n) 7→ n}
{x , y · x 7→ y ∈ 1..3× 2..4 | x + y}

https://wp.software.imdea.org/cbc/wp-content/uploads/sites/5/2020/01/EventB-Summary.pdf


Operations on sets

S ⊆ T Inclusion
S = T Equality
S ⊂ T Strict inclusion
S ∪ T Union
S ∩ T Intersection
S \ T Difference

E ∈ {a, . . . , z} Membership
E ∈ ∅ ⊥
|S | number of elements

Operators based on membership and
logic operations (see the reference
slide).
E 6∈ T ≡ ¬(E ∈ T ).
Also: generalized / conditional union
and intersection (see reference cards).

Binay relations

A binary relation r is a set of tuples:
r ⊆ S × T

Notation: r ∈ S ↔ T
S ↔ T : the set of all the possible
relationships between S and T .
S ↔ T ≡ P(S × T )
The relation r would be one of these
relationships.

r ∈ 1..3↔ 7..11

r = {1 7→ 10, 2 7→ 7, 2 7→ 11}
4 7→ 10 6∈ r

dom(r) = {1, 2} (note 3 6∈ dom(r))
ran(r) = {10, 7, 11} (note 8, 9 6∈ ran(r))
r−1 = {10 7→ 1, 7 7→ 2, 11 7→ 2}

r ∈ {meat, fish, pasta, bacon}↔ {carbs, protein, fat}
write one relation.
Relation of dom(r), ran(r) with S and T

Given S and T , how many different r may there be?

Types of relations

Total S ←↔ T r ∈ S ↔ T ∧ dom(r) = S
Surjective S ↔→ T r ∈ S ↔ T ∧ ran(r) = T
Both S ↔↔ T r ∈ S ↔→ T ∧ r ∈ S ←↔ T

Sets and relations are very useful modeling tools!

Choosing the right type of relation helps (automatically) capture prob-
lem conditions.

Operations on relations

Domain restriction S C r Tuples in r with first component in S
Domain subtraction S C− r Tuples in r with first component not in S
Range restriction r B T Tuples in r with second component in T
Range subtraction r B− T Tuples in r with second component not in T

Let us study the relation
Prey ∈ Animal ↔ Animal .

We assume Prey contains
hunter 7→ hunted .

Mammal C Prey

Mammal C− Prey

Prey B Spiders

Fish C (Prey B Spiders)

Spiders C− (Prey B Spiders)
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Prey B Spiders
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Operations on relations

Image r [S ] Set of rhs of tuples with lhs in S
Composition p; q Chain the relations p and q
Overriding p C− q Add tuples in q to p, override whose with same lhs
Identity id(S) Relate every element with itself

{1 7→ a, 1 7→ c , 2 7→ b, 2 7→ c , 3 7→ d}[{1, 2}] = {a, b, c}
{1 7→ a, 1 7→ c , 2 7→ b}; {a 7→ α, a 7→ β, b 7→ δ, b 7→ α} = {1 7→ α, 1 7→ β, 2 7→ δ, 2 7→ α}
{1 7→ a, 1 7→ c , 2 7→ b, 3 7→ d}C− {1 7→ d , 2 7→ e, 4 7→ f } = {1 7→ d , 2 7→ e, 3 7→ d , 4 7→ f }
id({a, b, c}0 = {a 7→ a, b 7→ b, c 7→ c}

Image: r [S ] ≡ ran(S C r)

Functions

Functions: one type of relation.
Function f : set of tuples x 7→ y

Notation: f (x) = y

Every element in domain relates only
to one element in range.

f (x) = y ∧ f (x) = z ⇒ y = z

WD conditions to evaluate f (x):
f ∈ S 7→ T
x ∈ dom(f )

Use right kind of function: captures
conditions, makes it possible to use
specific inference rules.

