
COMPUTER	30

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE	

This document should include two kinds of texts
embedded in each other: the explanatory text and the
reference text. The former contains explanations needed
to understand the problem at hand. Such explanations are
supposed to help a reader who encounters this problem
for the first time. The latter contains definitions and re-
quirements mainly in the form of short natural-language
statements that are labeled and numbered. These defini-
tions and requirements must be self-contained and easily
separated from the accompanying explanations. They
form the unique reference to correctness.

The definitions and requirements document is analo-
gous to a book of mathematics where fragments of the
explanatory text, in which the author informally explains
his approach and sometimes gives some historical back-
ground, are intermixed with fragments of more formal
items: definitions, lemmas, and theorems, all of which
form the reference text and can easily be separated from
the rest of the book.

In the case of systems engineering, we label our refer-
ence definitions and requirements along two axes.

The first axis contains the purpose (functional, equip-
ment, safety, physical units, degraded modes, errors, and
so forth) and must be defined carefully before embarking
on writing the definition and requirements document since
it may vary from one project to the other. Note that the
“functional” label corresponds to requirements dealing
with the intended software’s specific task, whereas the
“equipment” label deals with assumptions (which we also
call requirements) that must be guaranteed concerning the
environment in which the intended software is situated.

The second axis places the reference items within a
hierarchy going from very general (abstract) definitions
or requirements down to increasingly more specific ones

T
he title of my article is intended to be provoca-
tive. We all know that faultless systems are
impossible; otherwise, we’d already be con-
structing them. And what is a “fault”?

You probably think by now that this is yet
another guru trying to sell you his latest universal panacea.
Rest assured, my intention is just to remind you of a few
simple facts and ideas that you might wish to use.

Faced with a terrible situation—and yes, the situation
facing software and system developers is indeed terri-
ble—we might decide to change things in a brutal way, but
it never works. My philosophy is to gradually introduce
some simple features that together will eventually result
in a global improvement of the situation.

DEFINITIONS AND
REQUIREMENTS DOCUMENT

To build correct systems, we must carefully define the
way in which we judge correctness. This is the purpose
of a definitions and requirements document, which must
be carefully written before embarking on any system
development.

It is my experience that requirements documents used
in industry typically are very poor: It is often hard to un-
derstand what the requirements are and extract them from
these documents. People too often justify the appropriate-
ness of their requirements documents by the fact that they
use some (expensive) tools.

Gradually introducing some simple fea-
tures will eventually result in a global
improvement in the software development
situation.

Jean-Raymond Abrial, Swiss Federal Institute of Technology, Zurich

FAULTLESS
SYSTEMS:
YES WE CAN!

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

31SEPTEMBER 2009

DISCRETE TRANSITION SYSTEMS
AND PROOFS

In addition to formalizing our mental representation
of the future system, modeling also consists of proving
that this representation fulfills certain desired proper-
ties, namely those stated informally in the definition and
requirements document.

To perform this joint task of simulation and proof, we
use a simple formalism—discrete transition systems. In
other words, whatever the modeling task we have to per-
form, we always represent the components of our future
systems by means of a succession of states intermixed
with sudden transitions, also called events.

From the modeling point of view, it is important to un-
derstand that there is no fundamental difference between
a human pressing a button, a motor starting or stopping,
or a piece of software executing certain tasks, all of them
being situated within the same global system. Each of
these activities is a discrete transition system working
on its own and communicating with others as shown in
Figure 1. They are embarked upon together in the distrib-
uted activities of the system as a whole. This is the way
we would like to perform our modeling task.

It happens that this very simple paradigm is extremely
convenient. In particular, the proving task is partially
performed by demonstrating that the transitions of each
component preserve several desired global properties that
the states of our components must permanently obey.
These properties are the so-called invariants, which most
often are transversal properties involving the states of
multiple system components. The corresponding proofs
are called the invariant preservation proofs.

