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All you ever wanted to know about installing Rodin...

. . . is at

https://wp.software.imdea.org/cbc/#tools

and

https://wp.software.imdea.org/cbc/rodin-installation-and-tips/

Sequential programs and Event B

Sequential programs can be transpiled
into Event B.
Correctness, termination, etc. proven
with Event B tools.
However, underuse of Event B.
Other approaches are very good at this.

Better approach: design with Event B
from the beginning.
Apply to reactive and concurrent
systems – strong points of Event B.
For illustration: will develop several
sequential programs.

mailto:manuel.carro@upm.es
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https://wp.software.imdea.org/cbc/rodin-installation-and-tips/


Appetizer
Let us use Rodin with the Integer Division example.

INITIALISATION
a, r := 0, b

END

EVENT Prog r e s s
WHERE r >= c THEN

r , a := r − c , a + 1
END

EVENT F i n i s h
WHERE r < c THEN

s k i p
END

Two types of components in a Rodin
project:

Context(s) Contains constants and
axioms.

Machine(s) Variables, invariants, and
events (and some other
things). Machines see
Contexts.

Switching to Rodin. The example I will type
is available as part of the course material.

Specification of a sequential program

Sequential programs are usually specified by
means of:

A precondition
And a postcondition

Represented with a Hoare triple

{Pre} P {Post}

Searching in an array

We are given as preconditions:
A natural, non-zero number: n ∈ N1.
An array f of n elements of naturals: f ∈ 1..n→ N.
A value v known to be in the array: v ∈ ran(f ).

We are looking for (postconditions):
An index r in the array: r ∈ dom(f )

Such that f (r) = v





n ∈ N1
f ∈ 1..n→ N
v ∈ ran(f )



 search

{
r ∈ dom(f )
f (r) = v

}

Encoding a Hoare-triplet

Preconditions Program Postconditions



n ∈ N1
f ∈ 1..n→ N
v ∈ ran(f )



 search

{
r ∈ dom(f )
f (r) = v

}

Axioms Guards, invariants
Input parameters, constants Variables

Ensuring (total) correctness:
post-condition implied by invariants and guard of (unique) final
event: Axioms, Invs,¬Guard ` Post.
Non-final events terminate.
Events are deterministic.
Events do not deadlock.

We will see later how to formally express the last two properties.



Encoding search




n ∈ N1
f ∈ 1..n→ N
v ∈ ran(f )



 search

{
r ∈ dom(f )
f (r) = v

}

Constants: n, f , v
Axiom 1: n ∈ N1
Axiom 2: f ∈ 1..n→ N
Axiom 3: v ∈ ran(f )

r :∈ dom(f ) assigns to r a number
randomly chosen from the set dom(f ).

VARIABLES r
INVARIANTS r ∈ dom(f )
INIT

r :∈ dom(f )
END

EVENT F i n i s h
WHERE f (r) = v
THEN

s k i p
END

EVENT Prog r e s s
WHERE f (r) 6= v
THEN

r :∈ dom(f )
END

Encoding search (cont.)

Does not capture a good computation method (Why?).
Let us write it in Rodin.
Entering symbols:

To enter. . . type
∈ :
:∈ ::
N NAT
→ -->
6= /=

f ∈ N→ 1..n would be typed f : NAT --> 1..n

Open Rodin and let start typing it together.

Some Rodin conventions

Every line has an identifier, used to
refer to the line.

Rodin generated proof obligations
(but we have seen only INV).

Proof naming:
EventName/Identifier/TypeOfProof

FIS: prove operation can be applied
(is there any element in dom(f )?)

Some help from more powerful
theorem provers needed.

Note: (un)discharged proof
obligations may differ across versions
due to differences in theorem provers,
and relative processor speed
(timeouts involved). General ideas
applicable, though.

Refinement

Purposes of refinement
Add more requirements, and/or
Have a realizable design, and/or
Increase performance.

Idea for this case

Scan vector from left to right.

• •

1 r n

f (r) v



Refinement

Purposes of refinement
Add more requirements, and/or
Have a realizable design, and/or
Increase performance.

Idea for this case

Scan vector from left to right.

