IX. Mathematical Language
J.-R. Abrial (ETHZ)

February 2007

IX. Mathematical Language

1 Introduction

This chapter contains the definition of tMathematical Languagee use in this book. It is made of

four sections introducing successively the Propositional Language (section 3), the Predicate Language
(section 4), the Set-theoretic Language (section 5), and the Arithmetic Language (section 6). Each of
these languages will be presented as an extension of the previous one. Before introducing these languages
however, we shall give a brief summary of the Sequent Calculus (section 2).

2 Sequent Calculus

Before introducing the Sequent Calculus and Predicate Logic in a rigorous manner, it might be helpful
to see how the ideas behind them are already implicitly present in “ordinary” mathematical proofs. For
this purpose, we shall choose some examples in Geometry and Arithmetic. There are many ways of doing
mathematical proofs. Here are a few of techniques, which are quite common:

1. We can perform the proof of a statement by deducing this statement from others which we have then
to prove or which we have already proved. Usually the initial statement is to be proved under certain
assumptions. Such a proof method is caliggothetico-deductivdt is very common.

2. Among the previously mentioned proofs, some are donedmtradiction For this we assume the
negation of the statement we want to prove, and then deduce a contradiction.

3. Sometimes a proof decomposes itself in different exclusive cases: then we perform a, sqaaifed,
by cases

4. In some occasions, it is useful to first prove something different from what we have to prove origi-
nally. Once it is done, we return to our original problem with an additional assumption corresponding
to the new statement we have just proved. We have proved a, so ¢affeda

5. When dealing with Natural Numbers, we can do a priopfinduction This is to be done when the
statement to be proved concerns all Natural NumheWe first prove the property for 0, and then we
prove it forn + 1 under the additional assumption that it holdsiioSuch a proof method generalizes
to any inductively generated set: sets of finite sequences, set of finite trees, and so on.

6. Sometimes a proof is just performed by doingadgebraic calculation The calculation corresponds
to applying some re-writing rules.

In what follows, we shall give some examples of such proof methods.

2.1 Deductive Proof in Geometry

Our first example is an hypothetico-deductive proof in Geometry. Here is what we want to prove:
Theorem: The three altitudes of a non-right triangle meet in a single point.

Given a triangle ABC, we draw two altitudes: BK and CL. They meet at point O. Now we have to prove
that AO, intersecting BC in H, is also an altitude. All this is shown in the following figure:

We can be a little more precise, by stating whatldypothesesre, namely:

Hypothesis 1 BA and CL are perpendicular
Hypothesis 2 L is on BA and distinct from B and A
Hypothesis 3 BK and CA are perpendicular
Hypothesis 4 K is on CA and distinct from C and A
Hypothesis 5 BK and CL meet at O

Hypothesis 6 AO meets BC in H

And now we can state what o@oal is:
— Goal: AH is perpendicular to BC

A statement to prove can always be expressed in this way. One has first to make very clear what our
hypotheses and goal are. If the set of hypotheses is denotddbyg the goal by, then the statement to
prove, is called asequentand it is written as follows:

HE G

This is to be read:HM entailsG". We could also say that we want to "prove the goal G under the hypotheses
H". In our case, we can write it as follows:

BA and CL are perpendicular,

L is on BA and distinct from B and A,

BK and CA are perpendicular, : .

K is on CA and distinct from C and A, a AH is perpendicular to BC
BK and CL meetin O,

AO meets BC inH

In the rest of this section, we abbreviate this set of hypothesgé$WBS. In order to proceed, we have
to see how we can take some facts in our mathematical knowledge of the triangle to find out a proof of
the goal. As one knows, the sum of the interior angles of a triangle is constant. Let us consider the two

triangles KBC and HAC. Since they have the an@/@-\A in common, and since BK is perpendicular to
AC, then to prove that AH is perpendicular to BC, it is sufficient to prove that agi€s andHAC are

equal. In other words, to provel/—ﬁ = B/KT:, it is sufficient to provd(B\C — HAC. This is illustrated in
the following figure:

What we have implicitly applied in the previous statementiigla allowing us to transform one sequent
into other ones. More explicitly, this rule says that in order to prove that two angles are equal under certain
hypothesed, it is sufficient to prove that these angles are angles of two triangles having already their

other two angles equal. Such a rule is calledrderence rule Given a triangle'1 with anglesal,bl and
cl, and a triangle2 with anglesa2,b2, andc2, our inference rule can be stated as follows:

(on
o) 8)

|
Y

T T
T T
=
I

GEO1
H - al=a2

More generally, an inference rule, namddis made of two parts: the antecedent part and the consequent
part. The antecedent paktis a set of sequents and the consequent@asta single sequent. It is written
like this:

rl —
C

Such a rule can be read as follows: in order to have a proof of the sequeistsufficient to have a proof

of each sequent iA. As can be seen our initial sequent to prove is now transformed by this rule into two
sequents to prove. In our case, the two triangles are KBC and HAC, theahi®AHC, the anglea2 is

BKC, the angleb1 isBCA, the angleb? is alsoBCA, finally the anglecl isKBC, and the anglé2 is also
HAC. As a consequence, our first sequent to prove is now transformed in the following two sequents:

HYPS + BCA = BCA

HYPS + KBC = HAC

The first sequent is trivially proved by means of an inference rule on equality saying that every object is
equal to itself. This can be stated as follows:

EQLl ——
HF z=2z

We notice that this inference rule has an empty set of antecedents. It means that its consequent is proved
without further proofs. In order to prove the second sequent, we draw the line LK, and try to prove that

both anglesﬁé\c andHAC are equal to angIK/L\C. This is illustrated in the following figure:

H

H

B [

In doing that, we have implicitly applied another rule of equality which is the following:

HF z==2
EQL2 HEF y==z
HEF z=y

So we are left with the following two sequents to prove:

HYPS + KBC = KLC

HYPS + KAO = KLO

Note that the goal of the second sequent should have BAEh= KLC. We have replaced ang@C

by angle@(\) and angIeK/L\C by angle@. This has been possible since (at least in the shown figure)
O is situated in between A and H, K is situated between A and C, and O is situated between L and C.

