

Sequential programs, refinement, and proof obligations¹

Manuel Carro manuel.carro@upm.es

IMDEA Software Institute & Universidad Politécnica de Madrid

Installing and using Rodint. 3	Refinement: the sorted array caset. 25
Sequential programs: specification and	Guard strengtheningt. 32
propertiest. 4	Simulation t. 38
Specification of searching in arrayt. 7	Rodin and refinementt. 41
Refinement of searcht. 12	Rodin proof of INVt. 43
Termination and correctnesst. 17	Reviewed hypothesest. 57
Well-definedness and feasibilityt. 20	Theoremst. 58

Appetizer

Let us use Rodin with the Integer Division example.

INITIALISATION
a, r := 0, b
END

EVENT Progress WHERE $r \ge c$ THEN r, a := r - c, a + 1END

EVENT Finish WHERE r < c THEN skip END software

Two types of components in a Rodin

Context(s) Contains constants and

Machine(s) Variables, invariants, and

events (and some other

things). Machines see

Switching to Rodin. The example I will type

is available as part of the course material.

axioms.

Contexts.

project:

Specification of a sequential program

- Sequential programs are usually specified by means of:
 - A precondition
 - And a postcondition
- Represented with a Hoare triple

 $\{Pre\} P \{Post\}$

◆□→ ◆舂→ ◆玉→ ◆玉→ 「玉」 のへで

Searching in an array

| ◆ □ ▶ ★ 酉 ▶ ★ 臣 ▶ ↓ 臣 | りへぐ

We are given as preconditions:

- A natural, non-zero number: $n \in \mathbb{N}1$.
- An array *f* of *n* elements of naturals: $f \in 1..n \rightarrow \mathbb{N}$.
- A value v known to be in the array: $v \in ran(f)$.

We are looking for (postconditions):

- An index r in the array: $r \in \text{dom}(f)$
- Such that f(r) = v

$$\left\{\begin{array}{l} n \in \mathbb{N}1\\ f \in 1..n \to \mathbb{N}\\ v \in \operatorname{ran}(f) \end{array}\right\} \text{ search } \left\{\begin{array}{l} r \in \operatorname{dom}(f)\\ f(r) = v \end{array}\right\}$$

Preconditions	Program	Postconditions
$\left\{ egin{array}{l} n\in\mathbb{N}1\ f\in1n o\mathbb{N}\ v\in\mathrm{ran}(f) \end{array} ight\}$	search	$\left\{\begin{array}{c} r \in \operatorname{dom}(f) \\ f(r) = v \end{array}\right\}$
Axioms Input parameters, constants		Guards, invariants Variables

• Ensuring (total) correctness:

Encoding a Hoare-triplet

- post-condition implied by invariants and guard of (unique) final event: Axioms, Invs, ¬Guard ⊢ Post.
- Non-final events terminate.
- Events are deterministic.
- Events do not deadlock.
- We will see later how to formally express the last two properties.

wii dea windea Encoding search Encoding search (cont.) VARIABLES r $n \in \mathbb{N}1$ INVARIANTS $r \in \text{dom}(f)$ $r \in \operatorname{dom}(f)$ search $f \in 1..n \rightarrow \mathbb{N}$ • Does not capture a good computation method (Why?). f(r) = vINIT $v \in \operatorname{ran}(f)$ Let us write it in Rodin. $r :\in \operatorname{dom}(f)$ Constants: n, f, v FND • Entering symbols: Axiom 1: $n \in \mathbb{N}1$ To enter... type $f \in 1..n \rightarrow \mathbb{N}$ Axiom 2: **EVENT** Finish ∈ : Axiom 3: $v \in \operatorname{ran}(f)$ WHERE f(r) = v:∈ :: THEN \mathbb{N} NAT skip \rightarrow --> FND ¥ /= r := dom(f) assigns to r a number **EVENT** Progress $f \in \mathbb{N} \to 1..n$ would be typed f : NAT --> 1..n randomly chosen from the set dom(f). WHERE $f(r) \neq v$ Open Rodin and let start typing it together. THEN $r :\in \operatorname{dom}(f)$ END ・ロト・西ト・ヨト ・日・ うへの ◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 の Q @

Some Rodin conventions

• Every line has an identifier, used to refer to the line.

• Rodin generated proof obligations (but we have seen only INV).

Proof Obligations

INITIALISATION/inv1/INV
INITIALISATION/act1/FIS
Search/inv1/INV
Search/act1/FIS
Finish/grd1/WD

- Proof naming: EventName/Identifier/TypeOfProof
- FIS: prove operation can be applied (is there any element in dom(*f*)?)
- Some help from more powerful theorem provers needed.
- Note: (un)discharged proof obligations may differ across versions due to differences in theorem provers, and relative processor speed (timeouts involved). General ideas applicable, though.