• •

1 r n

f (r) v

Refined events

Event INITIALISATION
r := 1

end

Event F i n i s h
where f ( r ) = v

end

Event P r og r e s s
where f ( r ) 6= v

then
r := r + 1

end

Histories of refined model: subset of
abstract’s.
No new behavior introduced =⇒
correctness preserved.
Preservation of r ∈ dom(f ) cannot be
proven.
Invariant too weak, it is true in
forbidden states =⇒ strengthen them!
v ∈ f [r ..n]

f [p..q]: image of f for the set p..q.
variant: bounded expression that
decreases for all convergent events.

Refined events

Event INITIALISATION
r := 1

end

Event F i n i s h
where f ( r ) = v

end

Event P r og r e s s
where f ( r ) 6= v

then
r := r + 1

end

Histories of refined model: subset of
abstract’s.
No new behavior introduced =⇒
correctness preserved.
Preservation of r ∈ dom(f ) cannot be
proven.
Invariant too weak, it is true in
forbidden states =⇒ strengthen them!
v ∈ f [r ..n]

f [p..q]: image of f for the set p..q.
variant: bounded expression that
decreases for all convergent events.

Formalized and proven

The refinement is correct (no bugs introduced).
Events maintain invariants.
v ∈ ran(f )⇒ Progress will always reach a position that contains v
⇒ it is not enabled more than n times⇒ r won’t be > n⇒ variant
never becomes negative⇒ it is a natural number.
Since Progress decreases the variant and it has a lower bound, it
will terminate.
Since guards are the negation of each other:

The model is deadlock free.
The events exclude each other (the model is deterministic)



Sequential correctness

Postcondition P must be true at the end of execution
End of execution associated to special event Finish:

A1...l(c), I1...m(v , c),GFinish(v , c) ` P(v , c)

Q: correctness condition for integer division

Axioms︷ ︸︸ ︷
b ∈ N, c ∈ N, c > 0,

Invariants︷ ︸︸ ︷
a ∈ N, r ∈ N, b = a× c + r ,

Guard︷ ︸︸ ︷
r < c ` b = a× c + r ∧ r < c︸ ︷︷ ︸

Postcond

Not applicable to non-terminating systems (other proofs required)
I1..n and GFinish related to P ; not necessarily identical
I1...n need to be strong enough.

Termination

“Postcondition P must be true at the end of execution”
General strategy: look for a ranking function that measures progress
In Event B lingo: a variant V (v , c)

An expression V (with V ∈ N or V ⊆ S ) that is reduced by each non-terminating event
A1...l(c), I1...m,Gi (v , c) ` V (v , c) > V (Ei (v , c), c)

We do not say how it is reduced: it has to be proven

Termination proof
Arith

c > 0 ` r > r − c Mon
b ∈ N, c ∈ N, c > 0, a ∈ N, r ∈ N, b = a× c + r , r ≥ c ` r > r − c

No deadlock, determinism

At least one guard must be true at any moment:
A1...l(v), I1...m(v , c) ` G1(v , c) ∨ G2(v , c) ∨ . . . ∨ Gm(v , c)

No two events can be active at the same time:

A1...l(v), I1...m(v , c) `
n∧

i ,j=1
i 6=j

¬(Gi (v , c) ∧ Gj(v , c))

In Rodin: add the RHS in the INVARIANTS section, mark them as “theorem”.

Well-definedness and feasibility



First machine (already seen)

VARIABLES r
INVARIANTS r ∈ dom(f )
INIT

r :∈ dom(f )
END

EVENT F i n i s h
WHERE f (r) = v
THEN

s k i p
END

EVENT Prog r e s s
WHERE f (r) 6= v

r :∈ dom(f )
END

We (formally) know INV.
Let us see WD and FIS in more detail.

WD (Well-Definedness)

Ensuring that axioms, theorems, invariants, guards, actions,
variants. . . are well-defined.
I.e.: all of their arguments “exist”. For example:

Expression WD to prove
f (E ) f is a partial function and E ∈ dom(f )
E/F F 6= 0
E mod F F 6= 0
card(S) finite(S)
min(S) S ⊆ Z ∧ ∃x · x ∈ Z ∧ (∀n · n ∈ S ⇒ x ≤ n)

In our example: v 6= f (r) needs r ∈ dom(f ).
Formulas traversed to require WD of their components (with
some special cases).

