=i dea (%

@i dea 2
Event-B: Introduction and First Steps’
CONVENLIONS oo eeee e, 3 Invariants ... 31
Manuel Carro LandSCapevvvvrireiiiiiieannan, 4 Sequentsand proofs 44
manuel.carro@upm.es Event B approachc.oceevens.. 9 Inferen.c.e rules ... 45
Computation model 18 Propositional language 61
IMDEA Software Institute & Integer division example 24 Inductive invariants 86
Universidad Politécnica de Madrid
"Many slides borrowed from J. R. Abrial
. = i =
Conventions @mi dea (® @i dea (®
I will sometimes use boxes with different meanings.
@ Quiz to do together during the @ Material / solutions that I want to Event B
lecture. develop during the lecture.

An industry-oriented method, language, and set
aaaaaaaaaaaaaaaaaaa aaaaaaaaaadaaaaaaaa of supporting tools to describe systems of
daaadaadaaadaaadaaa aaaaaaaaaaaaaaaaaaa interacting, reactive software, hardware
ddddddddddddddddddad aaaaaaaaaaaaaaaaaaa

components, and their environment, and to

reason about them.

mailto:manuel.carro@upm.es

Sequential vs. reactive software

ouT PuT
—

v

NPT proGRAM
* f
%:XCI)
(0r Ry (5, 9) & B’ fon
&%c—l,mt view of compiatio)

Sequential vs. reactive software

PROG RAM
e

ENVIRONMENT

¥

'é,o=}[1a)) 9‘['-'3,(‘3.), 7':10‘{), x, :'?['j,),

Efects "f 2 viromen L1

B/ ea msf,_m Sequential vs. reactive software B/ ea mim
Imr,wf Ol ',w]
PRO?:RAM
S r«La&Mm 7
1414-1 = X (= i)
Conne Amana ?
midea m‘;m Industrial systems: usual characteristics

@ Functionality often not too complex.
@ Algorithms / data structures relatively simple.
@ Underlying maths of reasonable complexity.
@ Requirements document usually poor.
@ Reactive and concurrent by nature.

@ But often coarse: protecting (large) critical
regions often enough.

@ Many special cases.

@ Communication with hardware / environment involved.

@ Many details (~ properties to ensure) to be taken into account.
@ Large (in terms of LOCs).

Producing correct (software) systems hard — but not
necessarily from a theoretical point of view.

Typical approaches and problems

Usual approach
@ Choose a platform.

@ Write software specifications
(which often neglect or
under-represent the
environment).

@ Design by cutting in small
pieces with well-defined
communication.

@ Code and test / verify units.
@ Integrate and test.

The Event B approach

Complexity: Model Refinement

@ System built incrementally,
monotonically.
o Take into account subset of
requirements at each step.
o Build model of a partial system.
@ Prove its correctness.

@ Add requirements to the model, ensure
correctness:
@ The requirements correctly captured
by the new model.
o New model preserves properties of
previous model.

=i dea (%

=i dea (%

Details: Tool Support
@ Tool to edit Event B models (Rodin).

@ Generates proof obligations:
theorems to be proved to ensure
correctness.

@ Interfaced with (interactive) theorem
provers.

@ Extensible.

Typical approaches and problems

Usual approach
@ Choose a platform.

@ Write software specifications
(which often neglect or
under-represent the
environment).

@ Design by cutting in small
pieces with well-defined
communication.

@ Code and test / verify units.

@ Integrate and test.

Basic ideas

=i dea

%)

Pitfalls
@ Often too many details / interactions /
properties to prove.
@ Cutting in pieces: poor job in taming
complexity.
o Small pieces: easy to prove them right.

o Additional relationships created!
o Overall complexity not reduced.

@ Modeling environment?
E.g., we expect a car driver to stop at a red light.

@ Result: system as a whole never verified.

=i dea (%

@ Model: formal description of a discrete system.

@ Formal: mechanism to decide whether some properties hold
o Discrete: can be represented as a transition system

Basic ideas

@ Model: formal description of a discrete system.

e Formal: mechanism to decide whether some properties hold

o Discrete: can be represented as a transition system

@ Formalization contains models of:

@ The future software components
o The future equipments surrounding these components

Refinement

@ Refinement allows us to build model
gradually.
@ Ordered sequence of more precise
models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
o Respecting the boundaries of the
previous one.

@ Useful analogy: looking through a
microscope.

Heavy hun

Light human intervention

Software requirements

man intervention|

| Abstract model 1

Abstract model

Concrete model

No human intervention

Executable code

=i dea (%

Refinement

Abstract model 2

I
1 Refinement,
I

B | Final abstract model

Refinement

@ Refinement allows us to build model
gradually.
@ Ordered sequence of more precise
models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
@ Respecting the boundaries of the
previous one.

@ Useful analogy: looking through a
microscope.

Refinement

@ Refinement allows us to build model
gradually.
@ Ordered sequence of more precise
models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
o Respecting the boundaries of the
previous one.

@ Useful analogy: looking through a
microscope.

