
IX. Mathematical Language

J.-R. Abrial (ETHZ)

February 2007

IX. Mathematical Language

1 Introduction

This chapter contains the definition of theMathematical Languagewe use in this book. It is made of
four sections introducing successively the Propositional Language (section 3), the Predicate Language
(section 4), the Set-theoretic Language (section 5), and the Arithmetic Language (section 6). Each of
these languages will be presented as an extension of the previous one. Before introducing these languages
however, we shall give a brief summary of the Sequent Calculus (section 2).

2 Sequent Calculus

Before introducing the Sequent Calculus and Predicate Logic in a rigorous manner, it might be helpful
to see how the ideas behind them are already implicitly present in “ordinary” mathematical proofs. For
this purpose, we shall choose some examples in Geometry and Arithmetic. There are many ways of doing
mathematical proofs. Here are a few of techniques, which are quite common:

1. We can perform the proof of a statement by deducing this statement from others which we have then
to prove or which we have already proved. Usually the initial statement is to be proved under certain
assumptions. Such a proof method is calledhypothetico-deductive. It is very common.

2. Among the previously mentioned proofs, some are done bycontradiction. For this we assume the
negation of the statement we want to prove, and then deduce a contradiction.

3. Sometimes a proof decomposes itself in different exclusive cases: then we perform a, so-called,proof
by cases.

4. In some occasions, it is useful to first prove something different from what we have to prove origi-
nally. Once it is done, we return to our original problem with an additional assumption corresponding
to the new statement we have just proved. We have proved a, so called,lemma.

5. When dealing with Natural Numbers, we can do a proofby induction. This is to be done when the
statement to be proved concerns all Natural Numbersn. We first prove the property for 0, and then we
prove it forn+1 under the additional assumption that it holds forn. Such a proof method generalizes
to any inductively generated set: sets of finite sequences, set of finite trees, and so on.

6. Sometimes a proof is just performed by doing analgebraic calculation. The calculation corresponds
to applying some re-writing rules.

In what follows, we shall give some examples of such proof methods.

2.1 Deductive Proof in Geometry

Our first example is an hypothetico-deductive proof in Geometry. Here is what we want to prove:

Theorem: The three altitudes of a non-right triangle meet in a single point.

Given a triangle ABC, we draw two altitudes: BK and CL. They meet at point O. Now we have to prove
that AO, intersecting BC in H, is also an altitude. All this is shown in the following figure:

1

?
B C

K

H

L

A

O

We can be a little more precise, by stating what ourHypothesesare, namely:

– Hypothesis 1: BA and CL are perpendicular
– Hypothesis 2: L is on BA and distinct from B and A
– Hypothesis 3: BK and CA are perpendicular
– Hypothesis 4: K is on CA and distinct from C and A
– Hypothesis 5: BK and CL meet at O
– Hypothesis 6: AO meets BC in H

And now we can state what ourGoal is:

– Goal: AH is perpendicular to BC

A statement to prove can always be expressed in this way. One has first to make very clear what our
hypotheses and goal are. If the set of hypotheses is denoted byH and the goal byG, then the statement to
prove, is called asequent, and it is written as follows:

H ` G

This is to be read: "H entailsG". We could also say that we want to "prove the goal G under the hypotheses
H". In our case, we can write it as follows:

BA and CL are perpendicular,
L is on BA and distinct from B and A,
BK and CA are perpendicular,
K is on CA and distinct from C and A,
BK and CL meet in O,
AO meets BC in H

` AH is perpendicular to BC

In the rest of this section, we abbreviate this set of hypotheses byHYPS. In order to proceed, we have
to see how we can take some facts in our mathematical knowledge of the triangle to find out a proof of
the goal. As one knows, the sum of the interior angles of a triangle is constant. Let us consider the two

2

triangles KBC and HAC. Since they have the anglêBCA in common, and since BK is perpendicular to
AC, then to prove that AH is perpendicular to BC, it is sufficient to prove that angleŝKBC andĤAC are
equal. In other words, to provêAHC = B̂KC, it is sufficient to provêKBC = ĤAC. This is illustrated in
the following figure:

B C

K

H

L

A

O

?

?

What we have implicitly applied in the previous statement is arule allowing us to transform one sequent
into other ones. More explicitly, this rule says that in order to prove that two angles are equal under certain
hypothesesH, it is sufficient to prove that these angles are angles of two triangles having already their
other two angles equal. Such a rule is called aninference rule. Given a trianglet1 with anglesâ1,b̂1 and
ĉ1, and a trianglet2 with anglesâ2,b̂2, andĉ2, our inference rule can be stated as follows:

GEO1

H ` b̂1 = b̂2
H ` ĉ1 = ĉ2

H ` â1= â2

More generally, an inference rule, namedr1, is made of two parts: the antecedent part and the consequent
part. The antecedent partA is a set of sequents and the consequent partC is a single sequent. It is written
like this:

r1
A

C

Such a rule can be read as follows: in order to have a proof of the sequentC it is sufficient to have a proof
of each sequent inA. As can be seen our initial sequent to prove is now transformed by this rule into two
sequents to prove. In our case, the two triangles are KBC and HAC, the angleâ1 isÂHC, the angleâ2 is
B̂KC, the angleb̂1 isB̂CA, the angleb̂2 is alsoB̂CA, finally the angleĉ1 isK̂BC, and the anglêb2 is also
ĤAC. As a consequence, our first sequent to prove is now transformed in the following two sequents:

3

HYPS ` B̂CA = B̂CA

HYPS ` K̂BC = ĤAC

The first sequent is trivially proved by means of an inference rule on equality saying that every object is
equal to itself. This can be stated as follows:

EQL1
H ` x = x

We notice that this inference rule has an empty set of antecedents. It means that its consequent is proved
without further proofs. In order to prove the second sequent, we draw the line LK, and try to prove that
both angleŝKBC andĤAC are equal to anglêKLC. This is illustrated in the following figure:

B C

K

H

L

A

O

?

?

?

In doing that, we have implicitly applied another rule of equality which is the following:

EQL2

H ` x = z
H ` y = z

H ` x = y

So we are left with the following two sequents to prove:

HYPS ` K̂BC = K̂LC

HYPS ` K̂AO = K̂LO

Note that the goal of the second sequent should have been̂HAC = K̂LC. We have replaced anglêHAC
by angleK̂AO and angleK̂LC by angleK̂LO. This has been possible since (at least in the shown figure)
O is situated in between A and H, K is situated between A and C, and O is situated between L and C.

4

Doing these replacements involve applying some more geometrical inference rules and another equality
rule which we accept implicitly here to simplify matters.

