Inference Rules

From Event-B Jump to navigationJump to search

CAUTION! Any modification to this page shall be announced on the User mailing list!

Rules that are marked with a * in the first column are implemented in the latest version of Rodin. Rules without a * are planned to be implemented in future versions. Other conventions used in these tables are described in The_Proving_Perspective_(Rodin_User_Manual)#Inference_Rules.

i.....i

	Name	Rule	Side Condition	A/M
*	НҮР	$\overline{\mathbf{H},\mathbf{P}} \vdash \mathbf{P}^{\dagger}$	see below for \mathbf{P}^{\dagger}	A
*	HYP_OR	$\overline{\mathbf{H},\mathbf{Q}} \hspace{0.2cm} \vdash \hspace{0.2cm} \mathbf{P} \lor \ldots \lor \mathbf{Q}^{\dagger} \lor \ldots \lor \mathbf{R}$	see below for \mathbf{Q}^{\dagger}	A
*	CNTR	$\overline{\mathbf{H},\mathbf{P},\mathbf{nP}^{\dagger}}\ \vdash\ \mathbf{Q}$	see below for \mathbf{nP}^{\dagger}	A
*	FALSE_HYP	$\overline{\mathbf{H},\perp \ dash \ \mathbf{P}}$		A
*	TRUE_GOAL	$\overline{\mathbf{H}} \vdash \top$		A
*	FUN_GOAL	$\overline{\mathbf{H}, \ f \in E \ op \ F \ \vdash \ f \in T_1 \twoheadrightarrow T_2}$	where T_1 and T_2 denote types and op is one of \leftrightarrow , \rightarrow , $\succ \leftrightarrow$, $\succ \rightarrow$, $\leftrightarrow \rightarrow$, $\succ \rightarrow$,	A
*	FUN_IMAGE_GOAL	$\frac{\mathbf{H}, \ f \in S_1 \ op \ S_2, \ f(E) \in S_2 \ \vdash \ \mathbf{P}(f(E))}{\mathbf{H}, \ f \in S_1 \ op \ S_2 \ \vdash \ \mathbf{P}(f(E))}$	where <i>op</i> denotes a set of relations	М

			(any arrow) and P is WD strict	
	FUN_GOAL_REC	$\overline{\mathbf{H}, f \in S_1 op_1 (S_2 op_2 (\dots (S_n op_n (U opf V)) \dots))} \vdash f(E_1)(E_2) \dots (E_n) \in T_1 \to T_2$	where T_1 and T_2 denote types, op denotes a set of relations (any arrow) and opf is one of $++, \rightarrow$, $++, \rightarrow$, $++, \rightarrow$, $++, \rightarrow$.	A
*	DBL_HYP	$\frac{\mathbf{H}, \ \mathbf{P} \ \vdash \ \mathbf{Q}}{\mathbf{H}, \ \mathbf{P}, \ \mathbf{P} \ \vdash \ \mathbf{Q}}$		A
*	AND_L	$\frac{\mathbf{H}, \mathbf{P}, \mathbf{Q} \vdash \mathbf{R}}{\mathbf{H}, \ \mathbf{P} \land \mathbf{Q} \vdash \mathbf{R}}$		A
*	AND_R	$\frac{\mathbf{H} \ \vdash \ \mathbf{P} \mathbf{H} \ \vdash \ \mathbf{Q}}{\mathbf{H} \ \vdash \ \mathbf{P} \ \land \mathbf{Q}}$		A
	IMP_L1	$\frac{\mathbf{H}, \mathbf{Q}, \mathbf{P} \wedge \ldots \wedge \mathbf{R} \Rightarrow \mathbf{S} \vdash \mathbf{T}}{\mathbf{H}, \mathbf{Q}, \mathbf{P} \wedge \ldots \wedge \mathbf{Q} \wedge \ldots \wedge \mathbf{R} \Rightarrow \mathbf{S} \vdash \mathbf{T}}$		A
*	IMP_R	$\frac{\mathbf{H}, \mathbf{P} \vdash \mathbf{Q}}{\mathbf{H} \vdash \mathbf{P} \Rightarrow \mathbf{Q}}$		A
*	IMP_AND_L	$\frac{\mathbf{H}, \mathbf{P} \Rightarrow \mathbf{Q}, \mathbf{P} \Rightarrow \mathbf{R} \vdash \mathbf{S}}{\mathbf{H}, \ \mathbf{P} \Rightarrow \mathbf{Q} \land \mathbf{R} \vdash \mathbf{S}}$		A
*	IMP_OR_L	$\frac{\mathbf{H}, \mathbf{P} \Rightarrow \mathbf{R}, \mathbf{Q} \Rightarrow \mathbf{R} \vdash \mathbf{S}}{\mathbf{H}, \ \mathbf{P} \lor \mathbf{Q} \Rightarrow \mathbf{R} \vdash \mathbf{S}}$		A
*	AUTO_MH	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		A