Software requirements

Heavy human intervention|

Abstract model

Light human intervention

Concrete model

No human intervention

Heavy hun

Light human intervention

Executable code

Software requirements

man intervention|

Abstract model

| Conerete model 1

Concrete model

No human intervention

Executable code

=i dea

E (g

=i dea (%
| POLITECNICA]

Refinement

Concrete model 2

I
1 Refinement,
I

*.| Final concrete model

Refinement

@ Refinement allows us to build model
gradually.
@ Ordered sequence of more precise
models.
@ Each model is a refinement of the one
preceding it.
@ Each model is proven:
o Correct.
@ Respecting the boundaries of the
previous one.

@ Useful analogy: looking through a
microscope.

States and transitions

@ Transitions between states: triggered
by events

@ Events: made of guards and actions

@ Guard (G;) denote enabling
conditions of events

@ Actions denote how state is modified
by event

@ Guards and actions written with
set-theoretic expressions (e.g.,
first-order, classical logic).

@ Event B based on set theory.

1
@i dea (2
[POLTECNICA
Software requirements
Heavy human intervention|
Abstract model
Light human intervention
Concrete model
| Final concrete model
No human intervention Translation
Executable code Compilation

.| Executable code

=i dea (%
| POLITECNICA]

Guard of transition

~
~
~

~

~
T -
1
|
1
1

States

Examples:

Si=x=0Ay=7
Si=x,y e NAx<AANy<5Ax+y<7

Write extensional definition for the latter

Models and states

A discrete model is made of states

Go Gl

What is its relationship with a regular program?

@ States are represented by constants
and variables

Si={Cly. 'y Cny Viye-ey V)

A simple example - informal introduction!

@ Relationships among constants and
variables written using set-theoretic

expressions

Search for element k in array £ of length n, assuming k is in £.

dea

Constants / Axioms

CONST n € N
CONST f€ 1.n — N

Variables / Invariants

VARIABLEi € 1.n

Event Search

when

i<nAf@ #k
then

i:=1i+1
end

Event Found
when
f(1) =k
then
skip
end

(initialization of i not shown for brevity)

i

Events

e Executing an event (normally)

Event EventName changes the system state.

when @ An event can fire when its guard
guard: G(v, c) evaluates to true.
then @ G(v, c) predicate that enables
action: v := E(v, ¢) EventName
’ ’ ? @ v := E(v, ¢)is a state transformer.
end o Formally, a predicate Actg(v, ¢, v')

e V' isrenamed to v after the predicate.

Comments on the operational interpretation =i dea
@ Stopping is not necessary: a discrete system may run forever.
@ This interpretation is just given here for informal understanding
@ The meaning of such a discrete system will be given by the proofs which can be
performed on it (next lectures).?

On using sequential code

To help understanding, we will now write some sequential
code first, translate it into Event B, and then proving correct-
ness. This does not follow Event B workflow, which goes in the
opposite direction: write Event B models and derive sequential
/ concurrent code from them.

2). R. Abrial: The B method: assigning programs to meanings.

Intuitive operational interpretation

@ Now: informal Event B semantics.

@ Actual Event B semantics based on set
theory and invariants — Later!

Initialize;

while (some events have true guards) {
Choose one such event;
Modify the state accordingly;

}

@ An event execution takes no time.
@ No two events occur simultaneously.

@ If all guards false, system stops.

Event EventName

when
guard: G(v, c) @ Otherwise: choose one event with true
then guard, execute action, modify state.
action: v :=E(v, ¢) @ Previous phase repeated (if possible).
end

Running example (sequential code) =i dea

<]

a= |-

C

@ Characterize it: we want to define integer division, without using division.
VbVe[be NAceNAc>0=3Jadrlac NAreNAr<cAb=cxa+r]

It is useful to categorize the specification as assumptions (preconditions)

beNANceNAc>0

and results (postconditions)

aceNAreNAr<cAb=cxa+r

Input / output / variables / constants / types?

Fairness: what is it? What should we expect?

Two Math Notes @i dea

Zero

There is no universal agreement about whether to include zero in the set of nat-
ural numbers. Some authors begin the natural numbers with 0, corresponding
to the non-negative integers 0, 1, 2, 3, ..., whereas others start with 1, corre-
sponding to the positive integers 1, 2, 3, ... This distinction is of no fundamental
concern for the natural numbers as such.

I will assume that 0 € N. That is the convention in computer science.

Programming integer division =i dea

@ We have addition and substracion
@ We have a simple procedural language
@ Variables, assignment, loops, if-then-else, + & -, arith. operators, ...

a :=0

r :=b

while r >= ¢
r :=r - cC
a :=a+1

é)

Two Math Notes @i dea

%)

Zero

There is no universal agreement about whether to include zero in the set of nat-
ural numbers. Some authors begin the natural numbers with 0, corresponding
to the non-negative integers 0, 1, 2, 3, ..., whereas others start with 1, corre-
sponding to the positive integers 1, 2, 3, ... This distinction is of no fundamental
concern for the natural numbers as such.

I will assume that 0 € N. That is the convention in computer science.