In order to prove these equalities, we remember the following geometrical rule: when four pointsa, b, c,
andd are on a circle in that order, then angleŝacd andâbd are equal. We have then to prove that points
K, L, B, and C are on a circle. And also that points O, L, A, K are on a circle. This is illustrated in the
following figure:

B C

K

H

L

A

O

? ?

?

?

?

?

?

?

This could be formalized by the following geometrical rule:

GEO2
H ` Pointsa, b, c, andd are on a circle

H ` âcd = âbd

We are now left to prove the following sequents

HYPS ` Points K, L, B, and C are on a circle

HYPS ` Points K, L, A, and O are on a circle

The final geometrical knowledge we are going to apply now concerns right triangles. Given two right
trianglesabc andadc, thena, b, c, andd are on the same circle. In other words, we have to prove that
triangles BLC, BKC, OLA, and OKA are all right triangles. More precisely, we have then to prove that
BL and CL are perpendicular as well as BK and CK, and also OL and AL as well as OK and AK. This is
illustrated in the following figure:

5

B C

K

H

L

A

O

This could be formalized by the following geometrical rule:

GEO3

H ` cb anddb are perpendicular
H ` ca andda are perpendicular

H ` Pointsa, b, c, andd are on a circle

We are now left to prove the following four sequents:

HYPS ` BL and CL are perpendicular

HYPS ` BK and CK are perpendicular

HYPS ` AL and OL are perpendicular

HYPS ` AK and OK are perpendicular

The first goal is easilydeductible from the hypotheses. Hypothesis 1 tells us the BA and CL are perpen-
dicular. And Hypothesis 2 tells us that L is on BA. We can thus replace BA by BL (if B and L are distinct
which they are by hypothesis). This can be formalized by the following geometrical inference rule:

GEO4

H ` ad andcb are perpendicular
H ` b is onad and distinct froma

H ` ab andcb are perpendicular

So, for proving our first sequent, we are left to prove the following two sequents:

HYPS ` BA and CL are perpendicular

HYPS ` L is on BA and distinct from B

6

But these two sequents are “obvious” since they are included in our hypotheses. This can be formalized
by means of the following general inference rule calledHYP.

HYP
H, P ` P

The last three sequents that remain to be proved could be proved in a similar manner. It is now possible to
summarize the proof in the following denser form:

1 HYPS ` AH is perpendicular to BC GEO1

2 HYPS ` B̂CA = B̂CA EQL1

3 HYPS ` K̂BC = ĤAC EQL2

4 HYPS ` K̂BC = K̂LC GEO2
5 HYPS ` K, L, B, and C on a circle GEO3
6 HYPS ` BL is perpendicular to CL GEO4
7 HYPS ` BA is perpendicular to CL HYP
8 HYPS ` L is on BA and distinct from B HYP
9 HYPS ` BK is perpendicular to CK GEO4
10 HYPS `

11 HYPS ` K̂AO = K̂LO GEO2
12 HYPS ` K, L, A, and O on a circle GEO3
13 HYPS ` OL is perpendicular to AL GEO4
14 HYPS `
15 HYPS ` OK is perpendicular to AK GEO4
16 HYPS `

As can be seen, each line contains a sequent and the first line contains the sequent we have to prove.
Each line also contains the rule that is applied in order to prove the corresponding sequent. Then the new
sequents to prove are shifted to indicate the dependency. For instance, on line 3 you can see the sequent
HYPS ` K̂BC = ĤAC together with ruleEQL2 at the end of the line. The two new sequents to be
proved are then shown on lines 4 and line 11. This layout shows thetree structure of the proof.

2.2 A Proof by Contradiction in Arithmetic

The example we propose now is very famous. It has been known since the ancient Greeks. This is the very
classical example of a proof by contradiction. We shall also make use of a lemma in this proof. We want
to prove the following:

Theorem:
√

2 is irrational.

The proof is done by contradiction. It proceeds as follows: we suppose that
√

2 is rational. And we shall
derive a contradiction. Here is thus our hypothesis

Hypothesis 1:
√

2 is rational

According to this hypothesis,
√

2 can be put under the following form:

7

√
2 = p/q (1)

wherep andq are two Natural Numbers which must fulfil the following two conditions, which are thus
additional hypotheses:

Hypothesis 2: q is not equal to 0

Hypothesis 3: p andq have no common divisor

According toHypothesis 2 we can multiply byq both parts of equality (1) and then square both parts of
the result, yielding:

2q2 = p2 (2)

Hencep2 is even. We shall prove below a lemma telling us that when a square such asp2 is even then so
is p. As a consequence,p can be written as follows

p = 2n (3)

Replacingp in (2) by its value in (3), we obtain:

2q2 = 4n2 (4)

Hence, we have

q2 = 2n2 (5)

Thusq2 is even and alsoq according to the same lemma, which we have not yet proved. But what we
have just proved is that bothp andq are divisible by 2. In other words, they both have 2 as a divisor. This
contradictsHypothesis 3 which says thatp andq have no common divisor. This achieves the proof of
our theorem.

It remains for us to prove the lemma we mentioned.

Lemma: If a Natural Numberp is such thatp2 is even thenp is even.

Here we have an assumption

Hypothesis 1: p2 is even

The proof proceeds by contradiction too. So we suppose thatp is odd and try to derive a contradiction

Hypothesis 2: p is odd

FromHypothesis 2, we can writep as follows

p = 2n + 1

Thus

p2 = 4n2 + 4n + 1

Thusp2 is odd too. But this contradictsHypothesis 1 telling us thatp2 is even.

8

2.3 Recursive Definition and Proof by Induction in Arithmetic

Our next example shows a proof by induction on Natural Numbers. We first define a certain quantity
recursively and then derive a property of this quantity by induction.

The sum of then first natural numbers can be defined recursively as follows. First for 0, and then forn+1
in term of its value forn. Formally:

(1)
0∑

i=1

i = 0 (2)
n+1∑
i=1

i = (n + 1) +
n∑

i=1

i

We want to prove the following:

Theorem: Twice the sum of the firstn Natural Numbers is equal ton.(n + 1).

2.
n∑

i=1

i = n.(n + 1)

The inductive proof proceeds as follows. We have to cases: thebase case, and then theinductive case. In
the base case, we prove that the theorem is true whenn is equal to 0. In the inductive case, we prove that
the theorem is true forn + 1 under the hypothesis that it is already true forn.