* NEG_I	[N_L	$\frac{\mathbf{H}, \ E \in \{a, \dots, c\}, \ \neg \ (E = b) \ \vdash \ \mathbf{P}}{\mathbf{H}, \ E \in \{a, \dots, b, \dots, c\}, \ \neg \ (E = b) \ \vdash \ \mathbf{P}}$		A
* NEG_I	[N_R	$ \begin{array}{ccc} \mathbf{H}, \ E \in \{a, \dots, c\}, \ \neg \ (b = E) & \vdash & \mathbf{P} \\ \mathbf{H}, \ E \in \{a, \dots, b, \dots, c\}, \neg \ (b = E) & \vdash & \mathbf{P} \end{array} \end{array} $		A
* XST_L	-	$\frac{\mathbf{H}, \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}}{\mathbf{H}, \exists \mathbf{x} \cdot \mathbf{P}(\mathbf{x}) \vdash \mathbf{Q}}$		A
* ALL_R	۹	$\frac{\mathbf{H} \ \vdash \ \mathbf{P}(\mathbf{x})}{\mathbf{H} \ \vdash \ \forall \mathbf{x} \cdot \mathbf{P}(\mathbf{x})}$		A
* EQL_L	_R	$\frac{\mathbf{H}(\mathbf{E}) \vdash \mathbf{P}(\mathbf{E})}{\mathbf{H}(\mathbf{x}), \ x = E \vdash \mathbf{P}(\mathbf{x})}$	ble h is not	A
* EQL_R	RL	$\frac{\mathbf{H}(\mathbf{E}) \vdash \mathbf{P}(\mathbf{E})}{\mathbf{H}(\mathbf{x}), \ E = x \vdash \mathbf{P}(\mathbf{x})}$ $x is a varial which free is$	ble h is not	A
SUBSE	ET_INTER	$\frac{\Pi, \Pi \subseteq \mathcal{O} + \mathcal{O}(\mathcal{O} + \mathcal{O} + \mathcal{O})}{\Pi \prod \mathcal{O} + O$	re T and re not id by G	A
IN_IN	ITER	$\frac{\Pi, \Pi \in \Gamma \cap G(S \cap I) \cap G(S \cap I)}{\Pi \cap G(S \cap I) \cap G(S \cap I) \cap G(S \cap I)}$	e E and	A
NOTIN	N_INTER	$\frac{\Pi, \forall \mathbf{D} \in \mathbf{I}^+ \cup \mathbf{G}(\mathbf{S})}{\Pi - \Pi -$	e E and	A
* FIN_L	LOWER_BOUND_L	$\overline{\mathbf{H}, \text{ finite}(S)} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow n \leq x)$ The g disch	goal is narged	A
* FIN_L	LOWER_BOUND_R	$\overline{\mathbf{H}, \text{ finite}(S) \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow x \ge n)}$ The g disch	goal is harged	A
* FIN_L	UPPER_BOUND_L	The g	goal is	A

