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Roadmap - where are we?

We have started with formulas and valuations, looked at the truth table method and devidated into SAT
solving — automatic procedures, NP completeness and the like.

We then looked at proof calculi for propositional logic that are better suited for proving validity and have
the potential to be extended beyond propositional logic. We looked at tableaux as a refutation calculus,
proved them consistent and complete for propositional logic, and proved compactness

After that we looked at Gentzen systems that focus more on the idea of a (positive) proof rather than a
failing refutation and showed that technically they are more or less isomorphic to tableaux.

Today | am going to introduce one further modification of the calculus that is best suited for interactive
proof development, constructive reasoning, and can be extended well to first- and higher order logic and
computational type theory.

Once we have that we can actually go beyond propositional logic and look at the more interesting logics.

Gentzen systems as presented in Smullyan’s book and Géntzaginal papers, allow a sequent
to have multiple conclusions, which sometimes leads towging proofs where the evidence for
the validity of the formula is not obvious. We will investigaa few of these proofs and then
introduce a sequent calculus that does not require mubijpdeedents. Thissfinement logihas
many properties that are interesting for a computer saentbecause it catches the notion of a
construction in a very nice and natural way. It is also theddigat we use in ouNuprl system
and at some later time | will show you how we can use this systesupport and automate the
development of formal proofs.

11.1 Oddities of multi-conclusioned Gentzen Systems

The fact that we allow multiple goals in a sequent leads tokiwds of oddities. The first shows up
in a sequent proof of Pierce’s LawP>()) D> P)D P that we already proved in the tableau calculus.

F ((PDQ)DQ DP by DR
(POQ)DP K P by DL
(11 + P, PDQ by DR
PFP,Q by axiom
[2] PHFP by axiom

In subgoal [1] we have used theR rule in an attempt to prov€ () but in the subgoal resulting
from that we didn’t prove the right hand sidg of the implication but used the left hand side

of the implication to prove thether conclusionP that we already had before. In a sense this is a
bait-and-switch strategy: when we decompose the conelusiol) one would expect us to go on
proving @ but instead we change our mind after we have been givas a new assumption and
prove a different goal instead. For some people that appéast like cheating. But according to
the rules of the calculus this is perfectly acceptable. Andesthe calculus is consistent, we have
to accept this kind of reasoning as long as we accept trutes@nd the semantics of formulas that
we discussed in the early lectures of this class.



We get a similar problem when we try to prove the law of exctudeddle

F Pv~P by VR
F P,~P by ~R
PEFP by axiom

Again, there is something strange about this proof: we atitcBing to the other goal once we
have decomposed the negation.

The difficulty with these proofs is that switching goals i tiniddle of a proof doesn’t allow us to
see the construction of the proof argument (in fact, we caomoestruct proper evidence for these
proofs). It seems more natural to have proofs that focus @enpamticular conclusion instead of
allowing several ones at the same time which make it postltbange ones mind about what to
show in the middle of a proof. The only meaningful way to addrthis issues igestricting the
right hand side to a single conclusion

The second oddity comes up in the proof of the law of contriipos

F (P>Q) D (~QD~P) by DR
POQ F ~QD~P by DR
POQ, ~Q F ~P by ~R
POQ, ~Q, P F by DL

[1] ~Q, PP by axiom
[2] Q, ~Q, P F by ~L

Q, PFQ by axiom

Although this proof is perfectly fine, there are two subgadls no conclusion at all. What is the
meaning of such a goal, considering the fact that we undetstasequent to mean “prove one of
the conclusions”? Given that a set of conclusions corredptma disjunction of these conclusions,
an empty set means that we have to prialee, i.e. that the hypotheses are contradictory.

A solution for that is tantroduce a constaritto represent falsehoa@hd to consider negation.X
as abbreviation foX Df. The rules for negation then become redundant, if we addedfoufk :

H -G

It is easy to see that this rule, together with the rulesfaovers the two rules for negation.

11.2 Single-conclusioned Gentzen Systems

We will now discuss a proof calculus that results from thevamonsiderations and leads to proofs
that are entirely constructive. This calculus, which weeintt to use in the rest of this course,
is calledrefinement logi@and results from restricting Gentzen systems to singlelosioned se-
guents, adding the constahtand considering negationX as abbreviation foX Df , and adding
the constant. Refinement logic calculus is simpler and more focused thdti+foonclusioned
Gentzen systems, but it puts limits one the methods that weisato prove formulas valid: there
will be no more bait-and-switch.