Refinement

Refined events

end

Purposes of refinement

- Add more requirements, and/or
- Have a realizable design, and/or
- Increase performance.

Idea for this case

• Scan vector from left to right.

Event INITIALISATION

where f(r) = v

r := 1

Event Finish

▲□▶▲舂▶▲≧▶▲≧▶ = 三 のへの

Refined events

Event INITIALISATION r := 1 end Event Finish where f(r) = v end Event Progress

where $f(r) \neq v$ then r := r + 1

end

・ロト・(部)・(日)・(日)・(日)・(の)への

- *Histories* of refined model: subset of abstract's.
- No new behavior introduced correctness preserved.
- Preservation of r ∈ dom(f) cannot be proven.
- Invariant too weak, it is true in forbidden states ⇒ strengthen them!
- $v \in f[r..n]$
- f[p..q]: image of f for the set p..q.
- variant: bounded expression that decreases for all convergent events.

Formalized and proven

- The refinement is correct (no bugs introduced).
- Events maintain invariants.
- v ∈ ran(f) ⇒ **Progress** will always reach a position that contains v ⇒ it is not enabled more than n times ⇒ r won't be > n ⇒ variant never becomes negative ⇒ it is a natural number.
- Since **Progress** decreases the variant and it has a lower bound, it will terminate.
- Since guards are the negation of each other:
 - The model is deadlock free.
 - The events exclude each other (the model is deterministic)

Sequential correctness

- Postcondition *P* must be true at the end of execution
- End of execution associated to special event Finish:

$A_{1\ldots l}(c), I_{1\ldots m}(v, c), G_{\mathsf{Finish}}(v, c) \vdash P(v, c)$

- Not applicable to non-terminating systems (other proofs required)
- $I_{1..n}$ and G_{Finish} related to *P*; not necessarily identical
- $I_{1...n}$ need to be *strong* enough.

Termination

- "Postcondition P must be true at the end of execution"
- General strategy: look for a ranking function that measures progress
- In Event B lingo: a *variant* V(v, c)
 - An expression V (with $V \in \mathbb{N}$ or $V \subseteq S$) that is reduced by each *non-terminating* event

$A_{1...l}(c), I_{1...m}, G_i(v, c) \vdash V(v, c) > V(E_i(v, c), c)$

• We do not say how it is reduced: it has to be proven

 $\frac{1}{c > 0 \vdash r > r - c} \text{Arith}$ $b \in \mathbb{N}, c \in \mathbb{N}, c > 0, a \in \mathbb{N}, r \in \mathbb{N}, b = a \times c + r, r \ge c \vdash r > r - c \text{Mon}$

- + ロ + + 個 + + 目 + ・ 目 ・ のへで

No deadlock, determinism

| ↓ □ ▶ ★ ፼ ▶ ★ 厘 ▶ ★ 厘 ▶ ↓ 厘 → りへで

wi dea

At least one guard must be true at any moment:

$$A_{1\ldots l}(v), I_{1\ldots m}(v,c) \vdash G_1(v,c) \lor G_2(v,c) \lor \ldots \lor G_m(v,c)$$

No two events can be active at the same time:

$$A_{1\ldots l}(v), I_{1\ldots m}(v,c) \vdash \bigwedge_{\substack{i,j=1\\i\neq j}}^{n} \neg (G_i(v,c) \land G_j(v,c))$$

In Rodin: add the RHS in the INVARIANTS section, mark them as "theorem".

Well-definedness and feasibility

First machine (already seen)

VARIABLES r	⑦ Proof Obligations
INVARIANTS $r \in \text{dom}(f)$	INITIALISATION/inv1/INV
INIT	⑦ INITIALISATION/act1/FIS
$r := \operatorname{dom}(r)$	Search/inv1/INV
	⑦ Search/act1/FIS
EVENT Finish	Finish/grd1/WD
WHERE $f(r) = v$	
THEN	We (formally) know INV.
skip	Let us see WD and FIS in more de
END	
EVENT Progress	
WHERE $f(r) \neq v$	
$r :\in \operatorname{dom}(f)$	

WD (Well-Definedness)

- Ensuring that axioms, theorems, invariants, guards, actions, variants... are well-defined.
- I.e.: all of their arguments "exist". For example:

Expression	WD to prove
f(E)	f is a partial function and $E \in dom(f)$
E/F	F eq 0
E mod F	$F \neq 0$
card(S)	finite(S)
$\min(S)$	$S \subseteq \mathbb{Z} \land \exists x \cdot x \in \mathbb{Z} \land (\forall n \cdot n \in S \Rightarrow x \leq n)$

- In our example: $v \neq f(r)$ needs $r \in dom(f)$.
- Formulas traversed to require WD of their components (with some special cases).