States and events
Roughly speaking, several variables define a state (as

in an imperative program). However, the difference is that
these variables might be any integers, pairs, sets, relations,
functions, and so on—that is, any mathematical object
that can be represented in set theory—not just computer
objects (limited integer and floating-point numbers, arrays,
files, and the like). Apart from the variables definitions,

imposed by system promoters. It is very important that the
stakeholders must agree upon and sign off on this rewrit-
ing of the definition and requirements document.

At the end of this phase, however, we have no guaran-
tee that the desired properties of our system that have
been written down can indeed be fulfilled: Mandating
that an airplane must fly doesn’t mean that it actually
will. However, quite often after the writing of such a
document, people rush into the programming phase,
and we know very well what the outcome is. What is
needed is to undertake an intermediate phase before
programming.

MODELING VERSUS PROGRAMMING
Programming is the activity of constructing a piece of

formal text that is supposed to instruct a computer in how
to fulfill certain tasks. Our intention is not to do that.

Our task is not limited to the software part alone, be-
cause what we intend to build is a system within which the
piece of software we will construct is just one component
among many others. In doing this as engineers, we are
not supposed to instruct a computer; rather, we are sup-
posed to instruct ourselves. To do this in a rigorous way,
we have no choice but to perform a complete modeling of
our future system, including the software that will eventu-
ally be constructed and its environment—which includes
equipment, physically varying phenomena, other software,
and even users.

Programming languages are of no help in doing this.
All this must be carefully modeled so that we know the
exact assumptions within which our software is to behave.
Modeling is therefore the main task of system engineers.
Programming is then merely a subtask that may very well
be performed automatically.

Computerized system modeling had been undertaken in
the past (and still is) with the help of simulation languages
such as Simula 67, the predecessor of all object-oriented
programming languages. What we propose here is also to
perform a simulation. But rather than doing it with the help
of a simulation language for which the outcome can be in-
spected and analyzed, we propose to do it by constructing
mathematical models that will be analyzed by doing proofs.
Physicists or operational researchers proceed in this way.
We’ll do the same.

Since we are not instructing a computer, we do not have
to say what is to be done; rather, we need to explain and
formalize what we can observe. This immediately raises
the question, How can we observe something that does not
exist yet? Simple: It doesn’t exist yet in the physical world
but, for sure, it exists in our mind.

Engineers or architects always proceed in this way:
They construct artifacts according to the predefined rep-
resentation they have of them in their mind.

Motor

Start Stop

Buttons

Controller

Figure 1. Three communicating discrete transition systems.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	32

Vertical refinement and proofs
A second kind of refinement takes place when all hori-

zontal refinement steps have been performed. As a result,
we do not enter any more new details of the problem in the
model; rather, we transform some states and transitions of
our discrete system so that it can easily be implemented
on a computer. This is called vertical refinement (or data
refinement), which often can be performed by a semiau-
tomatic tool. Refinement proofs must also be performed to
make sure that our implementation choice is coherent with
the more abstract view.

A typical example of vertical refinement is the transfor-
mation of finite sets into Boolean arrays together with the
corresponding transformations of set-theoretic operations
(union, intersection, inclusion, and so on) into program
loops. When conducting a vertical refinement, we can
remove some variables and add new ones. An important
aspect of vertical refinement is the so-called “gluing” in-
variant linking the concrete and abstract states.

Communication and proofs
An important aspect of the modeling task is concerned

with the communication between the future system’s vari-
ous components. We must be very careful here to proceed
again by successive refinements. It is a mistake to immedi-
ately model the communication between components as
they will appear in the final system.

A good approach is to consider that each component
has the “right” to directly access the state of other com-
ponents (which are still very abstract too). In doing that,
we “cheat,” of course, as this is clearly not the way things
work in reality. But this is convenient to use in the ini-
tial horizontal refinement steps as our components are
gradually refined, with their communication also becom-
ing gradually richer as we go down the refinement steps.
Only at the end of the horizontal refinement steps is it
appropriate to introduce various channels correspond-
ing to the real communication schemes at work between
components and to possibly decompose our global system
into several communicating subsystems.