		$\mathbf{H}, \text{ finite}(S) \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow n \ge x)$	discharged	
*	FIN_L_UPPER_BOUND_R	$\overline{\mathbf{H}, \text{ finite}(S)} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow x \leq n)$	The goal is discharged	A
*	CONTRADICT_L	$\frac{\mathbf{H}, \ \neg \mathbf{Q} \ \vdash \ \neg \mathbf{P}}{\mathbf{H}, \ \mathbf{P} \ \vdash \ \mathbf{Q}}$		М
*	CONTRADICT_R	$\frac{\mathbf{H}, \ \neg \mathbf{Q} \ \vdash \ \bot}{\mathbf{H} \ \vdash \ \mathbf{Q}}$		М
*	CASE	$\frac{\mathbf{H}, \mathbf{P} \vdash \mathbf{R} \dots \mathbf{H}, \mathbf{Q} \vdash \mathbf{R}}{\mathbf{H}, \mathbf{P} \lor \dots \lor \mathbf{Q} \vdash \mathbf{R}}$		М
*	IMP_CASE	$\frac{\mathbf{H}, \ \neg \mathbf{P} \ \vdash \ \mathbf{R} \qquad \mathbf{H}, \ \mathbf{Q} \ \vdash \ \mathbf{R}}{\mathbf{H}, \ \mathbf{P} \Rightarrow \mathbf{Q} \ \vdash \ \mathbf{R}}$		М
*	МН	$\frac{\mathbf{H} \vdash \mathbf{P} \mathbf{H}, \ \mathbf{Q} \vdash \mathbf{R}}{\mathbf{H}, \ \mathbf{P} \Rightarrow \mathbf{Q} \vdash \mathbf{R}}$		М
*	НМ	$\frac{\mathbf{H} \vdash \neg \mathbf{Q} \mathbf{H}, \ \neg \mathbf{P} \vdash \mathbf{R}}{\mathbf{H}, \ \mathbf{P} \Rightarrow \mathbf{Q} \vdash \mathbf{R}}$		М
	EQV_LR	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		М
	EQV_RL	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$		М
*	OV_SETENUM_L	$\frac{\mathbf{H}, \ G = E, \ \mathbf{P}(F) \ \vdash \ \mathbf{Q} \qquad \mathbf{H}, \ \neg (G = E), \ \mathbf{P}((\{E\}) \preccurlyeq f)(G)) \ \vdash \ \mathbf{Q}}{\mathbf{H}, \ \mathbf{P}((f \preccurlyeq \{E \mapsto F\})(G)) \ \vdash \ \mathbf{Q}}$	where P is WD strict	A
*	OV_SETENUM_R	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	where Q is WD strict	A

	I			
*	0V_L	$\frac{\mathbf{H}, \ G \in \operatorname{dom}(g), \ \mathbf{P}(g(G)) \ \vdash \ \mathbf{Q} \qquad \mathbf{H}, \ \neg G \in \operatorname{dom}(g), \ \mathbf{P}((\operatorname{dom}(g) \preccurlyeq f)(G)) \ \vdash \ \mathbf{Q}}{\mathbf{H}, \ \mathbf{P}((f \preccurlyeq g)(G)) \ \vdash \ \mathbf{Q}}$	where P is WD strict	A
*	0V_R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	where Q is WD strict	A
*	DIS_BINTER_R	$\frac{\mathbf{H} \vdash f^{-1} \in A \leftrightarrow B \mathbf{H} \vdash \mathbf{Q}(f[S] \cap f[T])}{\mathbf{H} \vdash \mathbf{Q}(f[S \cap T])}$	where A and B denote types.	M
*	DIS_BINTER_L	$\frac{\mathbf{H} \vdash f^{-1} \in A \leftrightarrow B \mathbf{H}, \ \mathbf{Q}(f[S] \cap f[T]) \vdash \mathbf{G}}{\mathbf{H}, \ \mathbf{Q}(f[S \cap T]) \vdash \mathbf{G}}$	where A and B denote types.	M
*	DIS_SETMINUS_R	$\frac{\mathbf{H} \vdash f^{-1} \in A \twoheadrightarrow B \mathbf{H} \vdash \mathbf{Q}(f[S] \setminus f[T])}{\mathbf{H} \vdash \mathbf{Q}(f[S \setminus T])}$	where A and B denote types.	M
*	DIS_SETMINUS_L	$\frac{\mathbf{H} \vdash f^{-1} \in A \Rightarrow B \mathbf{H}, \ \mathbf{Q}(f[S] \setminus f[T]) \vdash \mathbf{G}}{\mathbf{H}, \ \mathbf{Q}(f[S \setminus T]) \vdash \mathbf{G}}$	where A and B denote types.	M
*	SIM_REL_IMAGE_R	$\frac{\mathbf{H} \vdash WD(\mathbf{Q}(\{f(E)\})) \mathbf{H} \vdash \mathbf{Q}(\{f(E)\})}{\mathbf{H} \vdash \mathbf{Q}(f[\{E\}])}$		M
*	SIM_REL_IMAGE_L	$\frac{\mathbf{H} \vdash WD(\mathbf{Q}(\{f(E)\})) \mathbf{H}, \mathbf{Q}(\{f(E)\}) \vdash \mathbf{G}}{\mathbf{H}, \mathbf{Q}(f[\{E\}]) \vdash \mathbf{G}}$		M
*	SIM_FCOMP_R	$\frac{\mathbf{H} \vdash WD(\mathbf{Q}(g(f(x)))) \mathbf{H} \vdash \mathbf{Q}(g(f(x)))}{\mathbf{H} \vdash \mathbf{Q}((f;g)(x))}$		M
*	SIM_FCOMP_L	$\frac{\mathbf{H} \vdash WD(\mathbf{Q}(g(f(x)))) \mathbf{H}, \mathbf{Q}(g(f(x))) \vdash \mathbf{G}}{\mathbf{H}, \mathbf{Q}((f;g)(x)) \vdash \mathbf{G}}$		M
*	FIN_SUBSETEQ_R	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	the user has to write the set corresponding to T in the	M