・ロト・(部)・(日)・(日)・(日)・(の)への

wii dea

FIS

END

Ensure that non-deterministic actions are feasible.

• In G(x, s, c, v): x event parameters, s are carrier sets — not yet seen.

• BAP(x, s, c, v, v'): Before-After predicate (next).

BAP and non-deterministic assignments • Simple assignment: • v := E(v, c). • *E* evaluates to a single value. • Non-deterministic assignment: • $v :\in S$ • *S* explicit, $S \neq \emptyset$ — FIS PO. • E.g., $v :\in 1..n$ needs $n \ge 1$. For: • Before-after predicate: • $x :\in \{x | P(v, c)\}$ x one of the variables in v.

- P(v, c) needs to be true for some x.
- Notation: v' is the "next value".
- $x : | x' = x + 7 \lor x' = x 5$

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 の Q @

- BAP(v, v', c) generalizes v := E(v, c).
- More general invariant proof obligation:

 $A_{1..i}(c), I_{1..m}(v, c), G_i(v, c), BAP(v, v', c) \vdash I_i(v', c)$

 $x: \mid g(x') > 0$ $x: \mid g(x') > g(x)$ $x: \mid g(x') > \frac{1}{g(x)}$

What are the WD and FIS POs?

And (1) is stronger than (2)! They follow, resp., the scheme $a \Rightarrow c$ and $b \Rightarrow c$, and it happens that $b \Rightarrow a$. But the formula $(b \Rightarrow a) \Rightarrow ((a \Rightarrow c) \Rightarrow (b \Rightarrow c))$ is valid, while $(b \Rightarrow a) \Rightarrow ((b \Rightarrow c) \Rightarrow (a \Rightarrow c))$ is not.

Refining search

- *r* "shoots" indiscriminately.
- Refinement: narrow range of *r* around the position of *v*.
- Idea:
 - *p* and *q* ($p \le q$) range so that $r \in p..q$, always.
 - *r* is chosen between *p* and *q*: $p \le r \le q$.
 - Depending on the position of f(r) w.r.t. v, we update p or q.
 - Therefore we always keep f(p) ≤ f(r) ≤ f(q) (remember ∀i, j · i ∈ dom(f) ∧ j ∈ dom(f) ∧ i ≤ j ⇒ f(i) ≤ f(j)

・ロト・西ト・ヨト・ヨー りへぐ

First Refinement

MACHINE BS_M1 **REFINES** BS_M0 SEES BS_C0 VARIABLES r р q **INVARIANTS** inv1: $p \in 1 \dots n$ inv2: $q \in 1 \dots n$ inv3: $r \in p \dots q$ inv4: $v \in f[p \dots q]$ VARIANT q - pEVENTS Initialisation begin **act1**: p := 1

act1: p := 1act2: q := nact3: $r :\in 1...n$ end

acts: $r :\in 1 ... n$

END

Event final $\langle \text{ordinary} \rangle \cong$ refines final when grd2: f(r) = vthen skip end **Event** inc (convergent) $\hat{=}$ refines progress when grd1: f(r) < vthen **act2**: p := r + 1act3: $r :\in r + 1 \dots q$ end **Event** dec $\langle \text{convergent} \rangle \cong$ refines progress when grd1: f(r) > vthen **act1**: q := r - 1**act2**: $r :\in p ... r - 1$ end

convergent: VARIANT must decrease.

In RODIN: Do not mark events as "extended".

Q: Why does this model eventually find r?

If *r* not yet found, q - p is decremented. Eventually, q - p = 0 and then r = p = q. At this moment, if the invariants hold, f(r) = v.