Ifyouwrite VbeN,ceN,c>0-JaeN,reN,r<c-b=cxa+r remember:

@ Commas mean conjunction. @ Vx € D - P(x) means Vx[x € D = P(x)]
@ Nesting may need disambiguation. @ Ix € D - P(x) means 3x[x € D A P(x)]

See https://twitter.com/lorisdanto/status/13541288087403274257s=20
and https://twitter.com/lorisdanto/status/135421476759084236975=20

=i dea

% (o

Programming integer division

@ We have addition and substracion
@ We have a simple procedural language
@ Variables, assignment, loops, if-then-else, + & -, arith. operators, ...

. r>c

r :=b

while r >= c
r:=r-c¢ T r<c
a :=a+1

Copy the code! We will need it!

This step is not taken in Event B. We are writing this code only for illustration purposes.

https://twitter.com/lorisdanto/status/1354128808740327425?s=20
https://twitter.com/lorisdanto/status/1354214767590842369?s=20
https://twitter.com/lorisdanto/status/1354128808740327425?s=20
https://twitter.com/lorisdanto/status/1354214767590842369?s=20

Towards events
Template
Event EventName
when
G(v, c)
then
v := E(v, ¢)
end

Event INIT
a, r =0, b
end

Proving correctness

Code
a =0
r := b
while r >= ¢
r :=1r - C
a = a + 1
end

Event Progress
when
I NG
then

r, a :=r -

end

=i dea

@ Special initialization event (INIT).

@ Sequential program (special case):

@ Ffinish event, Progress events

@ Guards exclude each other (determinism) Prove!
@ Non-deadlock: some guard always true Prove!
@ Avariable is reduced (termination) Prove!

Event Finish
when
r <c
then

a+1 skip

end

=i dea (%

How do you prove your programs correct?

- @ dea
Categorlzmg elements mmEre
Constants Axioms (Write them down separately!)
beN
C ceN
c>0
Variables Invariants
a
r
Later!
Event INIT Event Progress Event Finish
a, r=0,b when r >= c when r < ¢
end then then
r,a:=r-c,a+1 skip
end end
i %
Proving correctness @i dea IEE;:E-B

How do you prove your programs correct?

@ Correctness in sequential programs: post-condition holds.
@ Easy if no (or statically bound) loops.
@ Prove that this code swaps x and y:

X 1= X +y;
y = X -y,
X 1= X —Yy;

Proving correctness

A%
7 il “
How do you prove your programs correct?

@ Correctness in sequential programs: post-condition holds.
@ Easy if no (or statically bound) loops.
@ Prove that this code swaps x and y:

{x=a,y = b}
X 1= X +y;
y == Xx—y,
X 1= X —y;
{x=b,y = a}

Proving correctness

4

How do you prove your programs correct?

@ Correctness in sequential programs: post-condition holds.
@ Easy if no (or statically bound) loops.
@ Prove that this code swaps x and y:

{x=a,y =b}

X = X +Yy,;, {x=a+by=0>b}
y = X —Yy,; {x=a+b,y=a}
X 1= X —y;
{X:bvy:E)}

: v
@mi dea (% Proving correctness

[Pourcnical
How do you prove your programs correct?
@ Correctness in sequential programs: post-condition holds.
@ Easy if no (or statically bound) loops.
@ Prove that this code swaps x and y:
{x=a,y = b}
X = X +y, {x=a+by=0b}
y = X —Y;
X = X —Y;
{x=b,y = a}
i =
=i dea .- Proving correctness

How do you prove your programs correct?

@ Correctness in sequential programs: post-condition holds.
@ Easy if no (or statically bound) loops.
@ Prove that this code swaps x and y:

{x=a,y=b}

x 1= x +y; {x=a+by=0>b}
y =X —Yy, {x=a+b,y=a}
X = X -y, {x=by=a}

{X:b7y:a}

dea

dea

i

Proving correctness: invariants in a nutshell

Loops: much more difficult
@ # iterations unknown.
(remember Collatz's conjecture)

while r >= ¢ do

end

Finding invariants

Which assertions are invariant in our model?

h:aeN // Type invariant
h:reN // Type invariant
ib=axc+r
Event INIT Event Progress
a, r=0,b when r >= ¢
end then
r, a:=r
end

a+1

=i dea

Invariant: formula that is “always” true.

@ Procedural code: beginning and end
of every loop iteration.

@ Event-B: after initialization, after every
event (essentially same idea).

Intuitition:

@ If invariant implies postcondition,
then we can prove postcondition.
@ Nobody gives us invariants.
@ We have to find them.
o We have to prove they are invariants

=i dea (%

oreo)
One formula that is an invariant for any
Event-B model / loop.

T

Event Finish
when r < c
then

skip
end

(e

[

Proving correctness: invariants in a nutshell

Loops: much more difficult
@ # iterations unknown.
(remember Collatz's conjecture)

while r >= ¢ do

{I(a.r)}
r:=r —c
a = a+1
{I(a,r)}

end

{l(ar)Ar<c=a=|

olo

I}

Finding invariants

Which assertions are invariant in our model?

h:aeN // Type invariant
h:reN // Type invariant
Lib=axc+r
Event INIT Event Progress
a, r=0,b when r >= ¢
end then
r,a:=r -
end

a+1

=i dea

Invariant: formula that is “always” true.