We will then notice that each component reacts to the
transitions of others with a fuzzy picture of their states
because it takes time to transmit the messages between the
components. We then have to prove that despite this time
shift, things remain “as if” such a shift did not exist. This is
yet another refinement proof that we have to perform.

BEING FAULTLESS: WHAT DOES THAT MEAN?
We are now ready to be precise about what we mean

by a “faultless” system, achieving which represents our
ultimate goal, as the title of this article suggests.

Let’s consider a program controlling a train network. If
it is not developed to be correct by construction, then after
writing it we can certainly never prove that this program

we might have invariant statements, which can be any
predicate expressed within the notation of first-order logic
and set theory. By putting all this together, a state can be
simply abstracted to a set.

An event can be abstracted to a simple binary relation
built on the state set. This relation connects two successive
states, considered just before and just after the event “execu-
tion.” However, defining an event directly as a binary relation
would not be very convenient. A better notation involves
splitting an event into two parts: guards and actions.

A guard is a predicate, and all the guards conjoined in an
event form the corresponding relation’s domain. An action
is a simple assignment to a state variable. The actions of
an event are supposed to be “executed” simultaneously
on different variables. Variables that are not assigned are
unchanged. This is all the notation we need to define our
transition systems.

Horizontal refinement and proofs
Modeling a large system containing many discrete

transition components must be undertaken in successive
steps. Each step makes the model richer by first creating
and then enriching the states and transitions of its various
components, first in a very abstract way and later by in-
troducing more concrete elements. This activity is termed
horizontal refinement (or superposition).

In doing this, the system engineer explores the defini-
tion and requirements document and gradually extracts
from it some elements to be formalized. Thus, the trace-
ability of the definitions and requirements starts within the
model. If we discover through modeling that the definition
and requirements document is incomplete or inconsistent,
we then have to edit it accordingly.

By applying this horizontal refinement approach, we
have to perform some proofs—namely that a more concrete
refinement step does not invalidate what has been done in a
more abstract step. These are the refinement proofs. Note,
finally, that the horizontal refinement steps are complete
when there are no remaining definitions and requirements
that have not been taken into account in the model.

In undertaking horizontal refinement, we do not care
about implementability. Our mathematical model is built
using the set-theoretic notation to write down the state
invariants and the transitions. When undertaking horizon-
tal refinement, we extend a model’s state by adding new
variables. We can strengthen an event’s guards or add new
guards. We also add new actions in an event. Finally, it is
possible to add new events.

Modeling a large system containing
many discrete transition components
must be undertaken in successive steps.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

33SEPTEMBER 2009

pieces of software, and users. It is quite clear that these ele-
ments cannot be modeled completely. Rather than saying
that our software is correct relative to its environment, it
would be more appropriate to be modest and say that our
software is correct relative to the model of the environ-
ment we have constructed. This model is certainly only
an approximation of the physical environment. Should
this approximation be too far from the real environment,
then it will still be possible for our software to fail under
unforeseen external circumstances.

In short, we can only pretend to achieve a relative fault-
less construction, not an absolute one, which is clearly
impossible. A problem solution for which is still in its
infancy is finding the right methodology to perform an
environmental model that is a “good” approximation of the
real environment. It is clear that a probabilistic approach
would certainly be very useful for doing this.

About proofs
Clearly, we need a tool that automatically generates the

proofs we perform during the modeling process since it
would be foolish and error prone to let a human write the
formal statements for thousands of such proofs. As a rule
of thumb, we want a tool that will automatically discharge
90 percent of the proofs.

An interesting question is then to study what happens
when an automatic proof fails. It might be because the
automatic prover is not smart enough, the statement we
are trying to prove is false, or the statement to be proven
just cannot be proved.