Total function (dom(f ) = S ) S → T
Partial function S 7→ T

Injection: if f (x) = f (y), then x = y .
Partial injection S 7� T
Total injection S� T

Surjection: f ∈ S ↔ T , ran(f ) = T .
Partial surjection S 7� T
Total surjection S � T

Injective and surjective
Bijection S�� T

Defining and using functions

f ∈ 1..5 7→ {a, b, c} (partial)
g ∈ 1..5→{a, b, c} (total)

Initialization:
f := ∅ (f is a set!)
f (2) := b (≡ f = {2 7→ b})
g := 1..5× {a}
g = {1 7→ a, . . . , 5 7→ a}
ran(g) = {a}

Update:
g(2) := b ≡
g := ({2}C− g) ∪ {2 7→ b} ≡
g := g C− {2 7→ b}
g(2) := g(2) + 1 ≡
g := ({2}C− g) ∪ {2 7→ g(2) + 1} ≡
g := g C− {2 7→ g(2) + 1}

Misc. examples

Computing differences:
f ∈ 1..K → N
df ∈ 1..K − 1→ Z

df := {i · i ∈ dom(df ) | i 7→ f (i + 1)− f (i)}

Characteristic function of a set:
s ⊆ T fs ∈ T → 0..1
fs := ({i | i ∈ s} × {1}) ∪

({i | i ∈ T \ s} × {0})

Higher order:
so ∈ N 7→ (N 7→ N)
so := {1 7→ {10 7→ 5, 11 7→ 4},

2 7→ {10 7→ 4, 12 7→ 3}}
so(2) {10 7→ 4, 12 7→ 3}
so(2)(10) 4



An example of functions and relations: a strict society

Every person is man or woman men ⊆ PERSON

No person is man and woman women = PERSON \men
Women have husbands (men)

husband ∈ women 7�menAt most one husband per woman
Men at most one wife
Mother are married women mother ∈ PERSON 7→ dom(husband)

Some derived relations

wife =
spouse =
father =
children =

daughter =
sibling =
brother =
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Arithmetic

The usual (+, -, *, ÷) plus: mod, ˆ (power).
card(set), min(set), max(set)

Data structures

Data structures with pointers: formalized with relations, functions.
Axioms give properties of the functions that model data
structures.
Specific forms of these axioms (capturing induction on the data
structures) well-suited to be used in automated proofs.

We will formalize:
(In)Finite lists.
(In)Finite trees.

Others (circular lists, graphs) possible, more involved.

Infinite lists

Set V of list nodes.

Initial node f .

Bijective next function
axm 1 : f ∈ V

axm 2 : n ∈ V �� V \{f }

Note: isomorphic to natural numbers with V = N, f = 0, n = succ .

Avoiding cycles



Avoiding cycles

If a list has a cycle, then there is a S ⊆ V s.t. S ⊆ n[S ].
On the other hand, it is always the case that ∅ ⊆ n[∅].
So we insist that this is the only case:

axm 3 :∀S · S ⊆ V ∧ S ⊆ n[S ]⇒ S = ∅

It can be used to prove properties in infinite lists!
In particular, to derive an scheme for (strong) induction.

From absence of cycles to induction

From absence of cycles to induction From absence of cycles to induction
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From absence of cycles to induction

∀T · f ∈ T ∧ n[T ] ⊆ T ⇒ V ⊆ T

If we expand n[T ] ⊆ T :
∀T · f ∈ T ∧ (∀x · x ∈ T ⇒ n(x) ∈ T )⇒ V ⊆ T

T set of elements with some property P : T = {x |P(x)}
If:

Initial node f has property P (f ∈ T ), and
For every element with property P (x ∈ T ), the next one has
property P (n(x) ∈ T ), then
All elements have property P (V ⊆ T ).

Equivalently:
∀P · P(f ) ∧ (∀x · P(x)⇒ P(n(x)))⇒ (∀x · x ∈ V ⇒ P(x))

Using thm 2 to prove list properties

We want to prove P(x) for all x ∈ V .
Elements for which P holds:
T = {x |x ∈ V ∧ P(X )}.
We want to prove that T = V .

Since clearly T ⊆ V , it is enough to
prove V ⊆ T .
We do that by instantiating T :
T ≡ {x |x ∈ V ∧ P(x)}.

f ∈ {x |x ∈ V ∧ P(x)} ∧
(∀x · x ∈ {x |x ∈ V ∧ P(x)} ⇒ n(x) ∈ {x |x ∈ V ∧ P(x)}) ⇒

V ⊆ {x |x ∈ V ∧ P(x)}

f ∈ {x |x ∈ V ∧ P(x)} ≡ P(f ).
Second part equivalent to
∀x · x ∈ V ∧ P(x)⇒ P(n(x)).