Doing these replacements involve applying some more geometrical inference rules and another equality
rule which we accept implicitly here to simplify matters.

In order to prove these equalities, we remember the followmg geometrical rule: when fourqdints

andd are on a circle in that order, then angt&sl andabd are equal. We have then to prove that points
K, L, B, and C are on a circle. And also that points O, L, A, K are on a circle. This is illustrated in the
following figure:

This could be formalized by the following geometrical rule:

H + Pointsa, b, ¢, andd are on a circle

GEO2 —
H + acd = abd

We are now left to prove the following sequents

HYPS F PointsK, L, B, and C are on a circle

HYPS F PointsK, L, A, and O are on a circle

The final geometrical knowledge we are going to apply now concerns right triangles. Given two right
trianglesabc andadc, thena, b, ¢, andd are on the same circle. In other words, we have to prove that
triangles BLC, BKC, OLA, and OKA are all right triangles. More precisely, we have then to prove that
BL and CL are perpendicular as well as BK and CK, and also OL and AL as well as OK and AK. This is
illustrated in the following figure:

B B C
H

This could be formalized by the following geometrical rule:

H + c¢banddb are perpendicular

GEO3 H F ca andda are perpendicular

H F Pointsa, b, ¢, andd are on a circle

We are now left to prove the following four sequents:

HYPS + BL and CL are perpendicular
HYPS + BKand CK are perpendicular
HYPS F AL and OL are perpendicular

HYPS F AKand OK are perpendicular

The first goal is easilgleductible from the hypothesd$ypothesis 1 tells us the BA and CL are perpen-
dicular. And Hypothesis 2 tells us that L is on BA. We can thus replace BA by BL (if B and L are distinct
which they are by hypothesis). This can be formalized by the following geometrical inference rule:

H F+ adandcb are perpendicular

GEO4 H F bisonad and distinct froma

H F abandcb are perpendicular

So, for proving our first sequent, we are left to prove the following two sequents:

HYPS + BA and CL are perpendicular

HYPS F Lison BA and distinct from B

But these two sequents are “obvious” since they are included in our hypotheses. This can be formalized
by means of the following general inference rule cabedP.

HYP & —————
HP - P

The last three sequents that remain to be proved could be proved in a similar manner. It is now possible to
summarize the proof in the following denser form:

1 HYPS F AH is perpendicular to BC GEO1
2 HYPS F BCA =BCA EQL1
3 HYPS F KBC =HAC EQL2
4 HYPS + KBC =KLC GEO2
5 HYPS F K, L, B, and C on a circle GEO3
6 HYPS I+ BL is perpendicular to CL GEO4
7 HYPS F BA s perpendicular to CL HYP
8 HYPS F Lison BA and distinct from B HYP
9 HYPS F BKs perpendicular to CK GEO4
10 HYPS o
11 HYPS F KAO =KLO GEO2
12 HYPS + K, L, A, and O on a circle GEO3
13 HYPS F OL is perpendicular to AL GEO4
14 HYPS + ... e
15 HYPS F OK s perpendicular to AK GEO4
16 HYPS .

As can be seen, each line contains a sequent and the first line contains the sequent we have to prove.
Each line also contains the rule that is applied in order to prove the corresponding sequent. Then the new
sequents to prove are shifted to indicate the dependency. For instance, on line 3 you can see the sequent

HYPS + KBC = HAC together with ruleEQL2 at the end of the line. The two new sequents to be
proved are then shown on lines 4 and line 11. This layout showsdatestructure of the proof

2.2 A Proof by Contradiction in Arithmetic

The example we propose now is very famous. It has been known since the ancient Greeks. This is the very
classical example of a proof by contradiction. We shall also make use of a lemma in this proof. We want
to prove the following:

Theorem: /2 is irrational.

The proof is done by contradiction. It proceeds as follows: we suppose/thi rational. And we shall
derive a contradiction. Here is thus our hypothesis

Hypothesis 1: v/2 is rational

According to this hypothesis/2 can be put under the following form:

V2 =plg (1)
wherep andq are two Natural Numbers which must fulfil the following two conditions, which are thus
additional hypotheses:

Hypothesis 2: ¢ is not equal to 0

Hypothesis 3: p andq have no common divisor

According toHypothesis 2 we can multiply byg both parts of equality (1) and then square both parts of
the result, yielding:

Hencep? is even. We shall prove below a lemma telling us that when a square spélisasven then so
is p. As a consequencg,can be written as follows

p=2n (3)

Replacingp in (2) by its value in (3), we obtain:

Hence, we have

Thus¢? is even and alsq according to the same lemma, which we have not yet proved. But what we
have just proved is that boghandq are divisible by 2. In other words, they both have 2 as a divisor. This
contradictsHypothesis 3 which says thap andq¢ have no common divisor. This achieves the proof of
our theorem.

It remains for us to prove the lemma we mentioned.

Lemma: If a Natural Numbep is such thap? is even them is even.

Here we have an assumption
Hypothesis 1: p? is even

The proof proceeds by contradiction too. So we supposeptisabdd and try to derive a contradiction
Hypothesis 2: p is odd

FromHypothesis 2, we can writep as follows
p=2n+1
Thus
p?=dn?+4n+1

Thusp? is odd too. But this contradictdypothesis 1 telling us thatp? is even.

2.3 Recursive Definition and Proof by Induction in Arithmetic
Our next example shows a proof by induction on Natural Numbers. We first define a certain quantity
recursively and then derive a property of this quantity by induction.

The sum of the first natural numbers can be defined recursively as follows. First for 0, and ther-for
in term of its value fom. Formally:

0 n+1 n
(1) Zz =0 (2) Zz = (n+1)+Zi

We want to prove the following:

Theorem: Twice the sum of the first Natural Numbers is equal ta.(n + 1).