@ Procedural code: beginning and end
of every loop iteration.

@ Event-B: after initialization, after every
event (essentially same idea).
Intuitition:

@ If invariant implies postcondition,
then we can prove postcondition.
@ Nobody gives us invariants.
o We have to find them.
o We have to prove they are invariants.

=i dea (%

One formula that is an invariant for any
Event-B model / loop.

T

Event Finish
when r < c
then

skip
end

Copy invariants somewhere else - we will need to have them handy

(g

Invariant preservation in Event B b

@ Invariants must be true before and
after event execution.

S Sequent
@ For all event j, invariant j:

r=A
Establishment:
A(c) + li(Einit(v,), c)
Preservation:
A(c), Gi(v.c), h..n(v,c) F l(Ei(v,c),c)

assumptions I

Invariant preservation

@ A(c) axioms

e Gi(v,c)guard of event i an event are true and we execute the
o /;(v,c)invariant j event's action, the invariant should

@ Ii._a(v,c) all the invariants hold.

@ Ei(v,c) result of action /

Invariant preservation proofs pr
Ent / I3/ INV

Fb=b A

Fb=0+b Arith
Fb=0xc+b VION
beN,ceNc>0Fb=0xc+b
EProgress / I1 /INV
P1
aeNFa+1eN MON

beNceNc>0,r>c,reNb=axc+r,aeNFa+1eN

Event INIT Event Progress
a, r=0, b when r >= ¢
end then

r,a:=r-c,a+1
end

Show that A can be proved using

If an invariant holds and the guards of

dea

é)

Invariant preservation proofs

@ Invariant preservation proven using
model and math axioms.

proofs
@ Named as e.g. Epogress/I2/INV

@ Three invariants & three events: nine

o Other proofs necessary later

Einir /11 /INV Einir / I / INV
—Toew PO beNFheN P
beN,ceN,c>OI—OENMON beN,ceNc>0FbeN
Event INIT Event Progress
a, r=0,Db when r >= ¢
end then
r,a:=r-c,a+1
end
Sequents =i dea

@ Mechanize proofs
o Humans “understand”; proving is tiresome and error-prone
o Computers manipulate symbols

@ How can we mechanically construct correct proofs?

o Every step crystal clear
e For a computer to perform

@ Several approaches

@ For Event B: sequent calculus

e To read: [Pau] (available at course web page), at least Sect. 3.3 to
3.5, 6.4, and 6.5. Note: when we use ' - A, Paulson uses T = A.
@ Also: [Oric, Orib], available at the course web page.

@ Admissible deductions: inference rules.

Inference rules

@ Aninference rule is a tool to build a formal proof.
o It not only tells you whether I' - A: it tells you how.

@ Itis denoted by:

A

CR

@ Ais a (possibly empty) collection of sequents: the antecedents.
@ Cis asequent: the consequent.
@ Ris the name of the rule.

The proofs of each sequent of A
together give you
a proof of sequent C

Proof of sequent S1 9

S7 S2 S3 5S4
=51 ﬁr2 TB EM

An example of inference rule

Note: not exactly the inference rules we will use.
Only an intuitive example.

@ A(lice) and B(ob) are siblings:

C is mother of A Cis mother of B i}
A and B are siblings Sibling-M

Cis father of A Cisfather of B ci.jipg.
A and B are siblings Sibling-F

@ Note: we do not consider the case that, e.g., Cis a father and a

mother.
Proof of Sequent S1 10
S7 S2 S3 54 S5 S6
§r1 gr2 o7 r3 EM 53 5 %rG Wﬂ
S1
r3
VAR
S2 S3 54

? ? ?

Proof of Sequent S1 11

S7 52 S3 S84 S5 S6
ofl g2 253372713 o1 53 19 ggl6 o717
S1
r3
TN
S§2 S3 5S4
1 ? ?

Proof of Sequent S1 13

S7 S2 S3 5S4 S5 S6
§r1 ng TB EM Tr5 ﬁrG Wﬂ

S1

SN
S2 S3 S4
r1 r5 ?
au
S5 S6
r4 ?