Base Case

Whenn is 0, we have according to (1)

2.
0∑

i=1

i = 0 = 0.(0 + 1)

Inductive Case

We assume that the theorem holds forn

Hypothesis: 2.

n∑
i=1

i = n.(n + 1)

According to (2), we have

2.
n+1∑
i=1

i = 2.(n + 1) + 2.
n∑

i=1

i

that is, according to theHypothesis

2.
n+1∑
i=1

i = 2.(n + 1) + n.(n + 1) = (n + 1).(n + 2)

2.4 Proof by Calculation

Our last example is again taken in Geometry. But the proof we give here is not at first glance a hypothetico-
deductive proof as the one proposed in our first example. It is a proof which is entirely done by calculation.
We have the feeling that such a proof, although certainly correct, is a bit frustrating. It is almost always the

9

case with a proof based on a calculation. In other words, we can “see” the proof but we do not understand
the deeper geometrical reason for this theorem to be true. We shall show however that the calculation will
help us finding this geometrical reason.

We are given 4 pointsa, b c andd on a plane. Lett, u, v, andw be the middle ofab, bc, cd, andda
respectively. From these points we draw the segmentstm, un, vp, andwq in such a way that these
segments are perpendicular toab, bc, cd, andda respectively. Moreovertm, un, vp, andwq are equal to
the half ofab, bc, cd, andda respectively. This is indicated in the following figure:

a b

c

m

n

w

v

t
q

p

d
u

And now we joinm to p andq to n as indicated below:

a b

c

m

n

w

v

t
q

p

d
u

10

We want to prove the rather surprising fact:

Theorem: mp andqn are equal and perpendicular

We are going to do a vector calculation using complex numbers. Letmp be the complex number repre-
senting the vectormp. Likewise, letqn be the complex representation of the vectorqn. The fact thatmp
andqn are equal and perpendicular implies proving the following:

qn = i.mp

What we are going to do now is simply to compute these vectors using complex number calculations. The
following figure will help us to perform the initial calculation. Note thata, b, t, andm are also complex
numbers in this calculation.

a b

m

t

t is the middle ofab
t = (a + b)/2

tb = b− t
tb = (b− a)/2

rotation:π/2
tm = i.(b− a)/2

m = t + tm
m = (a + b)/2 + i.(b− a)/2

permutation:a 7→ c, b 7→ d
p = (c + d)/2 + i.(d− c)/2

mp = p−m
mp = ((c + d)− (a + b))/2 + i.((d + a)− (b + c))/2

permutation:a 7→ d, b 7→ a, c 7→ b, d 7→ c
qn = ((b + c)− (d + a))/2 + i.((c + d))− (a + b))/2

reminder:i2 = −1
i.mp = ((b + c)− (d + a))/2 + i.((c + d))− (a + b))/2

Therefore, we have indeed the expected result, namely

qn = i.mp

Again, this result is frustrating because we do not understand the geometrical reason. Clearly, if this
segments are equal and perpendicular, there must exist a 90 degrees rotation that mapsn to m andp to q.
The problem is to guess what the center of this rotation could be. Leto be the middle of the diagonalac.
We guess thato is the center of this rotation. If our guess is correct, we have then to prove the following
vector equalities:

om = i.on op = i.oq

The calculation goes as follows:

11

o = (a + c)/2

n = (b + c)/2 + i.(c− b)/2
permutation:b 7→ a, c 7→ b

m = (a + b)/2 + i.(b− a)/2
on = n− o

on = (b− a)/2 + i.(c− b)/2
om = m− o

om = (b− c)/2 + i.(b− a)/2
reminder:i2 = −1

i.on = (b− c)/2 + i.(b− a)/2

Thus we have indeed

om = i.on

The calculations ofop andoq could be conducted in a similar manner.

This can be illustrated as follows:

a b

c

m

n

u

w

v

t

q

d

p

o

And now we understand the geometrical “deeper” reason. It is illustrated in the following figure, where it
is now easy to prove geometrically that both trianglestmo andoun are equal and perpendicular.

12

a b

c

m

n

u

t

o

This proof where we use the calculation to help us finding the geometrical reason is by analogy typical of
the kinds of reasoning that we would like to perform in our computer system developments.

2.5 Definitions of the Sequent Calculus

In this section, we give some more formal definitions to refresh on what we have seen in the previous
sections, particularly in the first example.

(1) A sequentis a generic name for “something we want to prove”. For the moment, this is just an infor-
mally defined notion, which we shall refine later. In what follows we shall use identifiers such asS1, S2,
etc. to denote sequents. The important thing to note at this point is that we can associate aproof with a
sequent. For the moment, we do not know what a proof is however. It will only be defined at the end of
this section.

(2) An inference ruleis a device used to construct proofs of sequents. It is made of two parts: thean-
tecedentpart and theconsequentpart. The antecedent denotes a finite set of sequents while the consequent
denotes a single sequent. An inference rule, named sayr1, with antecedentA and consequentC is usually
written as follows:

A
r1 —-

C

It is to be read:

Inference Ruler1 yields a proof of sequentC as soon as we have proofs of each sequent ofA

Note that the antecedentA might be empty. In this case, the inference rule, named sayr2, is written as
follows:

13

r2 —-
C

And it is to be read:

Inference Ruler2 yields a proof of sequentC

(3) A Theoryis a set of inference rules.

(4) It is now possible to give the definition of theproof of a sequentwithin a theoryT . It is simply a finite
tree with certain constraints. The nodes of such a tree have two components: a sequents and a ruler of
the theoryT . Here are the constraints for each node of the form(s, r): the consequent of the ruler is s,
and the children of this node are nodes whose sequents are exactly all the sequents of the antecedent of
rule r. As a consequence, the leaves of the tree contain rules with no antecedent. Moreover, the top node
of the tree contains the sequent to be proved. As an example, let be given the following theory:

r1 S2 r2 S7
S4 r3 S2 S3 S4

S1 r4 S5 r5 S5 S6
S3 r6 S6 r7 S7

Here is a proof of the sequentS1:

(S1, r3)
↙ ↓ ↘

(S2, r1) (S3, r5) (S4, r2)
↙ ↓ ↓

(S5, r4) (S6, r6) (S7, r7)

As can be seen, the root of the tree has sequentS1, which is the one we want to prove. And it is easy to
check that each node, say node(S3, r5), is indeed such that the consequent of its rule is the sequent of the
node:S3, in this case, is the consequent of ruler5. Moreover, we can check that the sequents of the child
nodes of node(S3, r5), namely,S5 andS6, are exactly the sequents forming the antecedents of ruler5.
This tree can be represented vertically as indicated below. In this text, we shall adopt this representation.