Z.Zi = n.(n+1)
i=1

The inductive proof proceeds as follows. We have to casedqiahe caseand then thénductive caseln
the base case, we prove that the theorem is true whgrqual to 0. In the inductive case, we prove that
the theorem is true fat + 1 under the hypothesis that it is already truesor

Base Case

Whenn is 0, we have according to (1)

2.3 i =0 = 0.(0+1)

=1
Inductive Case

We assume that the theorem holdssfor
Hypothesis: 2.» i = n.(n+1)
i=1

According to (2), we have

n+1

2.y i = 2.(n+1)+2.§n:i
i=1 =1

that is, according to thelypothesis

n+1
2. i = 2(n+1)+n(n+1) = (n+1).(n+2)
i=1

2.4 Proof by Calculation

Our last example is again taken in Geometry. But the proof we give here is not at first glance a hypothetico-
deductive proof as the one proposed in our first example. Itis a proof which is entirely done by calculation.
We have the feeling that such a proof, although certainly correct, is a bit frustrating. It is almost always the

case with a proof based on a calculation. In other words, we can “see” the proof but we do not understand
the deeper geometrical reason for this theorem to be true. We shall show however that the calculation will
help us finding this geometrical reason.

We are given 4 points, b ¢ andd on a plane. Let, u, v, andw be the middle ofub, bc, cd, andda
respectively. From these points we draw the segméntsun, vp, and wg in such a way that these
segments are perpendiculardhy be, cd, andda respectively. Moreovetrm, un, vp, andwgq are equal to
the half ofab, be, cd, andda respectively. This is indicated in the following figure:

10

We want to prove the rather surprising fact:
Theorem: mp andgn are equal and perpendicular

We are going to do a vector calculation using complex numbersuigbe the complex number repre-
senting the vectomp. Likewise, letgn be the complex representation of the vector The fact thatnp
andgn are equal and perpendicular implies proving the following:

qn = i.mp

What we are going to do now is simply to compute these vectors using complex number calculations. The
following figure will help us to perform the initial calculation. Note thatd, ¢, andm are also complex
numbers in this calculation.

t is the middle ofab

t = (a+b)/2
tb=b-1
tb = (b—a)/2
rotation:m/2
tm = i(b—a)/2
=t+t
m = (a+b)/2+i(b—a)/2 " e
permutationa — ¢, b — d
p = (c+d)/2+i(d—-¢c)/2
mp=p—m
mp = ((c+d)—(a+b))/2+i((d+a)—(b+¢))/2 .
permutationa — d,b+— a,c+— b,d— c
gn = ((b+c)—(d+a))/2+i((c+d))—(a+b))/2 _
reminder:i? = —1

imp = (b+c)—(d+a))/2+i((c+d))—(a+b))/2

Therefore, we have indeed the expected result, namely

gn =1i.mp

Again, this result is frustrating because we do not understand the geometrical reason. Clearly, if this
segments are equal and perpendicular, there must exist a 90 degrees rotation thatonasdp to q.

The problem is to guess what the center of this rotation could bex betthe middle of the diagonat.

We guess that is the center of this rotation. If our guess is correct, we have then to prove the following
vector equalities:

om = i.on op = i.0q
The calculation goes as follows:

11

permutationb — a,c+— b
on —=—n—o
om=m — o0

reminder:i2 = —1

Thus we have indeed

om = i.on

The calculations obp andoq could be conducted in a similar manner.

This can be illustrated as follows:

And now we understand the geometrical “deeper” reason. It is illustrated in the following figure, where it
is now easy to prove geometrically that both triangle® andoun are equal and perpendicular.

12

This proof where we use the calculation to help us finding the geometrical reason is by analogy typical of
the kinds of reasoning that we would like to perform in our computer system developments.

2.5 Definitions of the Sequent Calculus

In this section, we give some more formal definitions to refresh on what we have seen in the previous
sections, particularly in the first example.

(1) A sequents a generic name for “something we want to prove”. For the moment, this is just an infor-
mally defined notion, which we shall refine later. In what follows we shall use identifiers suth &2,

etc. to denote sequents. The important thing to note at this point is that we can asspotBnath a
sequent. For the moment, we do not know what a proof is however. It will only be defined at the end of
this section.

(2) An inference ruleis a device used to construct proofs of sequents. It is made of two partanthe
tecedenpart and theonsequenpart. The antecedent denotes a finite set of sequents while the consequent
denotes a single sequent. An inference rule, namedlsayith antecederA and consequerdt is usually
written as follows:

Itis to be read:

Inference Rulel yields a proof of sequer as soon as we have proofs of each sequeht of

Note that the antecedeAtmight be empty. In this case, the inference rule, named2ais written as
follows:

13

2z —

And it is to be read:

Inference Rule? yields a proof of sequend

(3) A Theoryis a set of inference rules.

(4) Itis now possible to give the definition of tipeoof of a sequenwithin a theoryT'. It is simply a finite

tree with certain constraints. The nodes of such a tree have two components: a seanebatruler of

the theoryT'. Here are the constraints for each node of the fogsm): the consequent of the ruleis s,

and the children of this node are nodes whose sequents are exactly all the sequents of the antecedent of
ruler. As a consequence, the leaves of the tree contain rules with no antecedent. Moreover, the top node
of the tree contains the sequent to be proved. As an example, let be given the following theory:

ST S2 S3 54 S5 S6
n < r2 2 3 === 4 = s =g o < 7 o
Here is a proof of the sequeAft:
(51,r3)

s LN
(52,r1) (53,15) (54,r2)
' 1
(S5,r4) (56,16) (S7,r7)

As can be seen, the root of the tree has seqg@éntvhich is the one we want to prove. And it is easy to
check that each node, say ngds, r5), is indeed such that the consequent of its rule is the sequent of the
node:S3, in this case, is the consequent of rthe Moreover, we can check that the sequents of the child
nodes of nodésS3,r5), namely,S5 and S6, are exactly the sequents forming the antecedents of5ule

This tree can be represented vertically as indicated below. In this text, we shall adopt this representation.