The rules of refinement logic can be derived from those of Bansystems by dropping the extra
conclusions, (that is the sétthat occurs in eachk-rule after the turnstyle and before the comma),
from each sequent. For most rules this transformation asgsttforward. For theoL rule
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oL H,ADBFG
H, -G, A
H,BFG

the transformation requires us to drop the original ggah the first subgoal and to keep onty
(similarly for ~L). The only rule that requires a major modification is the ruke which explicitly
generates two conclusions.

vR H,-FG,AvB
H,FG, A B

Since we cannot generate two conclusions we must choosé whibe two disjuncts we want to
prove and continue with that one. As a result will have to be replace by two inference rules —
one for choosind\, then other for choosinB.

The above modifications afL, ~L, and vR are necessary to maintain a single conclusion in the
course of a proof. The resulting rules, however, have beaomeersible, as we will show later.
Even worse — the proof system will become incomplete. We aviliy be able to prove formulas
that have a computational meaning (i.e. formulas for which can construgbositive evidence
instead of just showing that they cannot be refuted). Foaslike P v ~ P or Pierce’s law become
unprovable unless we extend the calculus by a special kd¢He law of excluded middle or some
equivalent law.

11.3 Core Refinement Logic

left right
andL H,A\B,HFG H-AAB andR
H,AB, HFG HEA
H-B
orL 1 H,AVB, HFFG H+-AVB orR1
H,AH'FG HEA
H,B,HFG
HEAVB orR2
H-B
impL ¢ H,A=B HFG H+-A=B impR
H,A=B, HFA H,A-B
H, H,B-G
notL i H,-A, HFG HE=—-A notR
H,-A,HFFA H AT
falselL « H,f, HFG
axiom ¢« H,A,H'FA

Refinement Logic as implemented Nuprl uses a slightly different notation for logical connec-
tives. Implication is=- instead of>, negation is— instead of~ and often viewed as defined
connective instead of a basic one, i-e4 is viewed as abbreviation fot = f. Also, in a com-
puter system we have to use lists of formulas instead of aatsfor the left rule the formula to
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be decomposed may be somwhere within that list, so all lé&srmust provide an indexof the
hypothesis to indicate the formula to which the rule shakpplied.

Note that due to the transition from set- to list-notation veere to state explicitly that thiampL
rule has to preserve the implication that is being decongho®ée only need this implication the
first subgoal, since we can use its right hand side as assumiptthe second subgoal.

Furthermore, the restriction to a single conclusion makesconstruction of evidence fully de-
terministic, which resolves all the problematic issued tteane up in our discussion of multi-
conclusioned Gentzen systems in lecture 9. The fact thatomehave two rules for dealing with
disjunctions in the conclusion enables us to constructesad that clearly states which of the
two disjuncts had been proven — it was the left one if we used and the right one if we used
orR2. The ambiguitiy of the evidence of thexiom rule has disappeared since there is only one
conclusion that can be proven by the given labelled assompiihe ambiguitiy of the evidence of
impL has disappeared since the only conclusion in the first sulgoaw the left hand side of the
implication. The following table shows the evidence comstied by the application of refinement
logic rules.

left right
andL H,A\B,HFFG HFAAB andR
H,aA, 0B, HFG HEA
HEB
orL 1 H,AVB,HFFG HFAVB orR1
HEA
H,aA HFG
H,bB, HFG HEFAVB orR2
HEB
impL ¢« H,[A=B,HIFG H+-A=B impR
H, [/A=B, HFA H,aA+B
H, H,)BFG
notl + H,n—-A HFG HF-A notR
H,n-A,H A H,AFT
falsel + H,2f, HFG
axiom ¢« H,a:A,H' FA

Because of the restriction of Gentzen rules to single-emiched sequents, some of the proofs
that we developed in earlier examples will not go throughnaore. Consider for instance, the
proof of Pierce’s law

F ((P=Q) =P)=P by impR
P==Q=PFP by impL

[1] (P=Q=PF P=Q by impR
(P=Q) =P, P+ Q by 777

[2] PP by axiom

There is no way to complete the proof, since we will only getkis the same goal over and over
again. As a matter of fact, the formuldP = Q) = P) = P cannot be proven at all with the rules
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that we described so far. Even worse, we can't even proveathef excluded middle anymore,
since the rules for disjunction on the right force us to makbaice how to proceed.

F Pv—P by vR1 F Pv—P by VvR2
- P 77 - P 77

In both cases the elimination of a bait-and-switch strategly multiple conclusions costs us the
ability to prove theorems that are known to be true in prapmsal logic. For these theorems we
have a tableau proof, a multi-conclusioned sequent prawf,exen a truth table proof — so they
must be true.

~

Q: | What do we do

11.4 Add the law of excluded middle and the cut rule

If we want to maintain completeness we must add somethingedrference system again to
compensate for what we lost due to the restriction to singfecltisions. The easiest way to do
that is to add one of the formulas that we cannot prove any@asigasic inference rule. One of
the most simple of these formulas is tlaev of excluded middle” v—P, which is considered a
fundamental truth of propositional logic (we could equallgll use——P = P). While one may
dispute that this is actually a fundamental law of logic heseait has no constructive meaningsit

a fundamental truth in the propositional logic defined it ao-+ a boolean valuation of a formula
can only be true or false.