In the first case, we must perform an interactive proof.
In the second, the model must be modified significantly.
In the last case, the model must be enriched. The last
two cases are very interesting as the proof activity plays
the same role for models as the one played by testing for
programs. The final percentage of proofs discharged auto-
matically is a good indication of the quality of the model. If
there are too many interactive proofs, this may signify that
the model is too complicated. By simplifying the model,
we often also significantly augment the percentage of au-
tomatically discharged proofs.

Design patterns
Design patterns became very popular some years ago

in object-oriented software development. But the idea is
more general than that: It can be fruitfully extended to
any particular engineering discipline and, in particular,
to system engineering as envisaged here.

will guarantee that two trains never collide. It is too late.
The only thing we might sometimes, and unfortunately not
always, be able to test or prove is that such a program does
not include array accesses that are out of bounds or dan-
gerous null pointers that might be accessed, or that it does
not contain the risk of some arithmetic overflow. However,
recall that it was precisely this undetected problem that
caused the Ariane 5 crash on its maiden voyage.

There is an important difference between a solution
validation and a problem validation. It seems that there is
a lot of confusion here as people do not make any clear dis-
tinction between the two. A solution validation is concerned
solely with the constructed software, and it validates this
piece of code against several software properties. Con-
versely, a problem validation is concerned with the system’s
overall purpose—for example, to ensure that trains travel
safely within a given network. To do this, we must prove
that all components of this system (not just the software)
harmoniously participate in this global goal.

To prove that our program will guarantee that two trains
will never collide, we must construct this program by mod-
eling the problem. And, of course, the property in question
must be part of the model to begin with. We should note,
however, that people sometimes succeed in doing some sort
of problem proofs directly on the solution (the program).
This is done by incorporating some so-called “ghost” vari-
ables dealing with the problem inside the program. Such
variables are then removed in the final code. We consider
this approach a rather artificial afterthought.

During the horizontal refinement phase of our model
development, we shall take account of many properties. At
the end of the horizontal refinement phase, we shall then
be able to know exactly what we mean by this noncollision
property. In doing so, we shall make all the assumptions
precise (in particular any environmental assumptions)
under which our model will guarantee that two trains will
never collide.

As can be seen, the property alone is not sufficient. By
exhibiting all these assumptions, we are doing a problem
validation that is completely different in nature than the
one we can perform on the software only. Using this kind
of approach for all properties of our system will allow us
to claim that, at the end of our development, our system
is faultless by construction. As such, we have made very
precise what “faults” are under consideration and, in par-
ticular, their relevant assumptions.

We should note a delicate point here. We pretended that
this approach allows us to produce a final version of the
software that is correct by construction relative to its sur-
rounding environment. In other words, the global system is
faultless. We achieved this by means of proofs performed
during the modeling phase, in which we constructed a
model of the environment. We said earlier that this envi-
ronment was made up of equipment, physical phenomena,

We can only pretend to achieve a relative
faultless construction, not an absolute
one, which is clearly impossible.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	34

It may seem that animation must be performed after
proving (as an additional phase before programming). But
in fact, the idea is to use animation as early as possible
during the horizontal refinement phase, even on very ab-
stract steps. The reason is that if we have to change our
requirements and thus redo some proofs, we must know
exactly what we can save in our model and where we have
to modify the construction.

There is another positive outcome as a result of animating
and proving simultaneously. Recall that we said that proving
was a way to debug our model: A proof that cannot be done
is an indication that there is a “bug” in our model or that it’s
a poor model. The fact that an invariant preservation proof
cannot be done can be pointed out and explained by an ani-
mation even before doing the proof. Animation often easily
discovers deadlock freedom counterexamples.

Note that animation does not mean that we can suspend
our proof activity, but it is a very useful complement to it.

Tools
Tools are important for developing correct systems.