S1 r3
S2 rl
S3 r5

S5 r4
S6 ré
S4 r2
S7 r7

2.6 Sequents for a Mathematical Language

We now refine our notion of sequent in order to define the way we shall make proofs with our Mathemati-
cal Language. Such a language contains constructs daketicates For the moment, this is all what we

know about our Mathematical Language. Within this framework, a sedilead defined in the previous
section, now becomes a more complex object. It is made of two parthyfiehesepart and thegoal

part. The hypothesis part denotes a finite set of predicates while the goal part denotes a single predicate.
A sequent with hypothesé$ and goalG is written as follows:

14

HEG

This sequent is to be read as follows:

Under the set of hypotheses prove the goals

This is the sort of sequents we want to prove. It is also the sort of sequents we shall have in the theories
associated with our Mathematical Language.

Note that the set of hypotheses of a sequent might be empty. As a practical notation, a set of hypotheses
H to which we add an extra hypotheg?s is simply written asH, P

2.7 Initial Theory

We now have enough elements at our disposal to define the first rules of our proving theory. Note again
that we still don’t know what a predicate is. We just know that predicates are constructs we shall be able
to define within our future Mathematical Language. We start with three basic rules which we first state
informally. They are calletHYP, MON, andCUT.

HYP: If the goal P of a sequent belongs to the set of hypothds$es this sequent, then it is proved.
MON': Once a sequent is proved, any sequent with the same goal and more hypotheses is also proved.

CUT: If you succeed in proving a predicateunder a set of hypotheskk thenP can be added to the set
of hypothesesi for proving a goal).

These rules can be encoded as follows:

HEQ HE P HPFEQ
HYP ———— MON ————— cuT
H P+ P H, P - Q HFQ

The previous theory can be given a more convenient tabular form, which we shall adopt in what follows.
We name it7’0:

Antecedents | Consequent
HYP H P - P
T0
MON HF Q H P+ Q
CuUT H P H F
H P F Q @

15

Note that in the previous rules, the lettér P and@ are, so-calledneta-variablesThe letteiH is a meta-
variable standing for a finite set of predicates, whereas the [Btserd () are meta-variables standing for
predicates. Clearly then, each of the previous “rules” stands for more than just one rule: it is better to call
it a rule schemar a generic rule. This will always be the case in what follows.

3 The Propositional Language

In this section we present a first simple version of our Mathematical Language, it is called the Proposi-
tional Language. It will be later refined to more complete versions.

3.1 Syntax

Ouir first version is built around three constructs cattedjunction implication andnegation Given two
predicates? and(@, we can construct their conjunctidhA @ and their implication? = @. And given a
predicateP, we can construct its negatienP. This can be formalized by means of the following syntax:

predicate ::= -predicate
predicate N predicate SYNTAX1
predicate = predicate

This syntax is clearly ambiguous, but we do not care about it at this stage. In this text, in order to avoid
ambiguities, we shall provide as many pairs of parentheses as needed. Also note that this syntax does not
contain any “base” predicate: such predicates will come later.

3.2 Enlarging the Initial Theory

The initial theoryT'0 of section 2.7 is enlarged with the following inference rules forming Thé&ary

Antecedents Consequent
HH+ P
RLI W o HE PAQ

R2| HF PAQ| HF P Tl

R3| HFPAQ| HFQ

R4 | H

16

Antecedents Consequent

RS| HFP=Q | HPF Q

T1
H, -Q + P

R6 | W op| HF Q@
HQ + P

RT| WO r Lp | HF-Q

As can be seen, ruld®l, R2, andR3 are used to eliminate or introduce theoperator. Rulef4 and
R5 are used to eliminate or introduce tke operator. And rulefR6 andR7 are used to do proofs by
contradiction.

3.3 Replacing the Previous Theory

The previous Theor§'1 is very natural and clearly in full accordance with our intuitive understanding of
conjunction, implication and negation. But it suffers a very important drawback: it is not very convenient
to use it to construct practical proofs because it offers too many possibilities.

We shall then propose another Theory called Theory S1 can be constructed systematically from
TheoryT'1 but we shall not do this construction here. TheSlyis certainly far less natural than Theory

T1, but it offers the great advantage over The®ryto be almost deterministic. Almost only, but, at the

end of this section, we shall indicate a certain way of using it which makes it completely deterministic: it
means that at each step of the proof tree construction we shall have only one possibility of choosing an
applicable inference rule or no possibility at all in case of failure.

In fact, TheoryS1 defines a, so-calleghroof procedurefor the simple Proposition Language so far de-
fined. It can be easily mechanized. But before doing this, we have to extend our proposition Language
with one predicatel . This predicate is just used in this theory. In other words, users of the Mathematical
Language are not allowed to use it. Here is The®ty

Antecedents Consequent
INI HF -R= 1L HFR
AXM H, P -PFR 51
ANDlnt:gzg HE-(PAQ) = R
AND2|H+ P = (Q =R |HF (PAQ) = R

17

Antecedents Consequent

IMPL|HFP = (-Q = R)|HF (P = Q) =R

H- Q= R

mp2 | B0 9@ R HF(P=Q) =R s1
NEG |H - P = R Hb -~P = R

DED |H, P F R H-P=R

This theory has to be used with a, so-called, tactic telling us in which order the rules have to be applied.
Here is the tactic, where RULES is oneAXM , IMP1, IMP2, AND1, AND2, NEG:

INI ; (RULES" ; DED)*

This tactic has to be read as follows: First use e once. Then start the following process: use any
rule in RULES as long as it is possible, then ¥eD once, and finally re-start this process.