			editing area of the Proof Control Window	
*	FIN_BINTER_R	$\frac{\mathbf{H} \vdash \operatorname{finite}(S) \lor \ldots \lor \operatorname{finite}(T)}{\mathbf{H} \vdash \operatorname{finite}(S \cap \ldots \cap T)}$		M
	FIN_KINTER_R	$\frac{\mathbf{H} \vdash \exists s \cdot s \in S \land \text{finite} (s)}{\mathbf{H} \vdash \text{finite} (\text{inter}(S))}$	where <i>s</i> is fresh	M
	FIN_QINTER_R	$\frac{\mathbf{H} \vdash \exists s \cdot P \land \text{finite} (E)}{\mathbf{H} \vdash \text{finite} (\bigcap s \cdot P \mid E)}$		M
*	FIN_SETMINUS_R	$\frac{\mathbf{H} \vdash \operatorname{finite}(S)}{\mathbf{H} \vdash \operatorname{finite}(S \setminus T)}$		М
	FIN_REL	$\overline{\mathbf{H}, r \in S \text{ op } T, \text{ finite}(S), \text{ finite}(T)} \vdash \text{ finite}(r)$	where <i>op</i> denotes a set of relations (any arrow)	A
*	FIN_REL_R	$\frac{\mathbf{H} \vdash WD(S \leftrightarrow T) \mathbf{H} \vdash r \in S \leftrightarrow T \mathbf{H} \vdash \text{finite}(S) \mathbf{H} \vdash \text{finite}(T)}{\mathbf{H} \vdash \text{finite}(r)}$	the user has to write the set corresponding to $S \leftrightarrow T$ in the editing area of the Proof Control Window	
*	FIN_REL_IMG_R	$\frac{\mathbf{H} \vdash \text{finite}(r)}{\mathbf{H} \vdash \text{finite}(r[s])}$		M
*	FIN_REL_RAN_R	$\frac{\mathbf{H} \vdash \operatorname{finite}(r)}{\mathbf{H} \vdash \operatorname{finite}(\operatorname{ran}(r))}$		М
*	FIN_REL_DOM_R	$\frac{\mathbf{H} \vdash \text{finite}(r)}{\mathbf{H} \vdash \text{finite}(\text{dom}(r))}$		M
	FIN_FUN_DOM	$\overline{\mathbf{H}, f \in S \text{ op } T, \text{ finite}(S)} \vdash \overline{\text{ finite}(f)}$	where op is	A

			one of \leftrightarrow , \rightarrow	
	FIN_FUN_RAN	$\overline{\mathbf{H}, \ f \in S \ op \ T, \ \text{finite} \left(T\right)} \ \vdash \ \text{finite} \left(f\right)$	where op is one of \rightarrowtail , \rightarrowtail , \rightarrowtail	A
*	FIN_FUN1_R	$\frac{\mathbf{H} \vdash WD(S \leftrightarrow T) \mathbf{H} \vdash f \in S \leftrightarrow T \mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \text{finite}(f)}$	the user has to write the set corresponding to $S \rightarrow T$ in the editing area of the Proof Control Window	М
*	FIN_FUN2_R	$\frac{\mathbf{H} \vdash WD(S \to T) \mathbf{H} \vdash f^{-1} \in S \to T \mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \text{finite}(f)}$	the user has to write the set corresponding to $S \rightarrow T$ in the editing area of the Proof Control Window	М
*	FIN_FUN_IMG_R	$\frac{\mathbf{H} \vdash WD(S \to T) \mathbf{H} \vdash f \in S \to T \mathbf{H} \vdash \text{finite}(s)}{\mathbf{H} \vdash \text{finite}(f[s])}$	the user has to write the set corresponding to $S \rightarrow T$ in the editing area of the Proof Control Window	М
*	FIN_FUN_RAN_R	$\frac{\mathbf{H} \vdash WD(S \to T) \mathbf{H} \vdash f \in S \to T \mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \text{finite}(\text{ran}(f))}$	the user has to write the set corresponding to $S \rightarrow T$ in the editing area of the Proof Control Window	М
*	FIN_FUN_DOM_R	$\frac{\mathbf{H} \vdash WD(S \to T) \mathbf{H} \vdash f^{-1} \in S \to T \mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \text{finite}(\text{dom}(f))}$	the user has to write the set corresponding to $S \rightarrow T$ in the editing area of the Proof Control Window	М