Here we propose to depart from the usual approach in
which there is a formal text file containing models and
their successive refinement. It is far more appropriate to
have a database at our disposal. This database handles ob-
jects such as models, variables, invariants, events, guards,
actions, and their relationships.

Static analyzers, which are widely available, can be
used on these components for lexical analysis, name clash
detection, mathematical text syntactic analysis, refine-
ment rules verification, and so on. An important tool is
the proof obligation generator, which analyzes the models
(invariants, events) and their refinements to produce cor-
responding statements to prove.

Finally, we need some automatic and interactive proving
tools to discharge the proof obligations provided by the
previous tool. An important thing to understand here is
that the proofs to be performed are not the kind of proofs
a professional mathematician would do or be interested in.
Our proving tool must take this into account.

In a mathematical project, the mathematician is inter-
ested in proving one theorem (say, the four-color theorem)
together with some lemmas (say, 20 of them). The math-
ematician does not use mathematics to accompany the
construction of an artifact. During the mathematical
project, the problem does not change as this is still the
four-color problem.

In an engineering project, thousands of predicates
must be proved. Moreover, what we have to prove is not
known right from the beginning. Again, we do not prove
that trains do not collide: We prove that the system we are
constructing ensures that, under certain hypotheses about
the environment, trains do not collide. What we have to
prove evolves with our understanding of the problem and

The idea is to write down some predefined little en-
gineering recipes that can be reused in many different
situations provided that these recipes are instantiated
accordingly. In our situation, it takes the form of some
proven, parameterized models that can be incorporated
in a large project. The nice effect is that it saves redoing
proofs that have already been done in the pattern devel-
opment. Tools can be developed to easily instantiate and
incorporate patterns in a systematic fashion.

Animation
Here is a strange thing: Thus far we have strongly pro-

posed to base our correctness assurance on modeling and
proof. Here, we are going to say that, well, it might also be
good to animate—that is, execute—our models. But, we
thought that mathematics was sufficient and precise and
that there was no need to execute. Is there any contradiction
here? Are we in fact not so sure after all that our mathemati-
cal treatment was sufficient, that mathematics are always
“true”? No. After a proof of the Pythagorean theorem, no
mathematician would think of measuring the hypotenuse
and the two legs of a right triangle to check the validity of the
theorem. So why would we execute our models?

We have certainly proved something, and we have no
doubts about our proofs. But are we sure that what we
proved was indeed the right thing to prove? This may be
a bitter pill to swallow: We painfully wrote the definition
and requirements document precisely for that reason—to
know exactly what we have to prove. And now we claim
that perhaps what the requirements document said was
not what is wanted.

Directly animating the model—we are not talking here
about a special simulation, but are still using the very
model that we proved. Showing this animation of the entire
system (not only the software part) on a screen is a useful
means of checking in another way (besides referencing
the requirements document) that what we want is indeed
what we wrote. Quite often, by doing this, we discover that
our requirements document was not accurate enough, or
that it required properties that are not included, or even
properties that are different from what we want.

Animation complements modeling. It allows us to dis-
cover that we might have to change our minds very early
on. The interesting thing is that it does not cost that much
money, far less indeed than doing a real execution on the
final system and discovering far too late that the system
we built is not the system we want.

The idea is to use animation as early
as possible during the horizontal
refinement phase, even on very
abstract steps.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

35SEPTEMBER 2009

Set-theoretic notation
Physicists or operational researchers, who also proceed

by constructing models, never invented specific languages
to do so: They all use classical set-theoretic notations.

Computer scientists, because they have been educated
to program only, believe that it is necessary to invent
specific languages to do the modeling. This is an error. Set-
theoretic notations are well suited to performing system
modeling; moreover, we can understand what it means
when we write a formal statement.

We also frequently hear that we must hide the usage
of mathematical notation because engineers will not un-
derstand it or will be afraid of it. This is nonsense. Is it
necessary to hide the mathematical notation used in the
design of an electrical network because electrical engi-
neers would be afraid of it?