3.4 Example
Here is an example of using the previous proof procedure. It is used to prove the following sequent:
F(A= B) = (AANC)= (BAC))

Proof

1 F(A=DB)= (AANC)= (BANCQC) INI
2 F-(A=B) = (ANC)=(BANC))= L IMP1
3 F(A=B)= (AANC)= (BANC(C)= 1) IMP2
4 FB=(-{(AANC)= (BAC)= 1) DED
5 BF-(AANC)= (BAC)= L IMP1
6 BF(AANC)= (-(BAC)= 1) AND2
7 BFA= (C= (—(BAC)= 1)) DED
8 BAFC= (-(BAC)= 1) DED
9 B,ACF —-(BAC)=> L AND1
10 B,ACF -C= 1 DED
11 B,A,C,~C + L AXM
12 B,A,C v -B= L DED
13 B,A,C,~B F L AXM
14 F-A=(-(AANC)= (BAQO)= 1) DED
15 ~AF -(AANC)=> (BAC)= L IMP1
16 “AF(ANC)= (=(BANC)= 1) AND2
17 “AF A= (C=-BANC)= 1)) DED
18 “AAFC= (~(BAC)=> 1) AXM

As can be seen, this proof procedure must be mechanized: there is no point in doing such a proof manually
since it is easily mechanizable.

3.5 Methodology

The method we are going to use to build our Mathematical Language will be very systematic. It consists
in subsequently augmenting our syntax, and correlatively augmenting our available inference rules. At
each step of the construction, we shall havetural TheoryT; and a correspondingractical Theory.S;

which is derived froni;.

We shall use two different approaches for extending our language. Either the extension corresponds to
a simple facility. In other words, the new construct can entirely be defined in terms of existing ones. In
that case, we shall only augment the current practical Theor{r the new construct is definitely new

and not related to any previous construct. In that case, we shall proceed differently. We first augment the
current natural Theor{; and then derive from it a corresponding augmentation of the current practical
TheoryS;.

3.6 Extending the Proposition Language

The Proposition Language is now extended by adding two more constructs digjlettionandequiv-
alence Given two predicate® and (@, we can construct their disjunctia® vV @ and their equivalence

P < Q. We also add one predicafé: As a consequence, our syntax is now the following, where we have
underlined the new constructs:

predicate = L
X
- predicate
predicate A predicate SYNTAX?2
predicate V predicate
predicate = predicate
predicate < predicate

Such extensions are defined in terms of previous ones by mere rewriting rules:

Predicate Rewritten
T - L
PvQ -P=Q

P& Q (P=Q) N (Q= P)

For convenience, Theor§1 can be extended with the following rules which can be established easily
after applying the previous rewriting rules:

19

Antecedents Consequent

ORl |HF -P=(-Q=R) |HF -(PVQ)=R

HEF Q=R
OR2 HE P—R HF (PVQ) =R

S2

HEF P=(-Q=R)

HEF P=(Q=R
EQV2 Ht =P = (=Q = R) HF (PeQ) =R

4 The Predicate Language

In this section, we introduce the Predicate Language. The syntax is extended with a number of new
kinds of predicates and also with the introduction of two new syntactic categories eapezksiorand

variable A variable is a simple identifier. Given a list of variablesnade of distinct identifiers and a
predicateP, the construcvz- P is called auniversally quantified predicaté€siven a list of variables:

made of distinct identifiers, a list of expressioiof the same size as that of and a predicat®, the
constructfz := E|]P is called asubstituted predicateAn expression is either a variable sabstituted
expressiorformed in exactly the same way as a substituted predicate, or pliesd expressioiy — F,

whereE and F' are two expressions. Note that substituted predicates and expressions are given here in
order to be able to define the inference rules of quantified predicates in section 4.5. In fact, such constructs
will never be used by users of the Mathematical Language. Here is this new syntax:

predicate

variable

erpression

= 1

T
- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate
Yvar_list - predicate

[var_list := exp_list] predicate

::= wvariable

[var_list ;= exp_list] expression
exrpression — expression

= identifier

SYNTAX3

Note that we have not defined any syntactic structures for the two syntactic categeriésst and
exp_list. They respectively denote finite sequences of variables and finite sequences of expressions.

20

4.1 Predicates and Expressions

It might be useful at this point to clearly identify the distinction between a predicate and an expression. A
predicateP is a piece of formal text which can lpgovedwhen embedded within a sequent as in:

P

A predicate does not denote anything. This is not the case of an expression which always denote an
object An expression cannot be “proved”. Hence predicate and expression are incompatible. Note that for
the moment the possible expressions we can define are quite limited. This will be considerably extended
in the Set-theoretic Language defined in section 5.

4.2 Substitutions and Quantified Predicates

A construct such as := E, embedded into the predicdte:= E]P, wherez is a list of variables made

of distinct identifiers,F is a list of expressions of the same sizerasand P is a predicate, is called a
substitution The constructz := E|P denotes a transformation of the predic&ebtained by replacing

in P the free occurrencesf the variables of the list by the corresponding expression of the li&tin

section 4.3, we shall formally define what we mean by a free occurrence of a variable in a predicate or
expression. And in section 4.4 we define rules to be applied in order to systematically perform such a
transformation. Similar substitutions can be used in an expression.

A predicate such agz- P, wherez is a list of variables made of distinct identifiers aRds a predicate, is
called auniversally quantified predicat& he predicaté is thescopeof the variables of in the quantified
predicatevz- P. The variables of: are said to béoundin P. Other variables having occurrencesfn
which are not bound are said to fiee Informally speaking for the moment, saying that such a universally
quantified predicate is proved means that all predicates of the[form E|P are then also proved. This
will be formalized by two inference rules in section 4.5.

4.3 Free and Bound Variable Occurrences

The non-freeness of a list of variables in a formula can be calculated by means of a number of rules. These
rules are defined on the structure of our Predicate Language. More precisely, the rules give meaning to
the syntactic condition/“nfin K", wherel is a list of variables and is a predicate or an expression. A
construct such ag ‘nfin K is to be read “variables of the ligtare not free in”. Note that being “not

free” is the same as being “bound”.

In the following table,x andy are meta-variables standing for a variabllées a meta-variable standing
for a list of variables,P and(are meta-variables standing for a predic@eand F' are meta-variables
standing for an expression, L is a meta-variable standing for a list of expressioris,iadmeta-variable

standing for a predicate or an expression.