S1 r3
S2 r1
S3 r5

S5 r4
S6 r6

S4 r2
S7 r7

2.6 Sequents for a Mathematical Language

We now refine our notion of sequent in order to define the way we shall make proofs with our Mathemati-
cal Language. Such a language contains constructs calledPredicates. For the moment, this is all what we
know about our Mathematical Language. Within this framework, a sequentS, as defined in the previous
section, now becomes a more complex object. It is made of two parts: thehypothesespart and thegoal
part. The hypothesis part denotes a finite set of predicates while the goal part denotes a single predicate.
A sequent with hypothesesH and goalG is written as follows:

14

H ` G

This sequent is to be read as follows:

Under the set of hypothesesH, prove the goalG

This is the sort of sequents we want to prove. It is also the sort of sequents we shall have in the theories
associated with our Mathematical Language.

Note that the set of hypotheses of a sequent might be empty. As a practical notation, a set of hypotheses
H to which we add an extra hypothesisP , is simply written as:H,P

2.7 Initial Theory

We now have enough elements at our disposal to define the first rules of our proving theory. Note again
that we still don’t know what a predicate is. We just know that predicates are constructs we shall be able
to define within our future Mathematical Language. We start with three basic rules which we first state
informally. They are calledHYP, MON , andCUT.

HYP: If the goalP of a sequent belongs to the set of hypothesesH of this sequent, then it is proved.

MON : Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved.

CUT: If you succeed in proving a predicateP under a set of hypothesesH, thenP can be added to the set
of hypothesesH for proving a goalQ.

These rules can be encoded as follows:

HYP
H, P ` P

MON
H ` Q

H, P ` Q
CUT

H ` P H, P ` Q

H ` Q

The previous theory can be given a more convenient tabular form, which we shall adopt in what follows.
We name itT0:

Antecedents Consequent

HYP H, P ` P

MON H ` Q H, P ` Q

CUT
H ` P

H, P ` Q
H ` Q

T0

15

Note that in the previous rules, the letterH, P andQ are, so-called,meta-variables. The letterH is a meta-
variable standing for a finite set of predicates, whereas the letterP andQ are meta-variables standing for
predicates. Clearly then, each of the previous “rules” stands for more than just one rule: it is better to call
it a rule schemaor a generic rule. This will always be the case in what follows.

3 The Propositional Language

In this section we present a first simple version of our Mathematical Language, it is called the Proposi-
tional Language. It will be later refined to more complete versions.

3.1 Syntax

Our first version is built around three constructs calledconjunction, implication, andnegation. Given two
predicatesP andQ, we can construct their conjunctionP ∧Q and their implicationP ⇒Q. And given a
predicateP , we can construct its negation¬P . This can be formalized by means of the following syntax:

predicate ::= ¬ predicate
predicate ∧ predicate
predicate ⇒ predicate

SY NTAX1

This syntax is clearly ambiguous, but we do not care about it at this stage. In this text, in order to avoid
ambiguities, we shall provide as many pairs of parentheses as needed. Also note that this syntax does not
contain any “base” predicate: such predicates will come later.

3.2 Enlarging the Initial Theory

The initial theoryT0 of section 2.7 is enlarged with the following inference rules forming TheoryT1:

Antecedents Consequent

R1 H ` P
H ` Q

H ` P ∧ Q

R2 H ` P ∧ Q H ` P

R3 H ` P ∧ Q H ` Q

R4 H, P ` Q H ` P ⇒ Q

T1

16

Antecedents Consequent

R5 H ` P ⇒ Q H, P ` Q

R6 H, ¬Q ` P
H, ¬Q ` ¬P

H ` Q

R7 H, Q ` P
H, Q ` ¬P

H ` ¬Q

T1

As can be seen, rulesR1, R2, andR3 are used to eliminate or introduce the∧ operator. RulesR4 and
R5 are used to eliminate or introduce the⇒ operator. And rulesR6 andR7 are used to do proofs by
contradiction.

3.3 Replacing the Previous Theory

The previous TheoryT1 is very natural and clearly in full accordance with our intuitive understanding of
conjunction, implication and negation. But it suffers a very important drawback: it is not very convenient
to use it to construct practical proofs because it offers too many possibilities.

We shall then propose another Theory calledS1. TheoryS1 can be constructed systematically from
TheoryT1 but we shall not do this construction here. TheoryS1 is certainly far less natural than Theory
T1, but it offers the great advantage over TheoryT1 to be almost deterministic. Almost only, but, at the
end of this section, we shall indicate a certain way of using it which makes it completely deterministic: it
means that at each step of the proof tree construction we shall have only one possibility of choosing an
applicable inference rule or no possibility at all in case of failure.

In fact, TheoryS1 defines a, so-called,proof procedurefor the simple Proposition Language so far de-
fined. It can be easily mechanized. But before doing this, we have to extend our proposition Language
with one predicate:⊥. This predicate is just used in this theory. In other words, users of the Mathematical
Language are not allowed to use it. Here is TheoryS1:

Antecedents Consequent

INI H ` ¬R ⇒ ⊥ H ` R

AXM H, P, ¬P ` R

AND1 H ` ¬Q ⇒ R
H ` ¬P ⇒ R

H ` ¬ (P ∧ Q) ⇒ R

AND2 H ` P ⇒ (Q ⇒ R) H ` (P ∧ Q) ⇒ R

S1

17

Antecedents Consequent

IMP1 H ` P ⇒ (¬Q ⇒ R) H ` ¬ (P ⇒ Q) ⇒ R

IMP2 H ` Q ⇒ R
H ` ¬P ⇒ R

H ` (P ⇒ Q) ⇒ R

NEG H ` P ⇒ R H ` ¬¬P ⇒ R

DED H, P ` R H ` P ⇒ R

S1

This theory has to be used with a, so-called, tactic telling us in which order the rules have to be applied.
Here is the tactic, where RULES is one ofAXM , IMP1 , IMP2 , AND1, AND2, NEG:

INI ; (RULES? ; DED)?

This tactic has to be read as follows: First use ruleINI once. Then start the following process: use any
rule in RULES as long as it is possible, then useDED once, and finally re-start this process.