Other validation approaches
For decades, various approaches have been dedicated to

the validation of software. Among them are tests, abstract
interpretation, and model checking.

These approaches validate the solution, the software—
not the problem, the global system. In each case, we
construct a piece of software and then, and only then, try
to validate it (although this is not entirely the case with
model checking, which is also used for problem validation).
To do so, we think of a certain desired property and check
that indeed our software is consistent with it. If this is not
the case, then we have to modify the software and thus,
quite often, introduce more problems. It is also well known
that such approaches are very expensive, far more so than
the pure development cost.

We do not think that these approaches alone are ap-
propriate. Of course, we are not saying that we should
reject them. We are just saying they may complement the
modeling and proving approach and not replace it.

INNOVATION
Big industrial corporations often cannot innovate. They

do so sometimes, provided a very large amount of money
is given to them precisely for this purpose. It is well known
that many so-called R&D divisions of big companies are
not providing any significant technologies for their busi-
ness units.

Nevertheless, financing agencies still insist on having
practical research proposals connected with such large
companies. This is an error. They should do a better job by

our (nonlinear) progress in the construction process.
As a consequence, an engineering prover needs to have

functionality that is not necessarily needed in provers
dedicated to performing proofs for mathematicians. Two of
these functionalities are differential proving (how to figure
out which proofs have to be redone when we make a slight
modification to our model) and proving in the presence of
useless hypotheses.

To the tools we have already mentioned, it is useful
to add several other tools using the same core database,
tools for animation, model-checking, UML transformation,
design patterns, composition, decompositions, and so on. It
means that our tooling system must be built in such a way
that this extension approach is facilitated. A tool developed
according to this philosophy is the Rodin platform, which
can be freely downloaded from www.event-b.org.

Legacy code
When dealing with legacy code, we either want to de-

velop a new piece of software that is connected to some
legacy code or renovate particular legacy code.

The first and most common approach is usually found
in the development of a new piece of software. In this case,
the legacy code is just an element of our new product’s
environment. The challenge is to capture legacy code be-
havior so that we can enter it in the model as we do with
any other element of the environment. To do this, our new
product’s requirements document must contain some ele-
ments concerned with the legacy code. Such requirements
(assumptions) must be defined informally. The goal is to
develop in our model the minimal interface compatible
with the legacy code. As usual, the key is abstraction and
refinement: How can we gradually introduce the legacy
code into our model in such a way that we take full account
of the concrete interface it offers?

The second problem is far more difficult. In fact, such
renovations often give very disappointing results. People
tend to consider that the legacy code “is” the requirements
document of the renovation. This is an error.

The first step is to write a new requirements document,
not hesitating to deviate completely from the legacy code
and define abstract requirements that are independent
from the precise implementation seen in the legacy code.

The second step is to renovate the legacy code by devel-
oping and proving a model of it. The danger here is that we
try to mimic the legacy code too closely because it might
contain aspects that are not comprehensible (except by the
absent legacy code programmers) and that are certainly
not the result of a formal modeling approach.

Our advice here is to think twice before embarking on
such a light renovation. A better approach is to develop a
new product. People think it might consume more time
and money than a simple renovation; experience shows
that it is rarely the case.

The challenge is to capture legacy code
behavior so that we can enter it in the
model as we do with any other element
of the environment.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER	36

But above all, the initial action to be done to transfer
a technology to industry is to perform a significant pre-
liminary education effort. Without that initial effort, any
technology transfer attempt is certain to fail.