FIS

Ensure that non-deterministic actions are feasible.

In G (x , s, c , v): x event parameters, s
are carrier sets — not yet seen.

BAP(x , s, c , v , v ′): Before-After
predicate (next).

BAP and non-deterministic assignments

Simple assignment:
v := E (v , c).
E evaluates to a single value.

Non-deterministic assignment:
v :∈ S
S explicit, S 6= ∅— FIS PO.
E.g., v :∈ 1..n needs n ≥ 1.

Before-after predicate:
x :∈ {x |P(v , c)}
x one of the variables in v .
P(v , c) needs to be true for some x .
Notation: v ′ is the “next value”.
x : | x ′ = x + 7 ∨ x ′ = x − 5

BAP(v , v ′, c) generalizes v := E (v , c).

More general invariant proof
obligation:

A1..l(c), I1..m(v , c),Gi (v , c),BAP(v , v ′, c) ` Ij(v
′, c)

For:
x : | g(x ′) > 0
x : | g(x ′) > g(x)
x : | g(x ′) > 1

g(x)

What are the WD and FIS POs?



Refinement: the sorted array case

Search in sorted array – specification

Preconditions
A strictly positive number: 0 < n.
A sorted array f of n elements built on
N : f ∈ 1..n→ N.
A value v in the array: v ∈ ran(f ).

n ∈ N1
f ∈ 1..n→ N

v ∈ ran(f )

Postconditions
r is an index of the array: r ∈ dom(f ).
Such that f (r) = v .

To enter. . . type
∀ !
· .
N1 NAT1

Q: Sorted invariant

∀i , j · i ∈ 1..n ∧ j ∈ 1..n ∧ i ≤ j ⇒ f (i) ≤ f (j)

Variations on an invariant

We can write

∀i , j · i ∈ 1..n ∧ j ∈ 1..n ∧ i ≤ j ⇒ f (i) ≤ f (j) (1)

But also

∀i , j · i ∈ 1..n ∧ j ∈ 1..n ∧ i < j ⇒ f (i) ≤ f (j) (2)

If i = j , of course f (i) = f (j), so the i = j case is superfluous; i < j is also tighter than
i ≤ j , because i < j ⇒ i ≤ j . Which one is preferable?

Q: Which one should we prefer?

Both invariants are correct. But in general, we prefer stronger invariants.
And (1) is stronger than (2)! They follow, resp., the scheme a⇒ c and b ⇒ c ,
and it happens that b ⇒ a. But the formula (b ⇒ a)⇒ ((a⇒ c)⇒ (b ⇒ c)) is
valid, while (b ⇒ a)⇒ ((b ⇒ c)⇒ (a⇒ c)) is not.

Refinement

Add requirements (to the problem or how it is solved).
The solution space shrinks. New models (rather, their
states) must be contained in previous models.



Refining search

r “shoots” indiscriminately.
Refinement: narrow range of r around the position of v .
Idea:

p and q (p ≤ q) range so that r ∈ p..q, always.
r is chosen between p and q: p ≤ r ≤ q.
Depending on the position of f (r) w.r.t. v , we update p or q.
Therefore we always keep f (p) ≤ f (r) ≤ f (q)
(remember ∀i , j · i ∈ dom(f ) ∧ j ∈ dom(f ) ∧ i ≤ j ⇒ f (i) ≤ f (j)

• •

1 p r q n

f (r) vf (p) f (q)≤ ≤ ≤

≤ ≤ ≤ ≤

First Refinement
An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END
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An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END
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convergent: variant must
decrease.

In RODIN: Do not mark
events as “extended”.

Q: Why does this model
eventually find r?

If r not yet found, q − p is
decremented. Eventually,
q − p = 0 and then r = p = q. At
this moment, if the invariants
hold, f (r) = v .