3.4 Example

Here is an example of using the previous proof procedure. It is used to prove the following sequent:

` (A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C))

Proof

1 ` (A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C)) INI
2 ` ¬ ((A ⇒ B) ⇒ ((A ∧ C) ⇒ (B ∧ C)))⇒ ⊥ IMP1
3 ` (A ⇒ B) ⇒ (¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥) IMP2
4 ` B ⇒ (¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥) DED
5 B ` ¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥ IMP1
6 B ` (A ∧ C) ⇒ (¬ (B ∧ C)⇒ ⊥) AND2
7 B ` A ⇒ (C ⇒ (¬ (B ∧ C)⇒ ⊥)) DED
8 B,A ` C ⇒ (¬ (B ∧ C)⇒ ⊥) DED
9 B,A, C ` ¬ (B ∧ C)⇒ ⊥ AND1
10 B,A,C ` ¬C ⇒ ⊥ DED
11 B,A,C,¬C ` ⊥ AXM
12 B,A,C ` ¬B ⇒ ⊥ DED
13 B,A,C,¬B ` ⊥ AXM
14 ` ¬A ⇒ (¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥) DED
15 ¬A ` ¬ ((A ∧ C) ⇒ (B ∧ C))⇒ ⊥ IMP1
16 ¬A ` (A ∧ C) ⇒ (¬ (B ∧ C)⇒ ⊥) AND2
17 ¬A ` A ⇒ (C ⇒ (¬ (B ∧ C)⇒ ⊥)) DED
18 ¬A,A ` C ⇒ (¬ (B ∧ C)⇒ ⊥) AXM

18

As can be seen, this proof procedure must be mechanized: there is no point in doing such a proof manually
since it is easily mechanizable.

3.5 Methodology

The method we are going to use to build our Mathematical Language will be very systematic. It consists
in subsequently augmenting our syntax, and correlatively augmenting our available inference rules. At
each step of the construction, we shall have anaturalTheoryTi and a correspondingpracticalTheorySj

which is derived fromTi.

We shall use two different approaches for extending our language. Either the extension corresponds to
a simple facility. In other words, the new construct can entirely be defined in terms of existing ones. In
that case, we shall only augment the current practical TheorySj . Or the new construct is definitely new
and not related to any previous construct. In that case, we shall proceed differently. We first augment the
current natural TheoryTi and then derive from it a corresponding augmentation of the current practical
TheorySj .

3.6 Extending the Proposition Language

The Proposition Language is now extended by adding two more constructs calleddisjunctionandequiv-
alence. Given two predicatesP andQ, we can construct their disjunctionP ∨ Q and their equivalence
P⇔Q. We also add one predicate:>. As a consequence, our syntax is now the following, where we have
underlined the new constructs:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate

SY NTAX2

Such extensions are defined in terms of previous ones by mere rewriting rules:

Predicate Rewritten

> ¬ ⊥

P ∨ Q ¬P ⇒ Q

P ⇔ Q (P ⇒ Q) ∧ (Q ⇒ P)

For convenience, TheoryS1 can be extended with the following rules which can be established easily
after applying the previous rewriting rules:

19

Antecedents Consequent

OR1 H ` ¬P ⇒ (¬Q ⇒ R) H ` ¬ (P ∨Q) ⇒ R

OR2 H ` Q ⇒ R
H ` P ⇒ R

H ` (P ∨Q) ⇒ R

EQV1 H ` P ⇒ (¬Q ⇒ R)
H ` ¬P ⇒ (Q ⇒ R) H ` ¬ (P ⇔Q) ⇒ R

EQV2 H ` P ⇒ (Q ⇒ R)
H ` ¬P ⇒ (¬Q ⇒ R) H ` (P ⇔Q) ⇒ R

S2

4 The Predicate Language

In this section, we introduce the Predicate Language. The syntax is extended with a number of new
kinds of predicates and also with the introduction of two new syntactic categories calledexpressionand
variable. A variable is a simple identifier. Given a list of variablesx made of distinct identifiers and a
predicateP , the construct∀x·P is called auniversally quantified predicate. Given a list of variablesx
made of distinct identifiers, a list of expressionsE of the same size as that ofx, and a predicateP , the
construct[x := E]P is called asubstituted predicate. An expression is either a variable, asubstituted
expressionformed in exactly the same way as a substituted predicate, or else apaired expressionE 7→ F ,
whereE andF are two expressions. Note that substituted predicates and expressions are given here in
order to be able to define the inference rules of quantified predicates in section 4.5. In fact, such constructs
will never be used by users of the Mathematical Language. Here is this new syntax:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
[var_list := exp_list] predicate

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier

SY NTAX3

Note that we have not defined any syntactic structures for the two syntactic categoriesvar_list and
exp_list. They respectively denote finite sequences of variables and finite sequences of expressions.

20

4.1 Predicates and Expressions

It might be useful at this point to clearly identify the distinction between a predicate and an expression. A
predicateP is a piece of formal text which can beprovedwhen embedded within a sequent as in:

` P

A predicate does not denote anything. This is not the case of an expression which always denote an
object. An expression cannot be “proved”. Hence predicate and expression are incompatible. Note that for
the moment the possible expressions we can define are quite limited. This will be considerably extended
in the Set-theoretic Language defined in section 5.

4.2 Substitutions and Quantified Predicates

A construct such asx := E, embedded into the predicate[x := E]P , wherex is a list of variables made
of distinct identifiers,E is a list of expressions of the same size asx, andP is a predicate, is called a
substitution. The construct[x := E]P denotes a transformation of the predicateP obtained by replacing
in P the free occurrencesof the variables of the listx by the corresponding expression of the listE. In
section 4.3, we shall formally define what we mean by a free occurrence of a variable in a predicate or
expression. And in section 4.4 we define rules to be applied in order to systematically perform such a
transformation. Similar substitutions can be used in an expression.

A predicate such as∀x·P , wherex is a list of variables made of distinct identifiers andP is a predicate, is
called auniversally quantified predicate. The predicateP is thescopeof the variables ofx in the quantified
predicate∀x·P . The variables ofx are said to beboundin P . Other variables having occurrences inP
which are not bound are said to befree. Informally speaking for the moment, saying that such a universally
quantified predicate is proved means that all predicates of the form[x := E]P are then also proved. This
will be formalized by two inference rules in section 4.5.

4.3 Free and Bound Variable Occurrences

The non-freeness of a list of variables in a formula can be calculated by means of a number of rules. These
rules are defined on the structure of our Predicate Language. More precisely, the rules give meaning to
the syntactic condition “l nfin K”, wherel is a list of variables andK is a predicate or an expression. A
construct such as “l nfin K” is to be read “variables of the listl are not free inK”. Note that being “not
free” is the same as being “bound”.

In the following table,x andy are meta-variables standing for a variable,l is a meta-variable standing
for a list of variables,P andQ are meta-variables standing for a predicate,E andF are meta-variables
standing for an expression, L is a meta-variable standing for a list of expressions, andK is a meta-variable
standing for a predicate or an expression.