Proof of Sequent S1

12

S7 S2 S3 S4 S5 S6
ﬁr1 ng 22T r3 ﬁr4 53 5 %rs ﬁr7
S1
r3
VAR
S2 S3 sS4
r1 r5 ?
au
S5 S6
] 2
Proof of Sequent S1 14
S7 S2 S3 5S4 S5 S6
§r1 grz 22T r3 EM o 5 %rG Wﬂ
S1
r3
VAR

S2 S3 S4
r1 r5 ?

au
S5 S6
rd4 ré

Proof of Sequent S1 15

55t %rZ Wrs 5std S%§6r5 g6 =17
S1
r3
VAR
S2 S3 sS4
r1 r5 r2
au)
S5 S6 S7
r4 ré ?
Recording the Proof of Sequent S1 17
S7 S2 S3 S4 S5 S6
§r1 gr2 o7 r3 EM 53 5 %rG S7r7
S1
r3
VARAN
S2 S3 sS4
r1 5 r2
au t

S5 S6 S7
r4 r6é r7

- The proof is a tree

Proof of Sequent S1

S2

S7 S2 S3 54 S5 S6
ol a2 25372713 oeré r5

S5 S3

Deduction systems

Sequent F A in a Gentzen system

@ T: (possibly empty) collection of
formulas (the hypotheses)
@ A: collection of formulas (the goal)

...,Pystandsfor PLAPA ... AP,

---7Qms-f- Ql\/Q2\/---\/Qm

TN

S4
r2

S7
r7

=i dea

@ There are many formal deduction systems [Ben12, Sect. 3.9].
@ We will use a variant of the so-called Gentzen deduction systems.

@ Objective: show that, under
hypotheses I, some formula(s) in A
can be proven.

P1,Pa, .. Py F @1, Q. Qul
is
[PLAPA. AP, FQIV V...V Q@

@ We will use a proof calculus where the goal is a single formula.
@ More constructive proofs — but see [Orib, Section 11.2] for interesting remarks.

Inside a sequent

@ We need a language to express hypothesis and goals.

o Not formally defined yet

o We will assume it is first-order, classical logic
o Recommended references: [Pau, HR04, Ben12]

@ We need a way to determine if (and how) A can prove .

e Inference rules.

Structural inference rules

=i dea (%

@ Three structural inference rules, independent of the predicate language.

HYPothesis MONotony
HpFp P HEQ oy
HPFQ

If the goal is among the

hypothesis, we are done. If goal proven without

hypothesis P, then can be
proven with P.

[PouéCNICA]
Inference rules
Structural Depending on logic
- Propositional - Sets .
- Hypothesis - First order . Relatlpns
- Functions
- Monotony - Temporal)
. - (Linear)
- Cut - Higher order Arithmetic
) - Reals
- Strings
- Arrays
- Bitvectors
i =
@i dea More rules
@ There are many other inference rules for:
o Logic itself (propositional / predicate logic)
CUT @ Look at the slides / documents in the course web page
@ reasoning on arithmetic (Peano axioms),
@ reasoning on sets,
@ reasoning on functions,
HEP H,P FQ ° ...
R= cut - . .
Q @ We will not list all of them here (see online documentation).

A goal can be proven with
an intermediate deduction
P. Nobody tells us what is P
or how to come up with it.
It cuts the proof into
smaller pieces.

(Cut Elimination Theorem)

Logic and inference rules

@ We may need to explain them as they appear.

@ But a mechanical prover has them as “inside knowledge” (plus

tactics, strategies)

=i dea %

For specific theories

Records

Difference
logic

Inductive
data types

Empty
theory

=i dea (%
[FouTECNICA]

The propositional language: basic constructs =i dea m;m The propositional language: rules for conjunction =i dea m’;z,
A conjunction on the RHS needs both
HFQ HEP branches of the conjunction be proven inde-
HFPAQ AND-R pendently of each other.
- Given predicates P and Q, we can construct: @ Precedence: -, A, = x€NLyeNLx+y<b kFx<4ny<4
e Examples
@ Parenthesis added when needed.
- NEGATION: -~ P o Ifin doubt: add parentheses!
@ Can you build the truth tables?
- CONJUNCTION: PAQ @ V, & are defined based on them.
o Define them
@ Can we use a single connective?
- IMPLICATION: P = Q@
The propositional language: rules for conjunction =i dea mim The propositional language: rules for disjunction =i dea mf;m
A disjunction on the LHS needs both branches of
A conjunction on the RHS needs both H,Q R H,P =R OR-L the disjunction be discharged separately.
HFQ HEP branches of the conjunction be proven inde- H,PVQ FR (x<O0Ay<0)Vx+y>0Fxxy>0
HFPAQ AND-R pendently of each other. Counterxample?
xeNLyeNLx+y <5 Fx<4ny<4 LHS: all conditions in which RHS has to hold. Removing part of disjunction makes “condition space” smaller
(removing part of conjunction makes the “condition space” larger, more general). Proofs with more general
assumptions are valid for less general assumptions, not the other way around.
HPQFER AND-L By definition of sequent.

HPAQ FR

)

The propositional language: rules for disjunction =i dea

[POLITECNICA]
A disjunction on the LHS needs both branches of

HQF+FR HPFR
HPVQFR

the disjunction be discharged separately.
(x<O0Ay<0)Vx+y>0Fxxy>0
Counterxample?

OR-L

LHS: all conditions in which RHS has to hold. Removing part of disjunction makes “condition space” smaller
(removing part of conjunction makes the “condition space” larger, more general). Proofs with more general
assumptions are valid for less general assumptions, not the other way around.

Adisjunction on the RHS only needs one
OR-R2 of the branches to be proven. There is a
rule for each branch.