Non-freeness Condition
NF1l| znfiny x and y are distinct
identifiers NF1

NF2| (1, y) nfin P | Infin P andy nfin P

21

Non-freeness Condition

NF3 | (I, y) nfin E I nfin E and y nfin
NF4 | znfin (PAQ) x nfin P and x nfin Q
NF5 | znfin (P = Q) x nfin P and z nfin Q
NF6 | x nfin =P x nfin P

NF7 | «nfinVz.P

NF8 | z nfinVy- P x nfin y and x nfin P

NF9 | « nfin (Vi,y- P) x nfin (VI - Yy - P) NF1
NF10| z nfin [z := E|K x nfin B

NF11l| z nfin[y:= E|K z nfiny and z nfin £ and z nfin K

NF12| xnfin[l,2:= L,E|K| nfin[l:= L]K and x nfin E

NF13| znfin[l,y:= L,E]K| znfiny and z nfin[l := L]K and z nfin £

NF14| z nfin (I,y) x nfin | and z nfin y
NF15| z nfin (L, E) x nfin L and z nfin E
NF16| z nfin (E+— F) z nfin £ and z nfin F

4.4 Substitution Rules

Substituted predicates or expressions can be calculated by means of the following rules defined on the
structure of the Predicate Language. In this table, we use the same meta-variable conventions as in the
previous table.

22

SUB1

Substitution Definition
SUB1 | [z :=E|z E
SUB2 | [z:= E]y y if x nfiny
SUB3 | [z:=E](PAQ) | [x:=E]P A [z:=FE]Q
SUB4 | [z:=E](P=Q)| [x:=E|P = [z:=FE]Q
SUB5 | [x:=E]-P -[z:=E]P
SUB6 | [z :=E|VYz-P V- P
SUB7 | [x:=E|Vy-P Vy-[z:=E]P
if ynfinz and ynfin £
SUB8 | [z :=E|Vl,y-P | [x:=E|VI-Vy-P
SUBY | [z:=E|(F—G)| [x:=E|F — [z:=E]G
SUB10 | [l,z:=L,E|F [z:=E|[l:=L][x:=2]F
if znfin ([,z) and z nfin (L, E, F)

The application of these rules makes it possible to completely eliminate substitutions. Note that it is always
possible to transform a quantified predicate suck:asP into the following equivalent ongy - [x :=
y] P providedy is not free inP. This transformation is calledéhange of variables

4.5 Universally Quantified Predicate Inference Rules

We now enlarge the initial theory'1l of section 3.2 with the following specific rules for universally
guantified predicates:

Antecedents Consequent

R8Iy p

x nfin Q for eachQ in H

HE Ve P

23

T2

Antecedents Consequent
T2

R9| HF V2 -P | HF [2:=E|P

Note that in RuleR8, the side condition might be false when the quantified variabie free in the
hypothesesi. One can easily cure this by doing a change of variable in the universal quantifi¢atibn
More precisely, one can replate- P by Vy-[z := y] P, wherey is a new variable that is not free .

Such a change of variable is always possible.

4.6 Replacing the Previous Theory Extension

As for the case of the Proposition Language in section 3.3, we can replace the extension of previous section
by this one which is more convenient to use for mechanizing the proof construction of our Predicate
Language. Here is this extension of the practical Theiy

Antecedents Consequent

if 2 nfin R and z nfin () for each@ in H

ALL1 HF -(Vo-P)=R
Ht-P=R g3

ALL2 |H + (Yly-P)=R Ht (VI-Vy-P)=R

INS |H,Ve-P + [2:=E]P= L H, Vo P+ L

This theory has to be used with the following tactic, where RULES is orexdf , IMP1, IMP2, AND1,
AND2, NEG, OR1, OR2, ALL1, andALL2:

INI ; ((RULES" ; DED)*;INS)*

Again when the side condition of rulsLL1 is false, one can do a change of variable as explained at the
end of the previous section.

4.7 Extending the Predicate Language: Existential Quantification

The Predicate Language is now extended by introduekistential quantificatiomf predicates. Given a
predicateP and a list of variables;, made of distinct identifiers, we can construct the predi€ateP.
The new syntax is thus now as follows:

24

predicate

erpression

variable

= 1

T
- predicate

predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate
Yvar_list - predicate
Jvar_list - predicate

[var_list := exp_list] predicate
== wariable
[var_list ;= exp_list] expression

eTpression — expression

= identifier

SYNTAXA4

This extension is defined as follows by a rewriting rule in terms of the universally quantified predicate:

Predicate Rewritten

dz - P -Vx.--P

The previous practical Theot§y3 can then be extended as follows after applying the previous rewriting

rule:

Antecedents

Consequent

XST1|H + (V2--~P) = R

HF -(3z-P)=>R

S4

XST2

if 2 nfin R and z nfin H

HF P=R

HE (3z-P)=R

Again a change of variable can be done when the side condition oK&IR is false.

4.8 Extending the Predicate Language: Equality

The Predicate Language is once again extended by adding a new predicatgjality predicateGiven
two expressiong’ and F', we define the following construdt = F'. Here is the extension of our syntax:

25

predicate = 1
T
- predicate
predicate N predicate
predicate V predicate
predicate = predicate
predicate < predicate
Yvar_list - predicate
Jvar_list - predicate SYNTAXb5
[var_list := exp_list] predicate
erpression = erpression

expression ::= wvariable
[var_list .= exp_list] expression
exrpression — exrpression

variable == identifier

We extend in a similar manner the rules of non-freeness as follows:

Non-freeness Condition
NF?2
NF17| z nfin (E=F) z nfin £ and z nfin F
We also extend the substitution rules as follows:
Substitution Definition
SUB2

SUB11|[z:=C](D=E)|[2:=C]D = [2:=C]E

The natural Theory2 is extended with two inference rules for proving equality predicates:

Antecedents Consequent

H+ E
RIO| |y | [Ht [z:=FP| T3

F
= E|P

R11 HF E=F

Finally, we extend accordingly our practical Thediy:

26

Antecedents Consequent

EQL1 H+ ~(E=FE)=R

S5

LBZ1 |H,E=F,[zx:=FE]P + [¢:=F|P= L|H E=F, [zx:=E|P + L

LBZ2 |H,E=F,[z:=F|P + [x:=E|P= L |H, E=F, [z:=F]P + L

5 The Set-theoretic Language

Our next language, the Set-theoretic Language is now presented as an extension to the previous Predicate

Language.