Non-freeness Condition

NF1 x nfin y x and y are distinct
identifiers

NF2 (l, y) nfin P l nfin P and y nfin P

NF1

21

Non-freeness Condition

NF3 (l, y) nfin E l nfin E and y nfin E

NF4 x nfin (P ∧Q) x nfin P and x nfin Q

NF5 x nfin (P ⇒Q) x nfin P and x nfin Q

NF6 x nfin ¬P x nfin P

NF7 x nfin ∀x · P

NF8 x nfin ∀y · P x nfin y and x nfin P

NF9 x nfin (∀ l, y · P) x nfin (∀l · ∀y · P)

NF10 x nfin [x := E]K x nfinE

NF11 x nfin [y := E]K x nfin y and x nfinE and x nfin K

NF12 x nfin [l, x := L, E]K x nfin[l := L]K and x nfin E

NF13 x nfin [l, y := L, E]K x nfin y and x nfin[l := L]K and x nfin E

NF14 x nfin (l, y) x nfin l and x nfin y

NF15 x nfin (L,E) x nfin L and x nfin E

NF16 x nfin (E 7→ F) x nfin E and x nfin F

NF1

4.4 Substitution Rules

Substituted predicates or expressions can be calculated by means of the following rules defined on the
structure of the Predicate Language. In this table, we use the same meta-variable conventions as in the
previous table.

22

Substitution Definition

SUB1 [x := E]x E

SUB2 [x := E] y y if x nfin y

SUB3 [x := E] (P ∧Q) [x := E]P ∧ [x := E]Q

SUB4 [x := E] (P ⇒Q) [x := E]P ⇒ [x := E]Q

SUB5 [x := E]¬P ¬ [x := E]P

SUB6 [x := E]∀x · P ∀x · P

SUB7 [x := E]∀ y · P ∀ y · [x := E]P
if y nfin x and y nfin E

SUB8 [x := E]∀ l, y · P [x := E]∀ l · ∀ y · P

SUB9 [x := E] (F 7→ G) [x := E]F 7→ [x := E]G

SUB10 [l, x := L,E]F [z := E] [l := L] [x := z]F
if z nfin (l, x) and z nfin (L,E, F)

SUB1

The application of these rules makes it possible to completely eliminate substitutions. Note that it is always
possible to transform a quantified predicate such as∀x · P into the following equivalent one∀y · [x :=
y]P providedy is not free inP . This transformation is called achange of variables.

4.5 Universally Quantified Predicate Inference Rules

We now enlarge the initial theoryT1 of section 3.2 with the following specific rules for universally
quantified predicates:

Antecedents Consequent

R8
x nfin Q for eachQ in H
H ` P

H ` ∀x · P
T2

23

Antecedents Consequent

R9 H ` ∀x · P H ` [x := E]P

T2

Note that in RuleR8, the side condition might be false when the quantified variablex is free in the
hypothesesH. One can easily cure this by doing a change of variable in the universal quantification∀x·P .
More precisely, one can replace∀x·P by ∀y ·[x := y]P , wherey is a new variable that is not free inH.
Such a change of variable is always possible.

4.6 Replacing the Previous Theory Extension

As for the case of the Proposition Language in section 3.3, we can replace the extension of previous section
by this one which is more convenient to use for mechanizing the proof construction of our Predicate
Language. Here is this extension of the practical TheoryS2:

Antecedents Consequent

ALL1
if x nfin R and x nfin Q for eachQ in H

H ` ¬P ⇒R
H ` ¬ (∀x · P)⇒R

ALL2 H ` (∀ l, y · P)⇒R H ` (∀l · ∀y · P)⇒R

INS H, ∀x · P ` [x := E]P⇒ ⊥ H, ∀x · P ` ⊥

S3

This theory has to be used with the following tactic, where RULES is one ofAXM , IMP1 , IMP2 , AND1,
AND2, NEG, OR1, OR2, ALL1 , andALL2 :

INI ; ((RULES? ; DED)?;INS)?

Again when the side condition of ruleALL1 is false, one can do a change of variable as explained at the
end of the previous section.

4.7 Extending the Predicate Language: Existential Quantification

The Predicate Language is now extended by introducingexistential quantificationof predicates. Given a
predicateP and a list of variablesx, made of distinct identifiers, we can construct the predicate∃x·P .
The new syntax is thus now as follows:

24

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate⇒ predicate
predicate⇔ predicate
∀var_list · predicate
∃var_list · predicate
[var_list := exp_list] predicate

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier

SY NTAX4

This extension is defined as follows by a rewriting rule in terms of the universally quantified predicate:

Predicate Rewritten

∃x · P ¬∀x · ¬P

The previous practical TheoryS3 can then be extended as follows after applying the previous rewriting
rule:

Antecedents Consequent

XST1 H ` (∀x · ¬P) ⇒ R H ` ¬ (∃x · P) ⇒ R

XST2
if x nfin R and x nfin H

H ` P ⇒R
H ` (∃x · P)⇒R

S4

Again a change of variable can be done when the side condition of ruleXST2 is false.

4.8 Extending the Predicate Language: Equality

The Predicate Language is once again extended by adding a new predicate, theequality predicate. Given
two expressionsE andF , we define the following constructE = F . Here is the extension of our syntax:

25

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀var_list · predicate
∃var_list · predicate
[var_list := exp_list] predicate
expression = expression

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression

variable ::= identifier

SY NTAX5

We extend in a similar manner the rules of non-freeness as follows:

Non-freeness Condition

NF17 x nfin (E = F) x nfin E and x nfin F

NF2

We also extend the substitution rules as follows:

Substitution Definition

SUB11 [x := C] (D = E) [x := C]D = [x := C]E

SUB2

The natural TheoryT2 is extended with two inference rules for proving equality predicates:

Antecedents Consequent

R10 H ` E = F
H ` [x := E]P H ` [x := F]P

R11 H ` E = E

T3

Finally, we extend accordingly our practical TheoryS4:

26

Antecedents Consequent

EQL1 H ` ¬ (E = E)⇒R

LBZ1 H, E = F, [x := E]P ` [x := F]P ⇒ ⊥ H, E = F, [x := E]P ` ⊥

LBZ2 H, E = F, [x := F]P ` [x := E]P ⇒ ⊥ H, E = F, [x := F]P ` ⊥

S5

5 The Set-theoretic Language

Our next language, the Set-theoretic Language is now presented as an extension to the previous Predicate
Language.