*	LOWER_BOUND_L	$\frac{\mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow n \leq x)}$	S must not contain any bound variable	M
*	LOWER_BOUND_R	$\frac{\mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow x \ge n)}$	S must not contain any bound variable	M
*	UPPER_BOUND_L	$\frac{\mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow n \ge x)}$	S must not contain any bound variable	М
*	UPPER_BOUND_R	$\frac{\mathbf{H} \vdash \text{finite}(S)}{\mathbf{H} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow x \le n)}$	S must not contain any bound variable	М
*	FIN_LT_0	$\frac{\mathbf{H} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow n \leq x) \mathbf{H} \vdash S \subseteq \mathbb{Z} \setminus \mathbb{N}_1}{\mathbf{H} \vdash \text{finite}(S)}$		М
*	FIN_GE_0	$\frac{\mathbf{H} \vdash \exists n \cdot (\forall x \cdot x \in S \Rightarrow x \leq n) \mathbf{H} \vdash S \subseteq \mathbb{N}}{\mathbf{H} \vdash \text{finite}(S)}$		М
	CARD_INTERV	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	where Q is WD strict	М
	CARD_EMPTY_INTERV	$\frac{\mathbf{H}, a \leq b, \mathbf{P}(b-a+1) \ \vdash \ \mathbf{Q} \qquad \mathbf{H}, b < a, \mathbf{P}(0) \ \vdash \ \mathbf{Q}}{\mathbf{H}, \mathbf{P}(\operatorname{card}{(a \dots b)}) \ \vdash \ \mathbf{Q}}$	where P is WD strict	М
*	DERIV_LE_CARD	$\frac{\mathbf{H} \vdash S \subseteq T}{\mathbf{H} \vdash \operatorname{card}(S) \leq \operatorname{card}(T)}$	S and T bear the same type	М
*	DERIV_GE_CARD	$\frac{\mathbf{H} \vdash T \subseteq S}{\mathbf{H} \vdash \operatorname{card}(S) \ge \operatorname{card}(T)}$	S and T bear the same type	М
*	DERIV_LT_CARD	$\frac{\mathbf{H} \vdash S \subset T}{\mathbf{H} \vdash \operatorname{card}(S) < \operatorname{card}(T)}$	S and T bear the same type	М