5.1 Syntax

We introduce another predicate threembership predicatand a new syntactic categorget Given an
expressior® and a ses, the construcE € s is a membership predicate. We also enlarge the expression
syntactic category by adding that an expression can be a set. Finally, we introduce the set constructs. Given
two setss andt, the construck x t is a set called th€artesian producbf s and¢. Given a sek, the
constructP(s) is a set called thpower set o&. Finally, given a list of variables with distinct identifiers,

a predicateP, and an expressiofy, the construc{z - P | E'} is called aset defined in comprehension

Here is our new syntax:

predicate = L
-
- predicate
predicate A predicate
predicate V predicate
predicate = predicate
predicate < predicate
Y var_list - predicate
Jwvar_list - predicate
[var_list .= exp_list] predicate
erpression = exrpression
expression € set

expression = wvariable
[var_list ;= exp_list] expression
exTpression — expression
set

27

SYNTAXG6

variable

== identifier

= set X set
P(set)
{war_list - predicate | expression }
variable

5.2 Non-freeness and Substitution Rules

SYNTAXG

We first enlarge the non-freeness set of rules by adding the following ones:

NF3

Non-freeness Condition
NF18| z nfin (s x t) nfin s and x nfin ¢
NF19| =z nfin P(s) x nfin s
NF20| znfin{l-P|E} | znfin(VI-P = E=E)

Likewise, we add the following rules to the substitution ones:

Substitution Definition
SUB12| [z := E] (s x 1) [z:=E]s x [z:=E]t
SUB13| [z := E] P(s) P([z := E]s)
SUB14| [z :=E]{z-P|F} |{z-P|F}
SUB14| [z := E]{y- P|F} {y{f[xy;ﬁipggd:zgg
SUB15| [z := E|{l.z - P|F}|{l,z- P| F}
SUB15| [z := E|{ly-P|F} | {l,y [z := E|P|[z:= E]F}

if znfiny and [nfinz and [,y nfin £

28

SUB3

5.3 Inference Rules

The inference rules for the set-theoretic Language are given under the form of equivalences to various
set memberships. They are all defined in terms of rewriting rules. Note that the first of this rule defines
equality for sets. It is called the extensionality axiom.

Operator Predicate Rewritten
Set equality s=t seP(t) N teP(s)
Cartesian product E—Fesxt EFEes N Fet
SET1
Power set E € P(s) Ve-(re€E = x€s)

if znfin Z and z nfin s

Set comprehension Eec{z-P|F} dx-(P N E=F)
if nfin £

As a special case, set comprehension can sometimes be Wriité# }, which can be read as follows:
“the set of objects with shapE when P holds”. However, as you can see, the list of variahidsas
now disappeared. In fact, these variables are thaglicitly determinedas being all the free variables
in £'. When we want that represent onlysome but not all, of these free variables we cannot use this
shorthand.

A more special case is one where the expresgias exactlyz, that is{z - P | = }. As a shorthand,
this can be writte{ = | P }, which is very common in informally written mathematics. But again, notice
that, contrarily to intuition, the list of variableshas disappeared. Again, it will be determined as the free
variables of expressian. And thenE € { z | P } becomedz := E|P.

From now on, all extensions of the Set-theoretic Language will take the form of “simple facilities”, as
explained in section 3.5. And most of them are extensions cfatsyntactic category. As a consequence,

the new syntax will be presented differentially. The new constructs will be presented under the form of
rewriting rules. And since most of the new construct are sets, the rewriting rules will transform some set
membership predicates into simpler ones.

5.4 Elementary Set Operators

In this section, we introduce the classical set operators: inclusion, union, intersection, difference, exten-
sion, and the empty set.

29

predicate = ...
set C set
set = L. SYNTAX7
set U set
set N set
set \ set
{exp_list}
%)
Operator Predicate Rewritten
Inclusion ScT S eP(T)
Union EeSuT EeS v EeT
Intersection EesSnT EeS N EeT SET?2
Difference EeS\T EeS N -(EFeT)
Set extension E e {a,...,b} E=a Vv ... V E=b
Empty set EFeo €

5.5 Generalization of Elementary Set Operators

The next series of operators consists in generalizing union and intersection to sets of sets. This takes the
forms either of an operator acting on a set or of a quantifier.

set = ...
union(set) SYNTAXS
Jwar_list - (predicate | set)
inter(set)
Nwvar_list - (predicate | set)

30

Operator Predicate Rewritten

Generalized intersection E € union(S5) ds-(s€S AN Ee€s)
if snfinS and snfin E

Quantified union EelJz-(P|T) dJx-(PANFEeT)
if znfin £ SET3
Generalized intersection E € inter (S5) Vs-(s€S = Ee€s)

if snfinS and snfin £

Quantified intersection EeNz-(P|T) Ve-(P = Ee€T)
if znfin £

The last two rewriting rules require that the seter(S) and(=z - (P | T) be well defined This is
defined in the following table:

Set construction Well-definedness condition

inter (.9) S # & WFE1

Nz-(P[T) {z-P|IT}#02

5.6 Binary Relation Operators

We now define a first series of binary relation operators: the set of binary relations built on two sets, the
domain and range of a binary relation, and then various sets of binary relations.