5.1 Syntax

We introduce another predicate themembership predicateand a new syntactic category:set. Given an
expressionE and a sets, the constructE ∈ s is a membership predicate. We also enlarge the expression
syntactic category by adding that an expression can be a set. Finally, we introduce the set constructs. Given
two setss andt, the constructs × t is a set called theCartesian productof s andt. Given a sets, the
constructP(s) is a set called thepower set ofs. Finally, given a list of variablesx with distinct identifiers,
a predicateP , and an expressionE, the construct{x · P |E} is called aset defined in comprehension.
Here is our new syntax:

predicate ::= ⊥
>
¬ predicate
predicate ∧ predicate
predicate ∨ predicate
predicate ⇒ predicate
predicate ⇔ predicate
∀ var_list · predicate
∃ var_list · predicate
[var_list := exp_list] predicate
expression = expression
expression ∈ set

expression ::= variable
[var_list := exp_list] expression
expression 7→ expression
set

SY NTAX6

27

variable ::= identifier

set ::= set× set
P(set)
{ var_list · predicate | expression }
variable

SY NTAX6

5.2 Non-freeness and Substitution Rules

We first enlarge the non-freeness set of rules by adding the following ones:

Non-freeness Condition

NF18 x nfin (s× t) x nfin s and x nfin t

NF19 x nfin P(s) x nfin s

NF20 x nfin {l · P |E} x nfin (∀l · P ⇒ E = E)

NF3

Likewise, we add the following rules to the substitution ones:

Substitution Definition

SUB12 [x := E] (s× t) [x := E]s × [x := E]t

SUB13 [x := E] P(s) P([x := E]s)

SUB14 [x := E] {x · P |F} {x · P |F }

SUB14 [x := E] {y · P |F} { y · [x := E]P | [x := E]F }
if y nfin x and y nfin E

SUB15 [x := E] {l, x · P |F} {l, x · P |F}

SUB15 [x := E] {l, y · P |F} { l, y · [x := E]P | [x := E]F }
if x nfin y and l nfin x and l, y nfin E

SUB3

28

5.3 Inference Rules

The inference rules for the set-theoretic Language are given under the form of equivalences to various
set memberships. They are all defined in terms of rewriting rules. Note that the first of this rule defines
equality for sets. It is called the extensionality axiom.

Operator Predicate Rewritten

Set equality s = t s ∈ P(t) ∧ t ∈ P(s)

Cartesian product E 7→ F ∈ s× t E ∈ s ∧ F ∈ t

Power set E ∈ P(s) ∀x · (x ∈ E ⇒ x ∈ s)
if x nfin E and x nfin s

Set comprehension E ∈ {x · P | F } ∃x · (P ∧ E = F)
if x nfin E

SET1

As a special case, set comprehension can sometimes be written{F |P }, which can be read as follows:
“the set of objects with shapeF whenP holds”. However, as you can see, the list of variablesx has
now disappeared. In fact, these variables are thenimplicitly determinedas being all the free variables
in F . When we want thatx represent onlysome, but not all, of these free variables we cannot use this
shorthand.

A more special case is one where the expressionF is exactlyx, that is{x · P | x }. As a shorthand,
this can be written{x |P }, which is very common in informally written mathematics. But again, notice
that, contrarily to intuition, the list of variablesx has disappeared. Again, it will be determined as the free
variables of expressionx. And thenE ∈ {x |P } becomes[x := E]P .

From now on, all extensions of the Set-theoretic Language will take the form of “simple facilities”, as
explained in section 3.5. And most of them are extensions of thesetsyntactic category. As a consequence,
the new syntax will be presented differentially. The new constructs will be presented under the form of
rewriting rules. And since most of the new construct are sets, the rewriting rules will transform some set
membership predicates into simpler ones.

5.4 Elementary Set Operators

In this section, we introduce the classical set operators: inclusion, union, intersection, difference, exten-
sion, and the empty set.

29

predicate ::= . . .
set ⊆ set

. . .

set ::= . . .
set ∪ set
set ∩ set
set \ set
{exp_list}
∅

SY NTAX7

Operator Predicate Rewritten

Inclusion S ⊆ T S ∈ P(T)

Union E ∈ S ∪ T E ∈ S ∨ E ∈ T

Intersection E ∈ S ∩ T E ∈ S ∧ E ∈ T

Difference E ∈ S \ T E ∈ S ∧ ¬ (E ∈ T)

Set extension E ∈ {a, . . . , b} E = a ∨ . . . ∨ E = b

Empty set E ∈ ∅ ⊥

SET2

5.5 Generalization of Elementary Set Operators

The next series of operators consists in generalizing union and intersection to sets of sets. This takes the
forms either of an operator acting on a set or of a quantifier.

. . .

set ::= . . .
union(set)⋃

var_list · (predicate | set)
inter(set)⋂

var_list · (predicate | set)

SY NTAX8

30

Operator Predicate Rewritten

Generalized intersection E ∈ union (S) ∃s · (s ∈ S ∧ E ∈ s)
if s nfin S and s nfin E

Quantified union E ∈
⋃

x · (P | T) ∃x · (P ∧ E ∈ T)
if x nfin E

Generalized intersection E ∈ inter (S) ∀s · (s ∈ S ⇒ E ∈ s)
if s nfin S and s nfin E

Quantified intersection E ∈
⋂

x · (P | T) ∀x · (P ⇒ E ∈ T)
if x nfin E

SET3

The last two rewriting rules require that the setinter(S) and
⋂

x · (P | T) be well defined. This is
defined in the following table:

Set construction Well-definedness condition

inter (S) S 6= ∅

⋂
x · (P | T) {x · P | T } 6= ∅

WF1

5.6 Binary Relation Operators

We now define a first series of binary relation operators: the set of binary relations built on two sets, the
domain and range of a binary relation, and then various sets of binary relations.

. . .

set ::= . . .
set↔ set
dom(set)
ran(set)
set←↔ set
set↔→ set
set↔↔ set

SY NTAX9

31

Operator Predicate Rewritten

Set of all binary relations r ∈ S↔ T r ⊆ S × T

Domain E ∈ dom (r) ∃y · (E 7→ y ∈ r)
if y nfin E and y nfin r

Range F ∈ ran (r) ∃x · (x 7→ F ∈ r)
if x nfin E and x nfin r

Set of all total relations r ∈ S←↔ T r ∈ S↔ T ∧ dom (r) = S

Set of all surjective relations r ∈ S↔→ T r ∈ S↔ T ∧ ran (r) = T

Set of all total and surjective relations r ∈ S↔↔ T r ∈ S←↔ T ∧ r ∈ S↔→ T

SET4

The next series of binary relations operators define the converse of a relation, various relation restrictions
and the image of a set under a relation.

. . .

set ::= . . .
set−1

set � set
set � set
set �− set
set �− set
set[set]

SY NTAX10

Operator Predicate Rewritten

Converse E 7→ F ∈ r−1 F 7→ E ∈ r

Domain restriction E 7→ F ∈ S � r E ∈ S ∧ E 7→ F ∈ r

Range restriction E 7→ F ∈ r � T E 7→ F ∈ r ∧ F ∈ T

SET5

32

Operator Predicate Rewritten

Domain subtraction E 7→ F ∈ S �− r E /∈ S ∧ E 7→ F ∈ r

Range subtraction E 7→ F ∈ r �− T E 7→ F ∈ r ∧ F /∈ T

Relational Image F ∈ r[w] ∃x · (x ∈ w ∧ x 7→ F ∈ r)
if x nfin F and x nfin r and x nfin w

SET5

Our next series of operators defines the composition of two binary relations, the overriding of a relation
by another one, and the direct and parallel products of two relations.