HEQ

H+P
ORRT T Tpva

HEPVQ

Th itional | - rules f i @i dea
e propositional language: rules for negation .

— __ CNTR If we reach to a contradiction in the hy-

LFQ potheses, anything can be proven (principle

P PEG NOT-L of explosion). Note: not everyone accepts

this - more on that later.

H-P +-Q H,-P+Q
HFP

Reductio ad absurdum: assume the nega-
tion of what we want to prove and reach a
contradiction. Similarly with H + —P.

NOT-R

P AP = 1 (Falsehood) PV =P =T (Truth) T=-l

.. =i dea %
The propositional language: rules for disjunction -

A disjunction on the LHS needs both branches of
the disjunction be discharged separately.
(x<O0Ay<0)Vx+y>0Fxxy>0
Counterxample?

HQF+FR HPFR
HPVQFR

OR-L

LHS: all conditions in which RHS has to hold. Removing part of disjunction makes “condition space” smaller
(removing part of conjunction makes the “condition space” larger, more general). Proofs with more general
assumptions are valid for less general assumptions, not the other way around.

Adisjunction on the RHS only needs one

OR-R1 # OR-R2 of the branches to be proven. There is a
Ve Ve rule for each branch.
H —-P F Q Part of a disjunctive goal can be negated, moved to

HFPVQ NEG the hypotheses, and used to discharge the proof. Re-
lated to -P Vv Q being P = Q.
xeNyeNx+y>lLy>x Fx>0Vvy>1

=i dea (%
[FouTECNICA]

The propositional language: rules for implication

HEP H,Q R If we want to use P = Q, we show that P is

HP=QHFR IMP-L deducible from H and that, assuming Q, we
can infer R.

H.PFQ IMP-R We move the LHS P to the hypotheses. Note

HEP=Q thatsince P = Q is—PV Q, we are applying

the NEG rule in disguise.
xeNyeNx+y>kkFx=k=y>0

Additional rules
Equality axiom

EQL

FE=E TFoeN

Equality propagation

H(F),E = F + P(F)

First Peano axiom

Second Peano axiom

H(E),E = F - P(E) EQL-LR

Forthcoming proofs and propositional rules

The following proofs feature variables. Strictly speaking, they are not propositional. We
will however not use quantifiers, so we will treat formulas as propositions when

applying the previous rules.
We will assume the existence of simple, well-known arithmetic rules.

Invariant preservation proofs
EProgress /I 1INV

PO

neNFn+1eN

Arith

Simp-M-Minus

MON

EQ-LR

Arith

ceNyr>c,reNFr—ceN

beNceNc>0,r>c,aeNb=axc+r,reNFr—ceN b0

L:reN Event Progress
when r >= ¢
then
r,a:=r-c,at+1
end

Invariant preservation proofs
EProgress / I2 /INV
PO
Arith Arith*
MON Simp-M-Minus
EQ-LR Arith-M-M-R
OR-L
Arith
beN,ceN,c>0,r>c,aeNb=axc+r,reNFr—ceN b
L:reN Event Progress
when r >= ¢
then
r,a:=r-c,a+1

end

Invariant preservation proofs mi dea (2
p P e
EProgress /T 1INV
PO
Arith Gl
MON Simp-M-Minus
EQ-LR Arith-M-M-R
ceN,r:CVr>c,r€Nl—r—c€NA_th el
ri
eNr>creNFr—ceN
c r>c,r r—c MON

beN,ceNc>0,r>c,aeNb=axc+r,reNFr—ceN

L:reN Event Progress
when r >= ¢
then
r,a:=r-c¢, a+1
end

Invariant preservation proofs

@i dea X : : @i dea
e Invariant preservation proofs e
EProgress / 12 / INV EProgress / 12 / INV
PO U
Arith Arith” ——— Arith Arith*
ceNr=c,reNFr—ceN ORLnt- - ceNyr=c,reNFr—ceN ORLnt- -
ceNyr=cVr>c,reNFr—ceN ith) ceNyr=cVr>c,reNFr—ceN ith :
ceNr>c,reNkFr—ceN AT MON ceNr>c,reNkFr—ceN A MON
beN,ceN,c>0,r>c,aeNb=axc+r,reNFr—ceN beN,ceN,c>0,r>c,aeNb=axc+r,reNFr—ceN
L:reN Event Progress L:reN Event Progress
when r >= ¢ when r >= ¢
then then
r,a:=r-c,a+1 r,a:=r-c,a+1
end end
. . @i dea (% . . @i dea (%
Invariant preservation pI‘OOfS e Invariant preservation proofs
EProgress / 12 /INV EProgress / 12 / INV
PO TFoen HO
————— Arith Arith* — COEN Arith Arith*
E— G e MON Simp-M-Minus . MON Simp-M-Minus
ceNceNbc—ceN "0 o A.EMMR ceNceNbc—ceN "0 o A.EMMR
ceNr=creNkFr—ceN ORLrIt_ - ceNr=creNkFr—ceN ORLrIt- -
ceNr=cVvVr>creNFr—ceN Arith : ceNr=cvr>creNFr—ceN Arith .
ceNr>c,reNFr—ceN = Mol ceENr>creNFr—ceN rit oN
beNceNc>0,r>c,aeNb=axc+r,reNFr—ceN beNceNc>0,r>c,aeNb=axc+r,reNFr—ceN
L:reN Event Progress L:reN Event Progress
when r >= ¢ when r >= ¢
then then
r,a:=r-c,at+1
end