・ロン・留と・前と、聞、 もくの

Proof Obligations

INITIALISATION/inv1/INV
 INITIALISATION/inv2/INV
 INITIALISATION/inv3/INV
 INITIALISATION/inv4/INV

(Depending on the version of Rodin and the theorem provers)

- Inc/grd1/WD
 inc/inv1/INV
- Inc/inv4/INV
- Inc/grd1/GRD
- @ inc/act3/FIS
- inc/act1/SIM
- Inc/acci/ inc/VAR
- Inc/VAR
 Inc/NAT
- & dec/grd1/WD
- @ dec/grd1/WL @ dec/inv2/INV
- @ dec/inv2/iNV @ dec/inv3/INV
- & dec/inv3/INV
- dec/inv4/inv dec/acd1/CD
- dec/grd1/GRD
 dec/grd1/GRD
- @ dec/act2/FIS
- & dec/act1/SIM

Doing refinement right

The concrete model behaves as specified by the abstract model (i.e., concrete model does not exhibit any new behaviors) To show this we have to prove that:

- 1. Transitions in the concrete model can not take place in states whose corresponding abstract state did not exhibit that transition (GRD).
- 2. Actions in concrete events cannot result in states that were not in the abstract model (SIM).

We will make these two conditions more precise and formalize them as proof obligations.

The Essence of GRD

Abstract model to (more) concrete model: details introduced

Abstract model

- Contains all correct states.
- Guards keep model from drifting into wrong states.

Concrete model: more details / more variables / richer state

- Concrete and abstract states differ.
- A correspondence ("simulation") must exist.
- Additional constraints may make some abstract states invalid in the concrete model: they must not be reachable (they disappear).
- Some abstract states *split* into several concrete states.

Initial model: r can move freely. Refinement: not all histories possible. But all states / transitions in refined model contained in abstract model.

wi dea

concrete versions of

abstract counterparts)

The Essence of GRD (Cont)

Si

Key property: Whenever a concrete guard is enabled, the corresponding abstract guard must be enabled too, i.e., $G' \Rightarrow G$

indea

The Essence of GRD (Cont)

- $G'_b \Rightarrow G_b$ (and $G'_d \Rightarrow G_b$) A concrete transition was already valid in the abstract model (and $\top \Rightarrow$ \top is valid).
- $G'_{c} \Rightarrow G_{c}$ A non-enabled concrete transition was not enabled in the abstract model (and $\bot \Rightarrow \bot$ is valid).
- $G'_{a} \Rightarrow G_{a}$ A transition which was enabled in the abstract model cannot be taken any more because the destination state is not valid in the concrete model (and $\bot \Rightarrow \top$ is valid).

- However, if G'_c were true in the concrete model, then $G'_{c} \Rightarrow G_{c}$ would be false, because $\top \Rightarrow \bot$ is not valid.
- Non-reachable, incorrect states in abstract model would be *transformed* into reachable states in the concrete model, which is wrong.

- (Concrete) Guards in refining event stronger than guards in abstract event.
- Ensures that when concrete event enabled, so is the corresponding abstract event.

Gh

 S_{i+1}

 G'_d

Z

Ga

 S_{i+2}

 S'_{i+2}

Guards G'_{c} , G'_{a} should be false.

States Z', S'_{i+1} should not be reached.

 S'_{i+2}, S'_{i+3} richer versions of S_{i+2}

• For concrete "evt" and abstract guard "grd" in corresponding abstract event: evt/grd/GRD

Guard Strengthening Example

grd1: $f(r) \neq v$

act1: $r :\in dom(f)$

• Is f(r) < v more restrictive than $f(r) \neq v$?

• Therefore, $f(r) < v \Rightarrow f(r) \neq v$.

• Whenever f(r) < v is true, $f(r) \neq v$ is true as well.

Event progress (anticipated) $\hat{=}$

and

when

then

end

Event inc $\langle \text{convergent} \rangle \cong$

grd1: f(r) < v

act2: p := r + 1act3: $r :\in r + 1 ... q$

refines progress

when

then

end

• Yes: there are cases where $f(r) \neq v$ is true but f(r) < v is not,

SIM

- Ensure that actions in concrete events *simulate* the corresponding abstract actions.
- Ensures that when the concrete event fires, it does not contradict the action of the corresponding abstract event.

(Ignore witness predicate W1, W2)

 $r' \in r + 1..a$

 $r' \in \operatorname{dom}(f)$

⊢

• Can you find a proof (by contradiction)?

🔤 i 🕅 dea

・ロト・(部)・(日)・(日)・(日)・(の)への

• Yes. Intuitively: $p..q \subseteq \text{dom}(f)$ deduced from invariant. Any choice made by $r' :\in p..q$ could also be done by $r \in \text{dom}(f)$.

< ロ > < 置 > < 至 > < 至 > < 三 < の < で</p>

Rodin and the Second Refinement

inc/inv1/INV

sequent.

