
Applied Logic Lecture 11: Refinement Logic
CS 4860 Spring 2009 Tuesday, February 24, 2009

Roadmap - where are we?
We have started with formulas and valuations, looked at the truth table method and devidated into SAT
solving – automatic procedures, NP completeness and the like.
We then looked at proof calculi for propositional logic that are better suited for proving validity and have
the potential to be extended beyond propositional logic. We looked at tableaux as a refutation calculus,
proved them consistent and complete for propositional logic, and proved compactness
After that we looked at Gentzen systems that focus more on the idea of a (positive) proof rather than a
failing refutation and showed that technically they are more or less isomorphic to tableaux.
Today I am going to introduce one further modification of the calculus that is best suited for interactive
proof development, constructive reasoning, and can be extended well to first- and higher order logic and
computational type theory.
Once we have that we can actually go beyond propositional logic and look at the more interesting logics.

Gentzen systems as presented in Smullyan’s book and Gentzen’s original papers, allow a sequent
to have multiple conclusions, which sometimes leads to confusing proofs where the evidence for
the validity of the formula is not obvious. We will investigate a few of these proofs and then
introduce a sequent calculus that does not require multiplesuccedents. Thisrefinement logichas
many properties that are interesting for a computer scientists, because it catches the notion of a
construction in a very nice and natural way. It is also the logic that we use in ourNuprl system
and at some later time I will show you how we can use this systemto support and automate the
development of formal proofs.

11.1 Oddities of multi-conclusioned Gentzen Systems

The fact that we allow multiple goals in a sequent leads to twokinds of oddities. The first shows up
in a sequent proof of Pierce’s Law((P⊃Q)⊃P )⊃P that we already proved in the tableau calculus.

⊢ ((P⊃Q)⊃Q)⊃P by ⊃R

(P⊃Q)⊃P ⊢ P by ⊃L

[1] ⊢ P, P⊃Q by ⊃R

P ⊢ P, Q by axiom

[2] P ⊢ P by axiom

In subgoal [1] we have used the⊃R rule in an attempt to proveP⊃Q but in the subgoal resulting
from that we didn’t prove the right hand sideQ of the implication but used the left hand sideP

of the implication to prove theother conclusionP that we already had before. In a sense this is a
bait-and-switch strategy: when we decompose the conclusion P⊃Q one would expect us to go on
provingQ but instead we change our mind after we have been givenP as a new assumption and
prove a different goal instead. For some people that appearsalmost like cheating. But according to
the rules of the calculus this is perfectly acceptable. And since the calculus is consistent, we have
to accept this kind of reasoning as long as we accept truth tables and the semantics of formulas that
we discussed in the early lectures of this class.
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We get a similar problem when we try to prove the law of excluded middle

⊢ P ∨∼P by ∨R

⊢ P,∼P by ∼R

P ⊢ P by axiom

Again, there is something strange about this proof: we are switching to the other goal once we
have decomposed the negation.

The difficulty with these proofs is that switching goals in the middle of a proof doesn’t allow us to
see the construction of the proof argument (in fact, we cannot construct proper evidence for these
proofs). It seems more natural to have proofs that focus on one particular conclusion instead of
allowing several ones at the same time which make it possibleto change ones mind about what to
show in the middle of a proof. The only meaningful way to address this issues isrestricting the
right hand side to a single conclusion.

The second oddity comes up in the proof of the law of contraposition

⊢ (P⊃Q) ⊃ (∼Q⊃∼P) by ⊃R

P⊃Q ⊢ ∼Q⊃∼P by ⊃R

P⊃Q, ∼Q ⊢ ∼P by ∼R

P⊃Q, ∼Q, P ⊢ by ⊃L

[1] ∼Q, P ⊢ P by axiom

[2] Q, ∼Q, P ⊢ by ∼L

Q, P ⊢ Q by axiom

Although this proof is perfectly fine, there are two subgoalswith no conclusion at all. What is the
meaning of such a goal, considering the fact that we understand a sequent to mean “prove one of
the conclusions”? Given that a set of conclusions corresponds to a disjunction of these conclusions,
an empty set means that we have to provefalse, i.e. that the hypotheses are contradictory.