set = ...
set « set
dom(set) SYNTAXY9
ran(set)
set «— set
set «» set
set «» set

31

Operator Predicate Rewritten

Set of all binary relations reST rCcSxT

Domain E € dom (r) Yy - (E—y €r)
if ynfin E and y nfinr

Range F eran(r) Jr-(x—F €r)
if znfinZ and z nfinr

Set of all total relations reS«T reS—T A dom(r)=25

Set of all surjective relations reS«—T reS—T Aran(r)=T

Set of all total and surjective relations reS«»T reS«T ANreST
SET4

The next series of binary relations operators define the converse of a relation, various relation restrictions
and the image of a set under a relation.

set = ...
set™1
set < set SYNTAX10
set > set
set < set
set B set
set[set]

Operator Predicate Rewritten

Converse E—~Fer! F—FEer

SET5
Domain restriction E—F ¢ S«r FeS N E—Fer

Range restriction E—F ec¢rp>T E—Fer N FeT

32

Operator

Predicate

Rewritten

Domain subtraction EFE—F ¢ S4ar

E¢S N E—Fer

Range subtraction

E—F creT

E—Fer N F¢gT

Relational Image

F € rw]

Jr-(zew AN x—Fer)
if znfin 7 and znfinr and z nfin w

SET5

Our next series of operators defines the composition of two binary relations, the overriding of a relation
by another one, and the direct and parallel products of two relations.

set = ...
set; set SYNTAX11
set o set
set < set
set ® set
set || set
Operator Predicate Rewritten
Forward
composition E—Fep;q Jr-(E—zxzep N z— Feq)
if znfin Z and z nfin FF and
z nfinp and x nfin ¢
Backward
composition B Feqop E—Fepiq
Overriding E—Fepggq Ew— F € (dom(q)<dp) U ¢
Direct product E—(F—~QG)ep®q E—~Fep N E~Gegq
Parallel product (E—~F)— (G—H)epllq | E~,Gep N F—Hegq

33

SET6

5.7 Functional Operators

In this section we define various function operators: the sets of all partial and total functions, partial and
total injections, partial and total surjections, and bijections. We also introduce the two projection functions
as well as the identity function.

set = ...

set + set

set — set

set —+ set

set — set SYNTAX12

set + set

set — set

set =» set

prj, (set)

pri,(set)

id(set)

Operator Predicate Rewritten
Set of all partial functions fesS+T feST A
(f7s f) =id (ran(f))
Set of all total functions fes—-T fesS+-T AN S=dom(f)
Set of all partial injections fesS»T feS+-T N fleT+wS
L SETT7

Set of all total injections fes—T fesS—T N fleT+wS
Set of all partial surjections fesw»T feS+T AN T=ran(f)
Set of all total surjections fesS—>T feS—-T AN T=ran(f)
Set of all bijections fesS—-»1T feS—-T N feS—>T
First projection (E—F)—~Geprjy(r) | E—~Fer N G=E

34

Operator Predicate Rewritten

Second projection (E—F)—Gepripr) | E—~Fer N G=F | SETT

Identity Ew— Feid(9) EeS N F=E

5.8 Lambda Abstraction and Function Invocation

We now defindambda abstractionwhich is a way to construct functions, and also function invocation,
which is a way to call functions. But first we have to define the notiopatfern of variablesA pattern

of variables is either an identifier or a pair made of two patterns of variables. Moreover, all variables
composing the pattern must be distinct. For example, here are three patterns of variables:

abc
abc +— def

abc — (def — ghi)

Given a pattern of variables a predicate”, and an expressioR, the construch z - (P | E) is a lambda
abstraction, which is a function. Given a functipnd an expressiof, the construcf (E) is an expres-
sion denoting a function invocation. Here is our new syntax

erpression = ...
set(expression)
- SYNTAX13
set = ...
Apattern - predicate | expression
pattern == variable
pattern — pattern
In the following table/ stands for the list of variables in the pattdrn
Operator Predicate Rewritten

Lambda abstraction | F— G € AL-P|E | F—G € {L-P|L— E} | SETS8

Function invocation F = f(E) E—F e f

35

The function invocation construg) requires a well-formedness condition, which is the following:

Expression

Well-formedness condition

f(E)

E € dom(f)

WE?2

6 Arithmetic Language

6.1 Syntax

We add a new syntactic categoryzmber. An expression might be a number. Numbers are either 0, the
sum, product, or power of two numbers. We also add theletsd succ.

set

number

expression ::

number

N
succ

0

number + number
number x number
number ~ number

6.2 Peano Axioms and Recursive Definitions

SYNTAX14

The following predicates are added systematically to the hypotheses of sequents to prove:

0 e N

=

succ € N— N\ {0}
SCN
0es
VS-|Vn-(neS = sucqn) € 5)

NCS

36

ARITH1

Va-(aeN = a+0 = a)
Va-(a€N = ax0 = 0)
Va-(ae€N = a~0 = sucq0))
ARITH1
Va,b-(aeN A beN = a+sucgb) = succa+b))
Va,b-(a €N A beN = axsucdbd) = (a*xb)+a)

Va,b-(aeN A beN = a"sucdd) = (a"b)*a)

6.3 Extension of the Arithmetic Language

We introduce the classical binary relations on humbers, the finiteness predicate, the interval between two
numbers, and the subtraction, division, and modulo constructs.

predicate = ...
number < number
number < number
finite(set)
set = ... SYNTAX15
number .. number
number = ...
number — number
number / number
number mod number
card set)
Operator Predicate Rewritten
smaller than or equal a<b Je-(ceN AN b=a+c)
ARITH?2
smaller than a<b a<b AN a#b
interval c € a..b a<c AN ¢c<b

37

Operator Predicate Rewritten
subtraction c=a—"> a=b+c
B Jr-(reN A r<b A
division c=a/b a—cxbtr)
ARITH?

modulo r=a mod b a=(a/b)xb+r

. - In,f-(n € N A
finiteness finite(s) F el .nm—s)
cardinality n = card's) af-f € l.n»s

The subtraction, division, modulo, and cardinal constructs are subjected to some well-formedness condi-
tions, which are the following:

Number Well-definedness condition
a—2b b<a
a/b b#0 WF3
a mod b b#0
card s) finite(s)

38