Create new machine, input previous refinement, check what proofs are automatically discharged

What theorem provers did (last time I tried :-):

inc/inv1/INV	PP, ML timeout: needs interaction
inc/inv4/INV	Automatically discharged by PP
inc/act3/FIS	Needs interaction
dec/inv2/INV	Needs interaction
dec/inv4/INV	Needs interaction
dec/act2/FIS	Needs interaction

inv1 $p \in 1..n$

Action $p := r + 1, r :\in r + 1..q$

Goal (inv. after) $r + 1 \in 1..n$ (with r the value **before** the action)

• We had $r \in 1..n$ before; just prove r < n.

Strategy $v \in ran(f)$; say f(x) = v. As dom(f) = 1..n, $1 \le x \le n$. Since f(r) < v = f(x), r < x (monotonically sorted array). Therefore $r < x \le n$ and r < n.

▲□▶▲舂▶▲≧▶▲≧▶ ≧ めへで

Sketch of a Proof for inc/inv1/INV

$r \in \mathit{dom}(f)$	
$ \forall i, j \cdot (i \in dom(f) \land j \in dom(f) \land i \leq j) \Rightarrow f(i) \leq f(j) $ $ f(r) < y $	
$v \in ran(t)$	
$f\in 1n ightarrow \mathbb{N}$	
$\vdash r+1 \in 1n$	

Left: selected hypothesis and goal. Right: rewritings of the LHS of the sequent.

Sketch of a Proof for inc/inv1/INV		software
$r \in \mathit{dom}(f)$	$ \forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i > j) $	
$orall i, j \cdot (i \in \textit{dom}(f) \land j \in \textit{dom}(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$		
f(r) < v		
$v \in \mathit{ran}(f)$		
$f \in 1n ightarrow \mathbb{N}$		
\vdash r + 1 \in 1n		
Left: selected hypothesis and goal.		
Right: rewritings of the LHS of the		

(□) (四) (三) (三) (三) (三) (○)

Sketch of a Proof for inc/inv1/INV

$\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin$ $r \in dom(f)$ $dom(f) \lor j \notin dom(f) \lor i > j$ $\forall i, j \cdot (i \in dom(f) \land j \in$ $\forall i \cdot f(i) > f(r) \Rightarrow (i \notin$ $dom(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$ $dom(f) \lor r \notin dom(f) \lor i > r)$

f(r) < v

 $v \in ran(f)$

 $f \in 1..n \rightarrow \mathbb{N}$

\vdash *r* + 1 \in 1..*n*

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the sequent.

Sketch of a Proof for inc/inv1/INV

$\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin$ $r \in dom(f)$ $dom(f) \lor j \notin dom(f) \lor i > j$ $\forall i, j \cdot (i \in \textit{dom}(f) \land j \in$ $\forall i \cdot f(i) > f(r) \Rightarrow (i \notin$ $dom(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$ $dom(f) \lor r \notin dom(f) \lor i > r)$ $x \mapsto v \in f$ f(r) < v $v \in ran(f)$ $f \in 1..n \rightarrow \mathbb{N}$

 \vdash *r* + 1 \in 1..*n*

Left: selected hypothesis and goal. Right: rewritings of the LHS of the sequent.

◆□ → ◆檀 → ◆臣 → ◆臣 → ○臣 → のへで

windes

Sketch of a Proof for inc/inv1/INV

 $r \in dom(f)$ $\forall i, j \cdot (i \in dom(f) \land j \in$ $dom(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$ f(r) < v

 $v \in ran(f)$

 $f \in 1..n \rightarrow \mathbb{N}$

$$\vdash r + 1 \in 1..n$$

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the sequent.

 $\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin$ $dom(f) \lor j \notin dom(f) \lor i > j$ $\forall i \cdot f(i) > f(r) \Rightarrow (i \notin$ $dom(f) \lor r \notin dom(f) \lor i > r$

 $x \mapsto v \in f$ $f(x) > f(r) \Rightarrow (x \notin dom(f) \lor$ $r \notin dom(f) \lor x > r$

∞i dea

(日) (個) (目) (日) (日) (の)

Sketch of a Proof for inc/inv1/INV

 $\forall i, j \cdot (i \in \textit{dom}(f) \land j \in$ $dom(f) \land i < j) \Rightarrow f(i) < f(j)$ f(r) < v $v \in ran(f)$ $f \in 1..n \rightarrow \mathbb{N}$

 $r \in dom(f)$

 \vdash *r* + 1 \in 1..*n*

Left: selected hypothesis and goal. Right: rewritings of the LHS of the sequent.