Proof Obligations

(Depending on the version of Rodin and
the theorem provers)

Doing refinement right

The concrete model behaves as specified by the abstract model (i.e.,
concrete model does not exhibit any new behaviors)
To show this we have to prove that:
1. Transitions in the concrete model can not take place in states

whose corresponding abstract state did not exhibit that transition
(GRD).

2. Actions in concrete events cannot result in states that were not in
the abstract model (SIM).

We will make these two conditions more precise and formalize them as
proof obligations.



The Essence of GRD
Abstractmodel to (more) concretemodel: details introduced

Abstract model
Contains all correct states.
Guards keep model from drifting into wrong states.

Concrete model: more details / more variables / richer state
Concrete and abstract states differ.
A correspondence (“simulation”) must exist.
Additional constraints may make some abstract states invalid in
the concrete model: they must not be reachable (they disappear).
Some abstract states split into several concrete states.

Initial model: r can move freely. Refinement: not all histories possible.
But all states / transitions in refinedmodel contained in abstract model.

The Essence of GRD (Cont)

Abstract model

Si Si+1 Si+2

Z
Guard Gc false.
State Z should not be reached.

Ga

Gb

Gc

Concrete model
(primed elements are
concrete versions of
abstract counterparts)

S ′i S ′i+1

S ′i+2

S ′i+3

Z ′

G ′a

G ′b

G ′d

G ′c

Guards G ′c ,G ′a should be false.
States Z ′, S ′i+1 should not be reached.

S ′i+2, S ′i+3 richer
versions of Si+2

Key property: Whenever a con-
crete guard is enabled, the corre-
sponding abstract guard must be
enabled too, i.e., G ′ ⇒ G

The Essence of GRD (Cont)

G ′b ⇒ Gb (and G ′d ⇒ Gb) A concrete
transition was already valid in
the abstract model (and > ⇒
> is valid).

G ′c ⇒ Gc A non-enabled concrete tran-
sition was not enabled in the
abstract model (and ⊥ ⇒ ⊥ is
valid).

G ′a ⇒ Ga A transition which was en-
abled in the abstract model
cannot be taken any more
because the destination state
is not valid in the concrete
model (and ⊥ ⇒ > is valid).

However, if G ′c were true in the concrete
model, then G ′c ⇒ Gc would be false,
because > ⇒ ⊥ is not valid.
Non-reachable, incorrect states in abstract
model would be transformed into
reachable states in the concrete model,
which is wrong.

GRD
(Concrete) Guards in refining event stronger than guards in
abstract event.
Ensures that when concrete event enabled, so is the
corresponding abstract event.
For concrete “evt” and abstract guard “grd” in corresponding
abstract event: evt/grd/GRD



Guard Strengthening Example

An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END
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MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd2: f(r) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r) < v

then
act2: p := r + 1

act3: r :∈ r + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r) > v

then
act1: q := r − 1

act2: r :∈ p .. r − 1

end

END
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Is f (r) < v more restrictive than f (r) 6= v?
Yes: there are cases where f (r) 6= v is true but f (r) < v is not,
and
Whenever f (r) < v is true, f (r) 6= v is true as well.
Therefore, f (r) < v ⇒ f (r) 6= v .

SIM

Ensure that actions in concrete events simulate the corresponding
abstract actions.
Ensures that when the concrete event fires, it does not contradict
the action of the corresponding abstract event.

(Ignore witness predicate W1, W2)

SIM Example

An Event-B Specification of BS M0

MACHINE BS M0

SEES BS C0

VARIABLES

r

INVARIANTS

inv1: r ∈ dom(f)

EVENTS

Initialisation

begin
act1: r :∈ 1 .. n

Should be dom(f) but that will force us to use PP to prove FIS. For simplicity we leave it like

this.

end

Event final 〈ordinary〉 =̂

when
grd2: f(r) = v

then
skip

end

Event progress 〈anticipated〉 =̂

when
grd1: f(r) 6= v

then
act1: r :∈ dom(f)

end

END
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An Event-B Specification of BS M1

MACHINE BS M1

REFINES BS M0

SEES BS C0

VARIABLES

r’

p

q

INVARIANTS

inv1: p ∈ 1 .. n

inv2: q ∈ 1 .. n

inv3: r′ ∈ p .. q

inv4: v ∈ f [p .. q]