The RHS is equivalent to
∀x · x ∈ V ⇒ P(x).

Instantiating thm 2 gives a scheme to prove by induction in infinite lists.



Finite lists

As infinite lists, but including a last (l ) element.
This needs a different axiom 2:

axm 4 : l ∈ V

axm 5 : finite(V )

axm 2′ : n ∈ V \{l}�� V \{f }

Infinite trees

t is the root.
p relates every node with its parent (it
is a surjection).

There should not be cycles.

axm 1 : t ∈ V

axm 2 : p ∈ V \{t}� V

axm 3 : ∀S · S ⊆ p−1[S ]⇒ S = ∅

Induction rule:
∀T · t ∈ T ∧ p−1[T ] ⊆ T ⇒ V ⊆ T

Instantiation to prove properties:
∀T · T ⊆ V ∧ t ∈ T ∧

(∀x · x ∈ V \{t} ∧ p(x) ∈ T ⇒ x ∈ T )

⇒ V ⊆ T

Finite trees

t is the root.

p relates every node with its parent.

L is the set of tree leaves.

There should not be cycles.

axm 1 : t ∈ V

axm 2 : L ⊆ V

axm 3 : p ∈ V \{t}� V \L
axm 4 : ∀S · S ⊆ p−1[S ]⇒ S = ∅

Set theory: basic constructs
Definitions

Defined by equivalences (included here for reference)

E 7→ F ∈ S × T ≡ E ∈ S ∧ F ∈ T

S ∈ P(T ) ≡ ∀x · x ∈ S ⇒ x ∈ T

E ∈ {x · x ∈ S ∧ P(x) | F (x)} ≡ ∃x · x ∈ S ∧ P(x) ∧ E = F (x)

E ∈ {x | x ∈ S ∧ P(x)} ≡ E ∈ S ∧ P(E )



Operations on sets: definitions

S ⊆ T ≡ S ∈ P(T )

S = T ≡ S ⊆ T ∧ T ⊆ S

S ⊂ T ≡ S ∈ P(T ) ∧ ¬(S = T )

S ∪ T ≡ {x | x ∈ S ∨ x ∈ T}
S ∩ T ≡ {x | x ∈ S ∧ x ∈ T}
S \ T ≡ {x | x ∈ S ∧ x 6∈ T}

E ∈ {a, . . . , z} ≡ E = a ∨ . . . ∨ E = z

E ∈ ∅ ≡ ⊥

Relations

x ∈ dom(r) ≡ ∃y · x 7→ y ∈ r

y ∈ ran(r) ≡ ∃x · x 7→ y ∈ r

r−1 ≡ {y 7→ x | x 7→ y ∈ r}

Domain restriction S C r {x 7→ y ∈ r | x ∈ S}
Domain subtraction S C− r {x 7→ y ∈ r | x 6∈ S}
Range restriction r B T {x 7→ y ∈ r | y ∈ T}
Range subtraction r B− T {x 7→ y ∈ r | y 6∈ T}

Image r [S ] {y | x 7→ y ∈ r ∧ x ∈ S}
Composition p; q {x 7→ z | x 7→ y ∈ p ∧ y 7→ z ∈ q}
Overriding p C− q q ∪ (dom(q)C− p)
Identity id(S) {x 7→ x | x ∈ S}

For reference: some useful results and definitions

(r−1)−1 = r

dom(r−1) = ran(r)

(S C r)−1 = r−1 B S

(p; q)−1 = q−1; p−1

p; (q; r) = (p; q); r

p; (q ∪ r) = (p; q) ∪ (p; r)

(p; q)[S ] = q[p[S ]]

r [S ∪ T ] = r [S ] ∪ r [T ]

r = r−1 symmetric
r ∩ r−1 = ∅ asymmetric

id(S) ⊆ r reflexive
r ; r ⊆ r transitive

Set-theoretic notation more readable than predicate calculus

r = r−1 ≡ ∀x , y · x ∈ S ∧ y ∈ S ⇒ (x 7→ y ∈ r ⇔ y 7→ x ∈ r)

Properties

mother = father ;wife

spouse = spouse−1

sibling = sibling−1

cousin = cousin−1

father ; father−1 = mother ;mother−1

father ;mother−1 = ∅
mother ; father−1 = ∅
father ; children = mother ; children
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