 $\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin$ $dom(f) \lor i \notin dom(f) \lor i > j$ $\forall i \cdot f(i) > f(r) \Rightarrow (i \notin$

```
dom(f) \lor r \notin dom(f) \lor i > r)
              x \mapsto v \in f
f(x) > f(r) \Rightarrow (x \notin dom(f) \lor
r \notin dom(f) \lor x > r
v > f(r) \Rightarrow (x \notin dom(f) \lor r \notin
dom(f) \lor x > r
```

Sketch of a Proof for inc/inv1/INV

Sketch of a Proof for inc/inv1/INV

		POLITECNICA		
$r \in \mathit{dom}(f)$	$\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i > j)$		$r \in \mathit{dom}(f)$	$\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i > j)$
$orall i, j \cdot (i \in \mathit{dom}(f) \land j \in \mathit{dom}(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$	$ \forall i \cdot f(i) > f(r) \Rightarrow (i \notin dom(f) \lor r \notin dom(f) \lor i > r) $		$orall i, j \cdot (i \in \mathit{dom}(f) \land j \in \mathit{dom}(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$	$ \forall i \cdot f(i) > f(r) \Rightarrow (i \notin dom(f) \lor r \notin dom(f) \lor i > r) $
f(r) < v	$x \mapsto v \in f$ $f(x) > f(r) \Rightarrow (x \notin dom(f) \lor$		f(r) < v	$x \mapsto v \in f$ $f(x) > f(r) \Rightarrow (x \notin dom(f) \lor$
$v\in \mathit{ran}(f)$	$r \notin dom(f) \lor x > r)$ $y > f(r) \Rightarrow (x \notin dom(f) \lor r \notin f)$		$v \in \mathit{ran}(f)$	$r \notin dom(f) \lor x > r)$ $y > f(r) \Rightarrow (x \notin dom(f) \lor r \notin dom(f))$
$f \in 1n ightarrow \mathbb{N}$	$dom(f) \lor x > r)$ $x \notin dom(f) \lor r \notin dom(f) \lor x > r$		$f\in 1n ightarrow \mathbb{N}$	$dom(f) \lor x > r)$ $x \notin dom(f) \lor r \notin dom(f) \lor x > r$
\vdash r + 1 \in 1n			$\vdash r+1 \in 1n$	$r \not\in \textit{dom}(f) \lor x > r$
Left: selected hypothesis and goal.			Left: selected hypothesis and goal.	
Right: rewritings of the LHS of the			Right: rewritings of the LHS of the	

sequent.

・ロト・(部)・(日)・(日)・(日)・

Sketch of a Proof for inc/inv1/INV

f(r) < v

 $v \in ran(f)$

$$f \in 1..n \rightarrow \mathbb{N}$$

 \vdash *r* + 1 \in 1..*n*

Left: selected hypothesis and goal.

Right: rewritings of the LHS of the sequent.

 $\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin$ $dom(f) \lor j \notin dom(f) \lor i > j)$ $\forall i \cdot f(i) > f(r) \Rightarrow (i \notin$ $dom(f) \lor r \notin dom(f) \lor i > r)$

$x \mapsto v \in f$

 $f(x) > f(r) \Rightarrow (x \notin dom(f) \lor$ $r \notin dom(f) \lor x > r)$ $v > f(r) \Rightarrow (x \notin dom(f) \lor r \notin$ $dom(f) \lor x > r$) $x \notin dom(f) \lor r \notin dom(f) \lor x > r$ $r \notin dom(f) \lor x > r$ x > r

・ロト・個ト・ヨト・ヨト 一日 のべや

Sketch of a Proof for inc/inv1/INV

sequent.

sequent.

$r \in dom(f)$ $\forall i, j \cdot (i \in dom(f) \land j \in$ $dom(f) \land i < j) \Rightarrow f(i) < f(j)$	$ \forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i > j) \forall i \cdot f(i) > f(r) \Rightarrow (i \notin dom(f) \lor r \notin dom(f) \lor r \neq dom(f) \lor i > r) $
f(r) < v	$x \mapsto v \in f$ $f(x) \geq f(x) \Rightarrow (x \notin dom(f))$
$v \in ran(f)$	$r \notin dom(f) \lor x > r)$ $v > f(r) \Rightarrow (x \notin dom(f) \lor r)$
$f\in 1n ightarrow \mathbb{N}$	$dom(f) \lor x > r)$ $x \notin dom(f) \lor r \notin dom(f) \lor x >$
$\vdash r + 1 \in 1n$	$r ot\in dom(f) \lor x > r$
Left: selected hypothesis and goal. Right: rewritings of the LHS of the	x > r $x \le n$


```
(r) \Rightarrow (i \notin
dom(f) \lor i > r)
 v \in f
 (x \not\in dom(f) \lor
 > r)
\notin dom(f) \lor r \notin
r)
\notin dom(f) \lor x > r
(f) \lor x > r
> r
\leq n
```