A solution for that is tointroduce a constantf to represent falsehoodand to consider negation∼X

as abbreviation forX⊃f. The rules for negation then become redundant, if we add a rule forf:

H, f ⊢ G

It is easy to see that this rule, together with the rules for⊃ covers the two rules for negation.

11.2 Single-conclusioned Gentzen Systems

We will now discuss a proof calculus that results from the above considerations and leads to proofs
that are entirely constructive. This calculus, which we intend to use in the rest of this course,
is calledrefinement logicand results from restricting Gentzen systems to single-conclusioned se-
quents, adding the constantf, and considering negation∼X as abbreviation forX⊃f , and adding
the constantf. Refinement logic calculus is simpler and more focused that multi-conclusioned
Gentzen systems, but it puts limits one the methods that we can use to prove formulas valid: there
will be no more bait-and-switch.

The rules of refinement logic can be derived from those of Gentzen systems by dropping the extra
conclusions, (that is the setG that occurs in eachR-rule after the turnstyle and before the comma),
from each sequent. For most rules this transformation is straightforward. For the⊃L rule
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⊃L H, A⊃B ⊢ G

H, ⊢ G, A
H, B ⊢ G

the transformation requires us to drop the original goalG in the first subgoal and to keep onlyA
(similarly for∼L). The only rule that requires a major modification is the rule∨R, which explicitly
generates two conclusions.

∨R H, ⊢ G, A ∨B

H, ⊢ G, A, B

Since we cannot generate two conclusions we must choose which of the two disjuncts we want to
prove and continue with that one. As a result∨R will have to be replace by two inference rules –
one for choosingA, then other for choosingB.

The above modifications of⊃L, ∼L, and ∨R are necessary to maintain a single conclusion in the
course of a proof. The resulting rules, however, have becomeirreversible, as we will show later.
Even worse – the proof system will become incomplete. We willonly be able to prove formulas
that have a computational meaning (i.e. formulas for which one can constructpositive evidence
instead of just showing that they cannot be refuted). Formulas likeP ∨∼P or Pierce’s law become
unprovable unless we extend the calculus by a special rule like the law of excluded middle or some
equivalent law.

11.3 Core Refinement Logic

left right
andL H, A ∧B, H ′ ⊢ G H ⊢ A ∧B andR

H, A, B, H ′
⊢ G H ⊢ A

H ⊢ B
orL i H, A ∨B, H ′ ⊢ G H ⊢ A ∨B orR1

H, A, H ′ ⊢ G H ⊢ A
H, B, H ′ ⊢ G

H ⊢ A ∨B orR2

H ⊢ B
impL i H, A ⇒B, H ′ ⊢ G H ⊢ A ⇒B impR

H, A ⇒B, H ′ ⊢ A H, A ⊢ B
H, H ′, B ⊢ G

notL i H, ¬A, H ′ ⊢ G H ⊢ ¬A notR

H, ¬A, H ′ ⊢ A H, A ⊢ f
falseL i H, f, H ′ ⊢ G
axiom i H, A, H ′ ⊢ A

Refinement Logic as implemented inNuprl uses a slightly different notation for logical connec-
tives. Implication is⇒ instead of⊃, negation is¬ instead of∼ and often viewed as defined
connective instead of a basic one, i.e.¬A is viewed as abbreviation forA⇒ f. Also, in a com-
puter system we have to use lists of formulas instead of sets,and for the left rule the formula to
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be decomposed may be somwhere within that list, so all left rules must provide an indexi of the
hypothesis to indicate the formula to which the rule shall beapplied.

Note that due to the transition from set- to list-notation wehave to state explicitly that theimpL
rule has to preserve the implication that is being decomposed. We only need this implication the
first subgoal, since we can use its right hand side as assumption in the second subgoal.