*	DERIV_GT_CARD	$\frac{\mathbf{H} \vdash T \subset S}{\mathbf{H} \vdash \operatorname{card}(S) > \operatorname{card}(T)}$	S and T bear the same type	M
*	DERIV_EQUAL_CARD	$\frac{\mathbf{H} \vdash S = T}{\mathbf{H} \vdash \operatorname{card}(S) = \operatorname{card}(T)}$	S and T bear the same type	M
	SIMP_CARD_SETMINUS_L	$\frac{\mathbf{H}, \mathbf{P}(\operatorname{card}(S \setminus T)) \vdash \operatorname{finite}(S) \mathbf{H}, \mathbf{P}(\operatorname{card}(S) - \operatorname{card}(S \cap T)) \vdash \mathbf{G}}{\mathbf{H}, \mathbf{P}(\operatorname{card}(S \setminus T)) \vdash \mathbf{G}}$		М
	SIMP_CARD_SETMINUS_R	$\frac{\mathbf{H} \vdash \operatorname{finite}(S) \mathbf{H} \vdash \mathbf{P}(\operatorname{card}(S) - \operatorname{card}(S \cap T))}{\mathbf{H} \vdash \mathbf{P}(\operatorname{card}(S \setminus T))}$		М
	SIMP_CARD_CPROD_L	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		М
	SIMP_CARD_CPROD_R	$\frac{\mathbf{H} \vdash \operatorname{finite}(S) \mathbf{H} \vdash \operatorname{finite}(T) \mathbf{H} \vdash \mathbf{P}(\operatorname{card}(S) * \operatorname{card}(T))}{\mathbf{H} \vdash \mathbf{P}(\operatorname{card}(S \times T))}$		М
*	FORALL_INST	$\frac{\mathbf{H} \vdash WD(E) \mathbf{H}, [x := E]\mathbf{P} \vdash \mathbf{G}}{\mathbf{H}, \forall x \cdot \mathbf{P} \vdash \mathbf{G}}$	x is instantiated with E	М
*	FORALL_INST_MP	$\frac{\mathbf{H} \vdash WD(E) \mathbf{H}, WD(E) \vdash [x := E]\mathbf{P} \mathbf{H}, WD(E), [x := E]\mathbf{Q} \vdash \mathbf{G}}{\mathbf{H}, \forall x \cdot \mathbf{P} \Rightarrow \mathbf{Q} \vdash \mathbf{G}}$	x is instantiated with E and a Modus Ponens is applied	М
*	FORALL_INST_MT	$\frac{\mathbf{H} \vdash WD(E) \mathbf{H}, WD(E) \vdash [x := E] \neg \mathbf{Q} \mathbf{H}, WD(E), [x := E] \neg \mathbf{P} \vdash \mathbf{G}}{\mathbf{H}, \forall x \cdot \mathbf{P} \Rightarrow \mathbf{Q} \vdash \mathbf{G}}$	x is instantiated with E and a Modus Tollens is applied	М
*	CUT	$\frac{\mathbf{H} \vdash WD(\mathbf{P}) \mathbf{H}, WD(\mathbf{P}) \vdash \mathbf{P} \mathbf{H}, WD(\mathbf{P}), \mathbf{P} \vdash \mathbf{G}}{\mathbf{H} \vdash \mathbf{G}}$	hypothesis P is added	М
*	EXISTS_INST	$\frac{\mathbf{H} \vdash WD(E) \mathbf{H} \vdash \mathbf{P}(E)}{\mathbf{H} \vdash \exists x \cdot \mathbf{P}(x)}$	x is instantiated with E	М

*	DISTINCT_CASE	$\frac{\mathbf{H} \vdash WD(\mathbf{P}) \mathbf{H}, WD(\mathbf{P}), \mathbf{P} \vdash \mathbf{G} \mathbf{H}, WD(\mathbf{P}), \neg \mathbf{P} \vdash \mathbf{G}}{\mathbf{H} \vdash \mathbf{G}}$	case distinction on predicate P	М
*	ONE_POINT_L	$\frac{\mathbf{H} \vdash WD(E) \mathbf{H}, \forall x, \dots, x, z \cdot [y := E] \mathbf{P} \land \dots \land \dots \land [y := E] \mathbf{Q} \Rightarrow [y := E] \mathbf{R} \vdash \mathbf{G}}{\mathbf{H}, \forall x, \dots, y, \dots, z \cdot \mathbf{P} \land \dots \land y = E \land \dots \land \mathbf{Q} \Rightarrow \mathbf{R} \vdash \mathbf{G}}$	The rule can be applied with \forall as well as with \exists	A
*	ONE_POINT_R	$\frac{\mathbf{H} \vdash WD(E) \mathbf{H} \vdash \forall x, \dots, z \cdot [y := E] \mathbf{P} \land \dots \land \dots \land [y := E] \mathbf{Q} \Rightarrow [y := E] \mathbf{R}}{\mathbf{H} \vdash \forall x, \dots, y, \dots, z \cdot \mathbf{P} \land \dots \land y = E \land \dots \land \mathbf{Q} \Rightarrow \mathbf{R}}$	The rule can be applied with \forall as well as with \exists	A
*	SIM_OV_REL	$\frac{\mathbf{H} \vdash x \in A \mathbf{H} \vdash y \in B}{\mathbf{H}, f \in A \text{ op } B \vdash f \nleftrightarrow \{x \mapsto y\} \in A \leftrightarrow B}$	where op is one of \leftrightarrow , $\langle \leftrightarrow \rangle, \langle \Rightarrow \rangle, \langle \leftrightarrow \rangle,$ $\leftrightarrow \rangle, \rightarrow \rangle, \forall \Rightarrow,$ $\rightarrow \rightarrow, \rightarrow \rightarrow, \forall \Rightarrow,$ $\rightarrow \rightarrow$	A
*	SIM_OV_TREL	$\frac{\mathbf{H} \vdash x \in A \qquad \mathbf{H} \vdash y \in B}{\mathbf{H}, f \in A \text{ op } B \vdash f \nleftrightarrow \{x \mapsto y\} \in A \nleftrightarrow B}$	where op is one of $\langle \leftrightarrow \rangle$, $\langle \leftrightarrow \rangle, \rightarrow, \rightarrow$, $\rightarrow \rangle, \rightarrow \rangle$	A
*	SIM_OV_PFUN	$\frac{\mathbf{H} \vdash x \in A \mathbf{H} \vdash y \in B}{\mathbf{H}, f \in A \text{ op } B \vdash f \nleftrightarrow \{x \mapsto y\} \in A \Rightarrow B}$	where op is one of \rightarrow ,	A
*	SIM_OV_TFUN	$\frac{\mathbf{H} \vdash x \in A \mathbf{H} \vdash y \in B}{\mathbf{H}, f \in A \text{ op } B \vdash f \nleftrightarrow \{x \mapsto y\} \in A \to B}$	where op is one of \rightarrow , \rightarrow , , \rightarrow , \rightarrow , \rightarrow ,	A
	INDUC_NAT	$\frac{\mathbf{H} \vdash x \in \mathbb{N} \mathbf{H}, x = 0 \vdash \mathbf{P}(x) \mathbf{H}, n \in \mathbb{N}, \mathbf{P}(n) \vdash \mathbf{P}(n+1)}{\mathbf{H} \vdash \mathbf{P}(x)}$	x of type \mathbb{Z} appears free in \mathbf{P} ; n is introduced as a fresh identifier	М
	INDUC_NAT_COMPL	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	x of type \mathbb{Z} appears free in \mathbf{P} ; n is introduced as a fresh identifier	М