Sketch of a Proof for inc/inv1/INV

Sketch of a Proof for inc/inv1/INV

$r \in dom(f)$ $\forall i, j \cdot (i \in dom(f) \land j \in dom(f) \land i \leq i) \Rightarrow f(i) \leq f(i)$	$ \forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i > j) $ $ \forall i \cdot f(i) > f(r) \Rightarrow (i \notin dom(f) \lor i > r) $
$\operatorname{dom}(I) \land I \leq J) \Rightarrow I(I) \leq I(J)$	$\operatorname{dom}(T) \lor T \not\in \operatorname{dom}(T) \lor T > T)$
f(r) < v	$x\mapsto v\in f$
	$f(x) > f(r) \Rightarrow (x \notin dom(f) \lor$
$v \in ran(f)$	$r ot\in dom(f) \lor x > r)$
	$v > f(r) \Rightarrow (x \not\in dom(f) \lor r \notin$
$f \in 1$ $n \to \mathbb{N}$	$dom(f) \lor x > r)$
$r \in 1r \rightarrow 10$	$x \not\in dom(f) \lor r \not\in dom(f) \lor x > r$
\vdash r + 1 \in 1n	$r \not\in dom(f) \lor x > r$
	x > r
Left: selected hypothesis and goal.	$x \leq n$
Right: rewritings of the LHS of the	r < n

$r \in \mathit{dom}(f)$	$\forall i, j \cdot f(i) > f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i > j)$
$orall i, j \cdot (i \in \textit{dom}(f) \land j \in \textit{dom}(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$	$ \forall i \cdot f(i) > f(r) \Rightarrow (i \notin dom(f) \lor r \notin dom(f) \lor i > r) $
f(r) < v	$x \mapsto v \in f$ $f(x) > f(r) \Rightarrow (x \notin dom(f) \lor$
$v \in ran(f)$	$r \notin dom(f) \lor x > r)$ $v > f(r) \Rightarrow (x \notin dom(f) \lor r \notin f)$
$f\in 1n ightarrow \mathbb{N}$	$dom(f) \lor x > r)$ $x \notin dom(f) \lor r \notin dom(f) \lor x > r$
$\vdash r+1 \in 1n$	$r ot\in dom(f) \lor x > r$
Left: selected hypothesis and goal.	x > r $x \le n$
Right: rewritings of the LHS of the	r < n
sequent.	$r+1 \leq n$

◆□ > ◆舂 > ◆臣 > ◆臣 > ─臣 ─のへで

Proving inc/inv1/INV in Rodin

sequent.

- Double click on undischarged proof, switch to proving perspective.
- Show all hypothesis (click on search button **[27**).
- Select the hypothesis in the previous slide.
- Click on the + button in the tab of the 'Search hypotheses' window. They should now appear under 'Selected hypotheses'.
- Invert implication inside universal quantifier.
- Instantiate *j* to be *r*.
- Click on the P0 button (proof on selected hypothesis) in the 'Proof Control' window.
 - This will try to prove the goal using only the selected hypotheses; it can then explore much deeper, since we are using only a subset of the existing hypotheses and we have fixed a value in the universal quantifier.
- Almost immediately, a green face should appear.
- Save the proof status (Ctrl-s) to update the proof status.

Notes on Discharging Proofs with RODIN

- Different versions may behave differently.
- Search heuristics. Sensitive to details.
- Proof parts saved and reused. Behavior may change depending on history.
- Labels (act2, inv1, etc.) depend on how model is written.
- Do **not** use the NewPP prover: it's unsound.
- PP weak with WD: $\vdash b \in f^{-1}[\{f(b)\}]$ not discharged.
- It may not discharge easy proofs if unneeded hypothesis present.
- ML useful for arithmetic-based reasoning, weaker with sets.
- See https: //www3.hhu.de/stups/handbook/rodin/current/html/atelier_b_provers.html and https:

//www3.hhu.de/stups/handbook/rodin/current/html/proving_perspective.html.

- To test: copy project, work on copied project.
- When removing, tick on Delete from hard disk.

Reviewed Hypothesis

POs can be *accepted* with **R**. Flagged *reviewed* to temporarily continue or because they were manually proved.