VARIANT

q − p

EVENTS

Initialisation

begin
act1: p := 1

act2: q := n

act3: r′ :∈ 1 .. n

end

Event final 〈ordinary〉 =̂

refines final

when
grd1: r′ ∈ dom(f)

grd2: f(r′) = v

then
skip

end

Event inc 〈convergent〉 =̂

refines progress

when
grd1: f(r′) < v

then
act2: p := r′ + 1

act3: r′ :∈ r′ + 1 .. q

end

Event dec 〈convergent〉 =̂

refines progress

when
grd1: f(r′) > v

then
act1: q := r′ − 1

act2: r′ :∈ p .. r′ − 1

end

END
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Are the states created by r ′ :∈ r ′ + 1..q inside the states created by r :∈ dom(f )?
Yes. Intuitively: p..q ⊆ dom(f ) deduced from invariant. Any choice made by
r ′ :∈ p..q could also be done by r ∈ dom(f ).

SIM, More Formally

n ∈ N1
f ∈ 1..n −→ N
r ∈ dom(f )
p ∈ 1..n
q ∈ 1..n
r ∈ p..q
v ∈ f [p..q]
f (r) < v
∀i , j · i ∈ 1..n ∧ j ∈ 1..n ∧ i ≤ j ⇒ f (i) ≤ f (j)
r ′ ∈ r + 1..q
`
r ′ ∈ dom(f )

Can you find a proof (by contradiction)?



Rodin and the Second Refinement

Create new machine, input previous refinement, check what proofs are automatically
discharged

What theorem provers did (last time I tried :-):
inc/inv1/INV PP, ML timeout: needs interaction
inc/inv4/INV Automatically discharged by PP
inc/act3/FIS Needs interaction
dec/inv2/INV Needs interaction
dec/inv4/INV Needs interaction
dec/act2/FIS Needs interaction

inc/inv1/INV

• •

1 p xr q n

f (r) v = f (x)<

< ≤ ≤

inv1 p ∈ 1..n
Action p := r + 1, r :∈ r + 1..q

Goal (inv. after) r + 1 ∈ 1..n (with r the value before the action)
We had r ∈ 1..n before; just prove r < n.

Strategy v ∈ ran(f ); say f (x) = v . As dom(f ) = 1..n, 1 ≤ x ≤ n. Since f (r) < v = f (x),
r < x (monotonically sorted array). Therefore r < x ≤ n and r < n.

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f )

∀i , j · (i ∈ dom(f ) ∧ j ∈
dom(f ) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f )

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
dom(f ) ∨ j 6∈ dom(f ) ∨ i > j)

∀i · f (i) > f (r) ⇒ (i 6∈
dom(f ) ∨ r 6∈ dom(f ) ∨ i > r)

x 7→ v ∈ f

f (x) > f (r) ⇒ (x 6∈ dom(f ) ∨
r 6∈ dom(f ) ∨ x > r)

v > f (r)⇒ (x 6∈ dom(f ) ∨ r 6∈
dom(f ) ∨ x > r)

x 6∈ dom(f ) ∨ r 6∈ dom(f ) ∨ x > r

r 6∈ dom(f ) ∨ x > r

x > r

x ≤ n

r < n

r + 1 ≤ n

Sketch of a Proof for inc/inv1/INV

r ∈ dom(f )

∀i , j · (i ∈ dom(f ) ∧ j ∈
dom(f ) ∧ i ≤ j)⇒ f (i) ≤ f (j)

f (r) < v

v ∈ ran(f )

f ∈ 1..n→ N

` r + 1 ∈ 1..n

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the
sequent.

∀i , j · f (i) > f (j) ⇒ (i 6∈
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Proving inc/inv1/INV in Rodin

Double click on undischarged proof, switch to proving perspective.
Show all hypothesis (click on search button ).
Select the hypothesis in the previous slide.
Click on the + button in the tab of the ’Search hypotheses’ window. They should now
appear under ’Selected hypotheses’.
Invert implication inside universal quantifier.
Instantiate j to be r .
Click on the P0 button (proof on selected hypothesis) in the ’Proof Control’ window.