. . .

set ::= . . .
set ; set
set ◦ set
set �− set
set⊗ set
set ‖ set

SY NTAX11

Operator Predicate Rewritten

Forward
composition E 7→ F ∈ p ; q ∃x · (E 7→ x ∈ p ∧ x 7→ F ∈ q)

if x nfin E and x nfin F and
x nfin p and x nfin q

Backward
composition E 7→ F ∈ q ◦ p E 7→ F ∈ p ; q

Overriding E 7→ F ∈ p �− q E 7→ F ∈ (dom (q) �− p) ∪ q

Direct product E 7→ (F 7→ G) ∈ p⊗ q E 7→ F ∈ p ∧ E 7→ G ∈ q

Parallel product (E 7→ F) 7→ (G 7→ H) ∈ p ‖ q E 7→ G ∈ p ∧ F 7→ H ∈ q

SET6

33

5.7 Functional Operators

In this section we define various function operators: the sets of all partial and total functions, partial and
total injections, partial and total surjections, and bijections. We also introduce the two projection functions
as well as the identity function.

. . .

set ::= . . .
set 7→ set
set→ set
set 7� set
set � set
set 7� set
set � set
set �� set
prj1(set)
prj2(set)
id(set)

SY NTAX12

Operator Predicate Rewritten

Set of all partial functions f ∈ S 7→ T f ∈ S↔ T ∧
(f−1 ; f) = id (ran (f))

Set of all total functions f ∈ S→ T f ∈ S 7→ T ∧ S = dom (f)

Set of all partial injections f ∈ S 7� T f ∈ S 7→ T ∧ f−1 ∈ T 7→ S

Set of all total injections f ∈ S � T f ∈ S→ T ∧ f−1 ∈ T 7→ S

Set of all partial surjections f ∈ S 7� T f ∈ S 7→ T ∧ T = ran (f)

Set of all total surjections f ∈ S � T f ∈ S→ T ∧ T = ran (f)

Set of all bijections f ∈ S �� T f ∈ S � T ∧ f ∈ S � T

First projection (E 7→ F) 7→ G ∈ prj1(r) E 7→ F ∈ r ∧ G = E

SET7

34

Operator Predicate Rewritten

Second projection (E 7→ F) 7→ G ∈ prj2(r) E 7→ F ∈ r ∧ G = F

Identity E 7→ F ∈ id (S) E ∈ S ∧ F = E

SET7

5.8 Lambda Abstraction and Function Invocation

We now definelambda abstraction, which is a way to construct functions, and also function invocation,
which is a way to call functions. But first we have to define the notion ofpattern of variables. A pattern
of variables is either an identifier or a pair made of two patterns of variables. Moreover, all variables
composing the pattern must be distinct. For example, here are three patterns of variables:

abc

abc 7→ def

abc 7→ (def 7→ ghi)

Given a pattern of variablesx, a predicateP , and an expressionE, the constructλ x · (P |E) is a lambda
abstraction, which is a function. Given a functionf and an expressionE, the constructf(E) is an expres-
sion denoting a function invocation. Here is our new syntax

. . .

expression ::= . . .
set(expression)

set ::= . . .
λ pattern · predicate | expression

pattern ::= variable
pattern 7→ pattern

SY NTAX13

In the following table,l stands for the list of variables in the patternL.

Operator Predicate Rewritten

Lambda abstraction F 7→ G ∈ λL · P |E F 7→ G ∈ {L · P |L 7→ E}

Function invocation F = f(E) E 7→ F ∈ f

SET8

35

The function invocation constructf(E) requires a well-formedness condition, which is the following:

Expression Well-formedness condition

f(E) E ∈ dom(f)

WF2

6 Arithmetic Language

6.1 Syntax

We add a new syntactic category:number. An expression might be a number. Numbers are either 0, the
sum, product, or power of two numbers. We also add the setsN and succ.

. . .

expression ::= . . .
number

set ::= . . .
N
succ

number ::= 0
number + number
number ∗ number
number ̂ number

SY NTAX14

6.2 Peano Axioms and Recursive Definitions

The following predicates are added systematically to the hypotheses of sequents to prove:

0 ∈ N

succ ∈ N �� N \ {0}

∀S ·


S ⊆ N
0 ∈ S
∀n · (n ∈ S ⇒ succ(n) ∈ S)
⇒
N ⊆ S


ARITH1

36

∀ a · (a ∈ N ⇒ a + 0 = a)

∀ a · (a ∈ N ⇒ a ∗ 0 = 0)

∀ a · (a ∈ N ⇒ a ̂ 0 = succ(0))

∀ a, b · (a ∈ N ∧ b ∈ N ⇒ a + succ(b) = succ(a + b))

∀ a, b · (a ∈ N ∧ b ∈ N ⇒ a ∗ succ(b) = (a ∗ b) + a)

∀ a, b · (a ∈ N ∧ b ∈ N ⇒ a ̂ succ(b) = (a ̂ b) ∗ a)

ARITH1

6.3 Extension of the Arithmetic Language

We introduce the classical binary relations on numbers, the finiteness predicate, the interval between two
numbers, and the subtraction, division, and modulo constructs.

. . .

predicate ::= . . .
number ≤ number
number < number
finite(set)

set ::= . . .
number .. number

number ::= . . .
number − number
number / number
number mod number
card(set)

SY NTAX15

Operator Predicate Rewritten

smaller than or equal a ≤ b ∃ c · (c ∈ N ∧ b = a + c)

smaller than a < b a ≤ b ∧ a 6= b

interval c ∈ a .. b a ≤ c ∧ c ≤ b

ARITH2

37

Operator Predicate Rewritten

subtraction c = a− b a = b + c

division c = a/b
∃ r · (r ∈ N ∧ r < b ∧

a = c ∗ b + r)

modulo r = a mod b a = (a/b) ∗ b + r

finiteness finite(s) ∃n, f · (n ∈ N ∧
f ∈ 1 .. n �� s)

cardinality n = card(s) ∃f · f ∈ 1 .. n �� s

ARITH2

The subtraction, division, modulo, and cardinal constructs are subjected to some well-formedness condi-
tions, which are the following:

Number Well-definedness condition

a− b b ≤ a

a/b b 6= 0

a mod b b 6= 0

card(s) finite(s)

WF3

38