Reusing formulas

- Reusing formulas deducible from axioms is sometimes handy.
- In our examples we very often transformed

 $\forall i, j \cdot (i \in dom(f) \land j \in dom(f) \land i \leq j) \Rightarrow f(i) \leq f(j)$

into the logically equivalent

 $\forall i, j \cdot f(i) < f(j) \Rightarrow (i \notin dom(f) \lor j \notin dom(f) \lor i < j)$

- We can add the latter to the model to save clicks.
- It could be an **axiom**.
- But axioms should not be redundant.
 - If we update one but not a version of it, the model could be inconsistent.

・ロト・1日・1日・1日・1日・1日・9への

- **Proving theorems**
 - For a theorem "thm", the name of its PO is **thm/THM**.
 - Proved as usual.

- For a theorem that requires an invariant: Axioms + Invariants
- Has to be placed after the axioms / invariants needed.

Theorems

• Rodin offers theorems: a formula that can be proven from others in the same class.

- Simplify proofs.
- Help provers (sometimes necessary).
- They need to be proved!

・ロト・(部)・(日)・(日)・(日)・(日)

🔤 i 🕅 dea

The strange case of the un-(well-defined) theorem

ei Mdea	٢
sonware	POLITÉCNIC.

$axm2: \forall i, j \cdot f(i) < f(j) \Rightarrow$ $(i \notin dom(f) \lor j \notin dom(f) \lor i < j)$

• Why? It is equivalent! Any idea?

wi dea

Proof Obligations ✓ axm1/WD @axm2/WD ✓ axm2/THM

use

 $\forall i, j \cdot (i \in dom(f) \land j \in dom(f)) \Rightarrow$ $(i \leq j \Rightarrow f(i) \leq f(j))$

Will that be correct?

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 の Q @

The strange case of the un-(well-defined) theorem

 $axm2: \forall i, j \cdot f(i) < f(j) \Rightarrow$ $(i \notin dom(f) \lor j \notin dom(f) \lor i < j)$

- Why? It is equivalent! Any idea?
- Proof explorer: is *f*(*i*) valid?
- WD for implications (ordered WD): $WD(P \Rightarrow Q) \equiv WD(P) \land P \Rightarrow WD(Q)$
- Treats *P* as a "domain" property.
- Workaround: instead of $\forall i, j \cdot (i \in dom(f) \land j \in dom(f) \land i \leq j)$ $\Rightarrow f(i) \leq f(j)$

	٢
301LW21 G	POLITÉCNICA

Proof Obligations ℭaxm1/WD @axm2/WD

Proof Obligations

ℭaxm1/WD

@axm2/WD

ℭ axm2/THM

ℭ axm2/THM

use

 $\forall i, j \cdot (i \in dom(f) \land j \in dom(f)) \Rightarrow$ $(i \leq j \Rightarrow f(i) \leq f(j))$

Will that be correct?

Contrapositive:

 $\forall i, j \cdot (i \in dom(f) \land j \in dom(f)) \Rightarrow$ $(f(i) > f(j) \Rightarrow i > j)$

Type checking and mathematical proofs

Types

- Determine types correct.
- Based on function types + typing rules.
 - $f(x: \mathbb{R}):\mathbb{R}$ return x * 3.5 $g(x: \mathbb{R}):\mathbb{N}$
 - return x * 3.5

wi Mdea

Theorems

- Determine formula valid.
- Hypotheses + deduction rules.
 - $x \in \mathbb{R} \vdash x * 3.5 \in \mathbb{R}$
 - $x \in \mathbb{R} \vdash x * 3.5 \in \mathbb{N}$

Type checking and mathematical proofs

Турез	Theorems
Determine types correct.Based on function types + typing rules.	Determine formula valid.Hypotheses + deduction rules.
$f(x: \mathbb{R}):\mathbb{R}$ return $x * 3.5$	$x \in \mathbb{R} \vdash x * 3.5 \in \mathbb{R}$
$g(x: \mathbb{R}): \mathbb{N}$ return $x * 3.5$	$x \in \mathbb{R} \vdash x * 3.5 \in \mathbb{N}$

- Traditional type checking: weak theorem proving.
- Type checking rules basically **same** as logic inference rules.
- Most type systems decidable, efficient.

・ロト・日本・日本・日本・日本・日本・日本

Type checking and mathematical proofs

- Highly expressive type systems (Liquid Haskell, Agda, Idris):
 - More properties captured
 - length(concat(a, b)) = length(a) + length(b)
 - Decidability can be challenged.
 - E.g., ML type system.
- Some frameworks give up.
- Others allow user intervention
 - Dafny, Coq: help adding invariants, lemmas
 - If found, proof is *black box*.
 - Event B:
 - In addition, user intervention at the proof level.
 - Full expressiveness in properties.

▲□▶▲舂▶▲≧▶▲≧▶ = 差 - 釣�??