This will try to prove the goal using only the selected hypotheses; it can then explore
much deeper, since we are using only a subset of the existing hypotheses and we have
fixed a value in the universal quantifier.

Almost immediately, a green face should appear.
Save the proof status (Ctrl-s) to update the proof status.

Notes on Discharging Proofs with RODIN

Different versions may behave differently.
Search heuristics. Sensitive to details.
Proof parts saved and reused. Behavior may change depending on history.
Labels (act2, inv1, etc.) depend on how model is written.
Do not use the NewPP prover: it’s unsound.
PP weak with WD: ` b ∈ f −1[{f (b)}] not discharged.
It may not discharge easy proofs if unneeded hypothesis present.
ML useful for arithmetic-based reasoning, weaker with sets.
See https:
//www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html
and https:
//www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html.
To test: copy project, work on copied project.
When removing, tick on Delete from hard disk.

https://www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html
https://www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html
https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html
https://www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html


Reviewed Hypothesis

POs can be accepted with . Flagged reviewed to temporarily continue or because they
were manually proved.

Reusing formulas

Reusing formulas deducible from axioms is sometimes handy.
In our examples we very often transformed

∀i , j · (i ∈ dom(f ) ∧ j ∈ dom(f ) ∧ i ≤ j)⇒ f (i) ≤ f (j)

into the logically equivalent

∀i , j · f (i) < f (j)⇒ (i 6∈ dom(f ) ∨ j 6∈ dom(f ) ∨ i < j)

We can add the latter to the model to save clicks.
It could be an axiom.
But axioms should not be redundant.

If we update one but not a version of it, the model could be
inconsistent.

Theorems

Rodin offers theorems: a formula that can be proven from others
in the same class.

Simplify proofs.
Help provers (sometimes necessary).
They need to be proved!

Proving theorems

For a theorem “thm”, the name of its PO is thm/THM.
Proved as usual.

For a theorem that requires an invariant: Axioms + Invariants
Has to be placed after the axioms / invariants needed.



The strange case of the un-(well-defined) theorem

axm2 : ∀i , j · f (i) < f (j)⇒
(i 6∈ dom(f ) ∨ j 6∈ dom(f ) ∨ i < j)

Why? It is equivalent! Any idea?

Proof explorer: is f (i) valid?
WD for implications (ordered WD):
WD(P ⇒ Q) ≡WD(P) ∧ P ⇒WD(Q)

Treats P as a “domain” property.
Workaround: instead of
∀i , j · (i ∈ dom(f ) ∧ j ∈ dom(f ) ∧ i ≤ j)

⇒ f (i) ≤ f (j)

use
∀i , j · (i ∈ dom(f ) ∧ j ∈ dom(f ))⇒
(i ≤ j ⇒ f (i) ≤ f (j))

Will that be correct?
Contrapositive:
∀i , j · (i ∈ dom(f ) ∧ j ∈ dom(f ))⇒
(f (i) > f (j)⇒ i > j)
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Type checking and mathematical proofs

Types

Determine types correct.
Based on function types + typing rules.

f (x : R) : R
return x ∗ 3.5

g(x : R) : N
return x ∗ 3.5

Theorems

Determine formula valid.
Hypotheses + deduction rules.

x ∈ R ` x ∗ 3.5 ∈ R

x ∈ R ` x ∗ 3.5 ∈ N

Traditional type checking: weak theorem proving.
Type checking rules basically same as logic inference rules.
Most type systems decidable, efficient.
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Types
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Traditional type checking: weak theorem proving.
Type checking rules basically same as logic inference rules.
Most type systems decidable, efficient.

Type checking and mathematical proofs

Highly expressive type systems (Liquid Haskell, Agda, Idris):
More properties captured
length(concat(a, b)) = length(a) + length(b)
Decidability can be challenged.

E.g., ML type system.

Some frameworks give up.
Others allow user intervention

Dafny, Coq: help adding invariants, lemmas
If found, proof is black box.

Event B:
In addition, user intervention at the proof level.
Full expressiveness in properties.
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