r, a :=
end

r-c,a+1

i A
Invariant preservation proofs @i dea m"fm
EProgress / I2 /INV
———— PO
—COE ith Arith®
ceNceNFc—ceN MOE'\(') s ilmr?_m_:nm;us
ceNr=c,reNFr—ceN ceNr>c,reNFr—ceN OR-L bR
ceNr=cVvVr>creNkFr—ceN ith)
ceNr>c,reNFr—ceN AT MON
beN,ceN,c>0,r>c,aeNb=axc+r,reNFr—ceN
L:reN Event Progress
when r >= ¢
then
r,a:=r-c,a+1
end
Invariant preservation proofs =i dea
EProgress /I 1INV
PO
Arith*

Fc—ceN MON
ceNceNFc—ceN EQ-LR
ceNr=creNkFr—ceN
ceNyr=cVr>c,reNkFr—ceN .
Arith

ceNyr>c,reNFr—ceN MON
beNceNc>0,r>c,aeNb=axc+r,reNFr—ceN

ceNr—c>0reNFr—ceN Simp-M-Minus
ceNr—c>c—c,reNkFr—ceN E
ceNr>creNkFr—ceN AT AR
OR-L

Event Progress

I:reN
when r >= ¢
then
r,a:=r-c,at+1

end

=i dea (%

Invariant preservation proofs e
EProgress / I2 /INV
——— PO
—COE ith Arith*
b4 ceNr—c>c—c,reNFr—ceN Slmp—M—Mlnus
Arith-M-M-R

ceNceNFc—-—ceN
ceNr=creNFr—ceN EQ-LR
ceNyr=cVr>c,reNFr—ceN .
Arith

ceNr>c,reNFr—ceN MON
beN,ceN,c>0,r>c,aeNb=axc+r,reNFr—ceN

ceNr>creNFr—ceN
OR-L

Event Progress

IL:reN
when r >= ¢
then
r,a:=r-c,a+1
end

fe)

=i dea

Invariant preservation proofs

EProgress /13 1INV

HYP
Arith-M-PI-Dist
Arith-M-PI-Dist
Arith-PI-M

ON

beN,ceN,c>0,r>c,aeNreNb=axc+r Fb=(a+1)xc+(r—c) 4

Event Progress
when r >= ¢
then

r,a:=r-c,a+1
end

Is:b=axc+r

Invariant preservation proofs =i dea

EProgress / 13 /INV

HYP
Arith-M-PI-Dist
Arith-M-PI-Dist
b=axc+r Fb=(a+1)xct+(r—c) GUIRARL A
beN,ceNc>0,r>c,aeNreNb=axc+r Fb=(a+1)xc+(r—c)
Is:b=axc+r Event Progress
when r >= ¢
then
r,a:=r-c,a+1
end
@i dea

Invariant preservation proofs
EProgress /I3 1INV

HYP

Arith-M-PI-Dist
Arith-M-PI-Dist
Arith-PI-M

b=axc+r Fb=axctc+r—c
b=axc+r kFb=(a+1l)xc+r—c
b=axc+r Fb=(a+1)xct+(r—c)
beN,ceNc>0,r>c,aeNreNb=axc+r Fb=(a+1)xc+(r—c) 4

ON

Iitb=axc+r Event Progress
when r >= ¢
then
r,a:=r-c,at+1
end

Invariant preservation proofs =i dea

EProgress / 13 /INV

HYP

Arith-M-PI-Dist
Arith-M-PI-Dist
Arith-PI-M

b=axc+r Fb=(a+1l)xc+r—c
b=axc+r Fb=(a+1)xct+(r—c)

MON
beN,ceN,c>0,r>c,aeNreNb=axc+r Fb=(a+1)xc+(r—c)
Is:b=axc+r Event Progress
when r >= ¢
then
r,a:=r-c,a+1
end
@i dea

Invariant preservation proofs
EProgress /13 1INV

HYP

Arith-M-PI-Dist
Arith-M-PI-Dist
Arith-PI-M

b=axc+r Fb=axc+r
b=axc+r Fb=axctc+r—c
b=axc+rkFb=(a+1l)xc+r—c
b=axc+r Fb=(a+1)xct+(r—c)
beN,ceN,c>0,r>c,aeNreNb=axc+r Fb=(a+1)xc+(r—c) 4

ON

Isitb=axc+r Event Progress
when r >= c
then
r,a:=r-c¢c,a+1
end

Invariant preservation proofs mlea & Inductive and non-inductive invariants -

Proofs for Finish @ We want to prove
Ae) = 1j(Einie(v, €), €)
® Epinisn/T1/INV A(c), Gi(v, c), h..n(v, c) = [(Ei(v,c),c)
@ Erinish/I2/INV @ I inductive invariant (base case + inductive case)
o EFinish/IgllNV

are trivial (Finish does not change anything)

Correctness: when Finish is executed, /3 A Grinisn = a = | 2] (with the
definition given for integer division).