For the sake of convenience, we add the law of excluded maklierule that allows us to add an
instance of this law to the list of assumptions wheneverneisded.

magic A HEG HEG cut A
H,Av-AFG HEA
H,AFG

We call this rulenagic, because it magically introduces a fact that has nothing with the proof

so far. In fact, this rule breaks the clean design of Gentystems. While all other rulegenerate
only subformula®f the original proof goal as assumption or conclusion of @psequent, the
magic rule may introduce an entirely new formulalhis formula has to be given as a parameter
to the rule since it cannot be identified as a (sub-)formukhefcurrent sequent. Furthermore, it is
not possible to associate this rule with the constructioevidence, because it just states that one
of A or —A has to be true without providing evidence for that claim. Asatter of fact, it is often
impossible to show which of the two is true.

For reasons that will become apparent later, we also addhannile to the calculus. It allows us
to state and prove intermediate results and use them as pigssamm the rest of the proof. As this
rule cuts the proof into smaller segments that are much re@sleandle, it is called theut rule.
As for themagic rule the formulad has to be provided as parameter ¢at.

Logicians also observe that all other rules deal with a sifagical connective while the magic rule combines two.
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Let us see how this works out with Pierce’s law. What do we rieathange to make it work? We
can be sure that we need the magic rule somewhere — the ordtiquis how?

Q: | Why did the proof without magic break?

Because thempL rule in the second step took away the conclusiaand replaced it by the left
hand side of the implication. Later then, when we tried laait-switch after decomposimrg=-Q
it didn’t work anymore, because we couldn’t use the alteveatonclusion and were stuck with

Applying the magic rule means re-introducing that goalorethe second step and preserving it
somehow in the hypotheses list.

F (P=Q=Q =P by impR F((P=Q=Q=P by =R
P=Q=PFP by magic P
(P=Q =P, Pv-PFHP by orL
(1] (P=Q =P, PFP by axiom
[2] (P=Q =P, -PFP by implL (P=Q =PFP by =L
[2.1] (P=Q =P, =P - P=Q Dby impR [11 F P, P=Q by =R
(P=Q)=P, =P, PF Q by notL
(P=Q)=P, =P, PFH P by axiom PFH P, Q by axiom
[2.2] -P, PF P by axiom 2] PEFP by axiom

As we see, we get our alternative goal back after applyiggk since we kept its negation in the
hypotheses. So when we decompoBesd Q, we had a contradictory hypotheses list, usetL to
moveP back to the right hand side and then closed the proof.

Compare this to the multi-conclusioned proof on the righhds the same structure, but we had
to do a lot of extra work to fill in the blanks. In fact, we had to them at the right time. Had

we used the magic rule aftemnpL in the second step, we wouldn’t have been able to complete the
proof anymore.

11.5 Discussion

The fact that we were able to complete the proof of Pierceidat only under considerable efforts
raises a few questions about refinement logic.
1. Isit consistent?
2. Isitcomplete?
3. Can a proof search get wedged?
4. What kind of logic do we get if drop tlhegic rule?
5. Isit decidable?

Given that the inference rules are a result of weakeningutes rof Gentzen systems and using

only obvious truths as additional rules is very plausiblat ttefinement logic is consistent, but
obviously we have to prove that.

Concerning completeness we know already that the calcalnsticomplete without thewagic
rule. But we have to show that addinggic andcut to the calculus is sufficient to be able to
prove everything that we could prove with Gentzen systems.
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The question whether a proof search can get wedged is sorgétiait didn’t come up with analytic
tableaux or Gentzen systems. In these calewdiry proof attempt will succeetithe formula is
valid. But the example proof of Pierce’s law showed us thatesdormulas have quite complex
proofs in refinement logic even if the Gentzen proof is stifyward. Thus it could very well
be the case that we may not always be able to find a proof if wewstang. This doesn’t affect
completeness because completeness just says that evdrfpualula is provable but not that every
proof attempt has the chance to succeed.

Although refinement logic without theagic rule is incomplete it has the interesting property
that every proof provides constructive evidence for theditsl of the proven formula. From a
computational perspective this is a valuable property sway be worth investigating what kind of
logic is implicitly defined by core refinement logic.

Decidability is another interesting issue that we haverstuissed yet. Is there a computational
method to decide whether a formula is valid or not? Even moaa,we always find a proof in
refinement logic if the formula is valid? If a proof search g@t wedged this is not a trivial
problem because one has to provide a proof search methoslitessfully avoids getting stuck.

We will investigate all these questions in the next lecture.