Furthermore, the restriction to a single conclusion makes the construction of evidence fully de-
terministic, which resolves all the problematic issues that came up in our discussion of multi-
conclusioned Gentzen systems in lecture 9. The fact that we now have two rules for dealing with
disjunctions in the conclusion enables us to construct evidence that clearly states which of the
two disjuncts had been proven – it was the left one if we usedorR1 and the right one if we used
orR2. The ambiguitiy of the evidence of theaxiom rule has disappeared since there is only one
conclusion that can be proven by the given labelled assumption. The ambiguitiy of the evidence of
impL has disappeared since the only conclusion in the first subgoal is now the left hand side of the
implication. The following table shows the evidence constructed by the application of refinement
logic rules.

left right
andL H, A ∧B, H ′

⊢ G ev = let x=(a,b) in g[a, b] H ⊢ A ∧B ev = (a, b) andR

H, a:A, b:B, H ′ ⊢ G ev = g[a, b] H ⊢ A ev = a

H ⊢ B ev = b

orL i H, A ∨B, H ′ ⊢ G ev = case x of inl(a) 7→g1[a] H ⊢ A ∨B ev = inl(a) orR1

| inr(b) 7→g2[b] H ⊢ A ev = a

H, a:A, H ′ ⊢ G ev = g1[a]

H, b:B, H ′ ⊢ G ev = g2[b] H ⊢ A ∨B ev = inr(b) orR2

H ⊢ B ev = inr(b)

impL i H, f :A ⇒B, H ′ ⊢ G ev = g[f(a)/b] H ⊢ A ⇒B ev = fun a → b[a] impR

H, f :A ⇒B, H ′
⊢ A ev = a H, a:A ⊢ B ev = b[a]

H, H ′, b:B ⊢ G ev = g[b]

notL i H, n:¬A, H ′ ⊢ G ev = any[f(a)] H ⊢ ¬A ev = fun a → f [a] notR

H, n:¬A, H ′ ⊢ A ev = a H, A ⊢ f ev = f [a]

falseL i H, z:f, H ′ ⊢ G ev = any[z]

axiom i H, a:A, H ′ ⊢ A ev = a

Because of the restriction of Gentzen rules to single-conclusioned sequents, some of the proofs
that we developed in earlier examples will not go through anymore. Consider for instance, the
proof of Pierce’s law

⊢ ((P⇒Q)⇒ P)⇒ P by impR

(P⇒Q)⇒ P ⊢ P by impL

[1] (P⇒Q)⇒ P ⊢ P⇒ Q by impR

(P⇒Q)⇒ P, P ⊢ Q by ???

[2] P ⊢ P by axiom

There is no way to complete the proof, since we will only get back to the same goal over and over
again. As a matter of fact, the formula((P⇒ Q)⇒ P)⇒ P cannot be proven at all with the rules
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that we described so far. Even worse, we can’t even prove the law of excluded middle anymore,
since the rules for disjunction on the right force us to make achoice how to proceed.

⊢ P ∨¬P by ∨R1

⊢ P ??

⊢ P ∨¬P by ∨R2

⊢ ¬P ??

In both cases the elimination of a bait-and-switch strategywith multiple conclusions costs us the
ability to prove theorems that are known to be true in propositional logic. For these theorems we
have a tableau proof, a multi-conclusioned sequent proof, and even a truth table proof – so they
must be true.

Q: What do we do?

11.4 Add the law of excluded middle and the cut rule

If we want to maintain completeness we must add something to the inference system again to
compensate for what we lost due to the restriction to single conclusions. The easiest way to do
that is to add one of the formulas that we cannot prove anymoreas basic inference rule. One of
the most simple of these formulas is thelaw of excluded middleP ∨¬P , which is considered a
fundamental truth of propositional logic (we could equallywell use¬¬P ⇒P ). While one may
dispute that this is actually a fundamental law of logic because it has no constructive meaning, itis
a fundamental truth in the propositional logic defined it so far – a boolean valuation of a formula
can only be true or false.

For the sake of convenience, we add the law of excluded middleas a rule that allows us to add an
instance of this law to the list of assumptions whenever it isneeded.

magic A H ⊢ G H ⊢ G cut A

H, A ∨ ¬A ⊢ G H ⊢ A

H, A ⊢ G

We call this rulemagic, because it magically introduces a fact that has nothing to do with the proof
so far. In fact, this rule breaks the clean design of Gentzen systems. While all other rulesgenerate
only subformulasof the original proof goal as assumption or conclusion of a proof sequent, the
magic rule may introduce an entirely new formula.1 This formula has to be given as a parameter
to the rule since it cannot be identified as a (sub-)formula ofthe current sequent. Furthermore, it is
not possible to associate this rule with the construction ofevidence, because it just states that one
of A or¬A has to be true without providing evidence for that claim. As amatter of fact, it is often
impossible to show which of the two is true.