: ; e : @mi dea (® : : v : @i dea (®
Inductive and non-inductive invariants s Inductive and non-inductive invariants E
@ We want to prove @ We want to prove
A(C) F /j(Einit(V~, C),C) A(C) = /j(Einit(V~, C),C)
A(c), Gi(v,c), h..n(v,c) F li(Ei(v,c),c) A(c), Gi(v,c), h..n(v,c) F li(Ei(v,c),c)

@ /;: inductive invariant (base case + inductive case) @ /;: inductive invariant (base case + inductive case)
@ Invariants can be true but non-inductive if they cannot be proved from program @ Invariants can be true but non-inductive if they cannot be proved from program

Event INIT Event Loop @ x > 0 looks like an invariant. Event INIT Event Loop @ x > 0 looks like an invariant.

a: x :=1 a: x := 2%x - 1 Prove it is preserved. a: x :=1 a: x 1= 2%x - 1 Prove it is preserved.
end end end end @ Itis not inductive (Loop:

x>0 F2xx—1>0?)

Inductive and non-inductive invariants

@ We want to prove

A(e) F i(Einit(v, c), €)
A(c), Gi(v,), h..n(v,c) F [i(Ei(v,c),c)

@ /;: inductive invariant (base case + inductive case)

@ Invariants can be true but non-inductive if they cannot be proved from program

Event INIT Event Loop
a: x :=1 a: x := 2%x - 1
end end

Proof by contradiction: why?

Trp N

@ x > 0looks like an invariant.
Prove it is preserved.

@ Itis not inductive (Loop:
x>0 F2xx—1>07?
@ x > 0is inductive (Prove it!)

=i dea

Inductive and non-inductive invariants

Proof by contradiction: why?

@ We want to prove
Ae) = 1j(Einie(v, €), €)
A(c), Gi(v,c), h..n(v,c) F [i(Ei(v,c),c)

@ /;: inductive invariant (base case + inductive case)

@ Invariants can be true but non-inductive if they cannot be proved from program

Event INIT Event Loop @ x > 0 looks like an invariant.
a: x :=1 a: x := 2%x - 1 Prove it is preserved.
end end @ Itis not inductive (Loop:

x>0 F2xx—1>07?)
@ x > 0is inductive (Prove it!)

@ x > 0 is stronger than x > 0 (if A = B, A stronger than B.)
@ Stronger invariants are preferred.

=i dea

Trp N

@ Common sense:
if we are in an impossible situation,
just do not bother.

i

; = i 3
Proof by contradiction: why? =i dea m‘;m Proof by contradiction: why? =i dea -

|5 CNTR T p CNTR @ Model-based:
e IfQ= P, thenQ + P.
o Extension: Ext(P) = {x|P(x)} (id. Q).
e Q= Piff Ext(Q) C Ext(P). Why???

@ Common sense: @ Common sense:
if we are in an impossible situation, if we are in an impossible situation,
just do not bother. just do not bother.
@ Proof-based: @ Proof-based:
o Let's assume Q and —Q. @ Let's assume Q and —Q.
@ Then -Q. e Then —Q.
o Then-QVP=Q=P. o Then-QVP=Q=P. o If Q=RA =R, Ext(Q) = 2.
e Butsince Q A (Q = P), then P. e Butsince Q A (Q = P), then P. e o C S, foranyS.
o Therefore, Ext(R A =R) C Ext(P) for
any P.
@ Thus, RA—-R = Pandthen L - P.
[Mordechai Ben-Ari. @i dea 2 Available at https://www.cs.cornell.edu/courses/cs4860/2009sp/lec-09.pgilapda @)
Mathematical Logic for Computer Science, 3rd Edition. — acccessed on Feb 20, 2021. —
Springer, 2012. [@ Lawrence C. Paulson.

Logic and Proof.

[Michael Huth and Mark Ryan. Lecture notes, U. of Cambridge.

Logic in Computer Science: Modelling and Reasoning About Systems.
Cambridge University Press, New York, NY, USA, 2004.

[§ Original Author Unclear.
Lecture 10: Gentzen Systems to Refinement Logic.
Available at https://www.cs.cornell.edu/courses/cs4860/2009sp/lec-10.pdf, last
acccessed on Feb 20, 2021.

@ Original Author Unclear.
Lecture 11: Refinement Logic.
Available at https://www.cs.cornell.edu/courses/cs4860/2009sp/lec-11.pdf, last
acccessed on Feb 20, 2021.

[@ Original Author Unclear.
Lecture 9: From Analytic Tableaux to Gentzen Systems.

	Conventions
	Landscape
	Event B approach
	Computation model
	Integer division example
	Invariants
	Sequents and proofs
	Inference rules
	Propositional language
	Inductive invariants