Those following rules have been implemented in the reasoner GeneralizedModusPonens.

	Name	Rule	Side Condition	A/M
*	GENMP_HYP_HYP	$\frac{P,\varphi(\top)\vdash G}{P,\varphi(P^{\dagger})\vdash G}$	see below for P^{\dagger}	A
*	GENMP_NOT_HYP_HYP	$\frac{nP^{\dagger},\varphi(\bot)\vdash G}{nP^{\dagger},\varphi(P)\vdash G}$	see below for P^{\dagger}	Α
*	GENMP_HYP_GOAL	$\frac{P \vdash \varphi(\top)}{P \vdash \varphi(P^{\dagger})}$	see below for P^{\dagger}	Α
*	GENMP_NOT_HYP_GOAL	$\frac{nP^{\dagger}\vdash\varphi(\bot)}{nP^{\dagger}\vdash\varphi(P)}$	see below for P^{\dagger}	А
*	GENMP_GOAL_HYP	$\frac{H,\varphi(\bot) \vdash \neg nG^{\dagger}}{H,\varphi(G) \vdash \neg nG^{\dagger}}$	see below for nG^{\dagger}	A
*	GENMP_NOT_GOAL_HYP	$\frac{H,\varphi(\top)\vdash\neg G}{H,\varphi(G^{\dagger})\vdash\neg G}$	see below for G^{\dagger}	Α
*	GENMP_OR_GOAL_HYP	$\frac{H, \varphi(\bot) \vdash G_1 \lor \cdots \lor \neg n G_i^{\dagger} \lor \cdots \lor G_n}{H, \varphi(G_i) \vdash G_1 \lor \cdots \lor \neg n G_i^{\dagger} \lor \cdots \lor G_n}$	see below for nG_i^\dagger	A
*	GENMP_OR_NOT_GOAL_HYP	$\frac{H, \varphi(\top) \vdash G_1 \lor \cdots \lor \neg G_i \lor \cdots \lor G_n}{H, \varphi(G_i^{\dagger}) \vdash G_1 \lor \cdots \lor \neg G_i \lor \cdots \lor G_n}$	see below for G_i^\dagger	A

Thos following rules have been implemented in the MembershipGoal reasoner.