For reasons that will become apparent later, we also add another rule to the calculus. It allows us
to state and prove intermediate results and use them as assumption in the rest of the proof. As this
rule cuts the proof into smaller segments that are much easier to handle, it is called thecut rule.
As for themagic rule the formulaA has to be provided as parameter forcut.

1Logicians also observe that all other rules deal with a single logical connective while the magic rule combines two.
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Let us see how this works out with Pierce’s law. What do we needto change to make it work? We
can be sure that we need the magic rule somewhere – the only question is how?

Q: Why did the proof without magic break?

Because theimpL rule in the second step took away the conclusionP and replaced it by the left
hand side of the implication. Later then, when we tried bait-and-switch after decomposingP⇒ Q

it didn’t work anymore, because we couldn’t use the alternative conclusion and were stuck withQ.
Applying the magic rule means re-introducing that goalbeforethe second step and preserving it
somehow in the hypotheses list.

⊢ ((P⇒ Q)⇒ Q)⇒P by impR

(P⇒ Q)⇒ P ⊢ P by magic P

(P⇒ Q)⇒ P, P ∨¬P ⊢ P by orL

[1] (P⇒Q)⇒ P, P ⊢ P by axiom

[2] (P⇒ Q)⇒ P, ¬P ⊢ P by impL

[2.1] (P⇒ Q)⇒ P, ¬P ⊢ P⇒ Q by impR

(P⇒ Q)⇒ P, ¬P, P ⊢ Q by notL

(P⇒ Q)⇒ P, ¬P, P ⊢ P by axiom

[2.2] ¬P, P ⊢ P by axiom

⊢ ((P⇒Q)⇒ Q)⇒ P by ⇒ R

(P⇒Q)⇒ P ⊢ P by ⇒ L

[1] ⊢ P, P⇒ Q by ⇒ R

P ⊢ P, Q by axiom

[2] P ⊢ P by axiom

As we see, we get our alternative goal back after applyingimpR since we kept its negation in the
hypotheses. So when we decomposedP⇒ Q, we had a contradictory hypotheses list, usednotL to
moveP back to the right hand side and then closed the proof.

Compare this to the multi-conclusioned proof on the right. It has the same structure, but we had
to do a lot of extra work to fill in the blanks. In fact, we had to do them at the right time. Had
we used the magic rule afterimpL in the second step, we wouldn’t have been able to complete the
proof anymore.

11.5 Discussion

The fact that we were able to complete the proof of Pierce’s law but only under considerable efforts
raises a few questions about refinement logic.

1. Is it consistent?
2. Is it complete?
3. Can a proof search get wedged?
4. What kind of logic do we get if drop themagic rule?
5. Is it decidable?

Given that the inference rules are a result of weakening the rules of Gentzen systems and using
only obvious truths as additional rules is very plausible that refinement logic is consistent, but
obviously we have to prove that.

Concerning completeness we know already that the calculus is not complete without themagic
rule. But we have to show that addingmagic andcut to the calculus is sufficient to be able to
prove everything that we could prove with Gentzen systems.
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The question whether a proof search can get wedged is something that didn’t come up with analytic
tableaux or Gentzen systems. In these calculievery proof attempt will succeedif the formula is
valid. But the example proof of Pierce’s law showed us that some formulas have quite complex
proofs in refinement logic even if the Gentzen proof is straightforward. Thus it could very well
be the case that we may not always be able to find a proof if we start wrong. This doesn’t affect
completeness because completeness just says that every valid formula is provable but not that every
proof attempt has the chance to succeed.

Although refinement logic without themagic rule is incomplete it has the interesting property
that every proof provides constructive evidence for the validity of the proven formula. From a
computational perspective this is a valuable property so itmay be worth investigating what kind of
logic is implicitly defined by core refinement logic.

Decidability is another interesting issue that we haven’t discussed yet. Is there a computational
method to decide whether a formula is valid or not? Even more,can we always find a proof in
refinement logic if the formula is valid? If a proof search canget wedged this is not a trivial
problem because one has to provide a proof search method thatsuccessfully avoids getting stuck.

We will investigate all these questions in the next lecture.
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