	Name	Rule	Side Condition	A/M
*	SUBSET_SUBSETEQ	$A \subset B \vdash A \subseteq B$		A
*	DOM_SUBSET	$A \subseteq B \vdash \operatorname{dom}(A) \subseteq \operatorname{dom}(B)$		A
*	RAN_SUBSET	$A \subseteq B \vdash \operatorname{ran}(A) \subseteq \operatorname{ran}(B)$		A
*	EQUAL_SUBSETEQ_LR	$A = B \vdash A \subseteq B$		A
*	EQUAL_SUBSETEQ_RL	$A = B \vdash B \subseteq A$		A
*	IN_DOM_CPROD	$x \in \operatorname{dom}(A \times B) \vdash x \in A$		A
*	IN_RAN_CPROD	$y \in \operatorname{ran}(A \times B) \vdash y \in B$		A

*	IN_DOM_REL	$x\mapsto y\in f\vdash x\in \mathrm{dom}(f)$		Α
*	IN_RAN_REL	$x\mapsto y\in f\vdash y\in \operatorname{ran}(f)$		Α
*	SETENUM_SUBSET	$\{a,\cdots,x,\cdots,z\}\subseteq A\vdash x\in A$		A
*	OVR_RIGHT_SUBSET	$f \mathrel{\triangleleft} \cdots \mathrel{\triangleleft} g \mathrel{\triangleleft} \cdots \mathrel{\triangleleft} h \subseteq A \vdash g \mathrel{\triangleleft} \cdots \mathrel{\triangleleft} h \subseteq A$		A
*	RELSET_SUBSET_CPROD	$f \in A \text{ op } B \vdash f \subseteq A \times B$	where op is one of \leftrightarrow , \leftrightarrow , \leftrightarrow , \leftrightarrow , \leftrightarrow , \rightarrow	A
*	DERIV_IN_SUBSET	$x\in A, \ A\subseteq B\vdash x\in B$		A

The conventions used in this table are described in Variations in HYP, CNTR and GenMP.

Р	\mathbf{P}^{\dagger}	$\mathbf{n}\mathbf{P}^{\dagger}$	Side Condition
a = b	$\begin{array}{ll} a=b, & b=a\\ a\leq b, & b\geq a\\ a\geq b, & b\leq a \end{array}$	$ \begin{array}{l} \neg a = b, \neg b = a \\ a > b, b < a \\ a < b, b > a \end{array} $	where a and b are integers
a < b	$\begin{array}{l} a < b, b > a \\ a \le b, b \ge a \\ \neg a = b, \neg b = a \end{array}$	$\begin{array}{l} a \geq b, b \leq a \\ a > b, b \leq a \\ a = b, b = a \end{array}$	
a > b	$\begin{array}{l} a > b, b < a \\ a \geq b, b \leq a \\ \neg a = b, \neg b = a \end{array}$	$\begin{array}{l} a\leq b, b\geq a\\ a< b, b>a\\ a=b, b=a \end{array}$	
$a \leq b$	$a\leq b, \ b\geq a$	a > b, b < a	
$a \ge b$	$a\geq b, \ b\leq a$	a < b, b > a	
$\neg a = b$	$\neg a = b, \neg b = a$	a = b, b = a	
A = B	$\begin{array}{l} A=B, B=A\\ A\subseteq B, B\subseteq A\\ \neg A\subset B, \neg B\subset A \end{array}$	$ \begin{array}{l} \neg A = B, \ \neg B = A \\ \neg A \subseteq B, \ \neg B \subseteq A \\ A \subset B, \ B \subset A \end{array} $	where A and B are sets
$A\subseteq B$	$A\subseteq B, \neg B\subset A$	$\neg A \subseteq B, B \subset A$	
$A \subset B$	$\begin{array}{l} A \subset B, \ A \subseteq B \\ \neg B \subset A, \ \neg B \subseteq A \\ \neg A = B, \ \neg B = A \end{array}$	$ \begin{array}{l} \neg A \subset B, \ \neg A \subseteq B \\ B \subset A, \ B \subseteq A \\ A = B, \ B = A \end{array} $	
$\neg A = B$	$\neg A = B, \ \neg B = A$	A = B, B = A	
$\neg A \subseteq B$	$ \begin{array}{l} \neg A \subseteq B, \neg A \subset B \\ \neg A = B, \neg B = A \end{array} $	$\begin{array}{cc} A \subseteq B, & A \subset B \\ A \equiv B, & B = A \end{array}$	
$\neg A \subset B$	$\neg A \subset B$	$A \subset B$	

e = f	e = f, f = e	$\neg e = f, \ \neg f = e$	where e and f are scalars
$\neg e = f$	$\neg e = f, \ \neg f = e$	e = f, f = e	
Р	Р	$\neg \mathbf{P}$	
$\neg \mathbf{P}$		Р	

See also Extension Proof Rules#Inference Rules.

Retrieved from 'https://wiki.event-b.org/index.php?title=Inference_Rules&oldid=5779'

• This page was last modified on 23 June 2014, at 16:00.