T
he ideas presented in this article are not new.
Most of them come from the seminal ideas of
action systems developed in the 1980s and
1990s, including those by Ralph-Johan Back
and Reino Kurki-Suonio1 and Michael Butler.2

More recently, some of the ideas presented in this article
have been put into practice (www.event-b.org).3

The simple ideas presented here offer suggestions for
how to improve the situation of computerized system de-
velopment. Now the question is clearly, Has all this been
put into practice? The answer is a small yes: Faultless
systems exist.4,5 However, many more steps must be per-
formed to have these ideas more widely understood and
accepted. This is what we are presently doing in the Euro-
pean Project Deploy (www.deploy-project.eu).

Acknowledgments
I would like to thank Michael Butler for many discussions

concerning these matters. I warmly thank other people who
sent me very interesting comments on earlier drafts of this
article: David Basin, Egon Boerger, Mike Hinchey, Tony Hoare,
Michael Jackson, Peter Mueller, Michel Sintzoff, Bernard
Sufrin, and Pamela Zave.

References
	 1.	 R-J. Back and R. Kurki-Suonio, “Decentralization of Process

Nets with Centralized Control,” Proc. 2nd ACM SIGACT-
SIGOPS Symp. Principles of Distributed Computing, ACM
Press, 1983, pp. 131-142.

	 2.	 M. Butler, “Stepwise Refinement of Communicating Sys-
tems,” Science of Computer Programming, vol. 27, no. 2,
1996, pp. 139-173.

	 3.	 J-R. Abrial, Modelling in Event-B: System and Software En-
gineering, Cambridge University Press, to be published,
2009.

	 4.	 F. Badeau, “Using B as a High Level Programming Lan-
guage in an Industrial Project: Roissy VAL,” Proc. 4th Int’l
Conf. B and Z Users (ZB 05), LNCS 3455, Springer Verlag,
2005, pp. 334-354.

	 5.	 P. Behm, “Meteor: A Successful Application of B in a Large
Project,” Proc. World Congress on Formal Methods in the
Development of Computing Systems (FM 99), LNCS 1708,
Springer, 1999, pp. 369-387.

Jean-Raymond Abrial was a senior researcher and guest
professor in the Department of Information Security, Swiss
Federal Institute of Technology, Zurich, Switzerland. His re-
search interests are the application of rigorous approaches
in system development, the usage of refinement, and that
of proofs. He graduated from Ecole Polytechnique in France
with a strong emphasis on mathematics. Contact him at
jrabrial@neuf.fr.

accepting connections with far smaller, more innovative
entities. It is my belief that the introduction into industry
of the approach I advocate should be done through small
innovative companies rather than big corporations.

EDUCATION
Many of the people presently involved in large soft-

ware engineering projects are not correctly educated.
Companies think that programming jobs can be done
by junior people with little or no mathematical back-
ground and interest (quite often programmers do not
like mathematics: This is why they choose computing in
the first place). All this is bad. A system engineer’s basic
background must be a mathematical education at a good
(even high) level.

Computing should come second, after the necessary
mathematical background has been well understood.
As long as this is not the case, things cannot improve.
Of course, it is clear that many academics will disagree
with this: It is not the smallest problem we have to
face. Quite often, academics confuse computation and
mathematics.

It is far less expensive to have a few well-educated
people than an army of people who are not educated at the
right level. This is not an elitist attitude: Who would think
that a doctor or an architect can perform well without a
proper education in a specific discipline? Again, the basic
discipline of system and software engineers is (discrete)
mathematics.

Two specific topics to be taught to future software en-
gineers are the writing of requirements documents (this is
barely present in practical software engineering curricula)
and the construction of mathematical models. Here the
basic approach is a practical one: These topics must be
taught by having the students explore many examples and
projects. Experience shows that mastering the mathemati-
cal approach (including the proofs) is not a problem for
students with a good mathematical background.

TECHNOLOGY TRANSFER
Technology transfer of this kind in industry is a serious

problem due to the extreme reluctance of managers to
modify their development process. Usually such processes
are difficult to define and more difficult to put into prac-
tice, which is why managers do not like to modify them.

The incorporation of an important initial phase of
requirements document writing followed by another
important phase of modeling is usually regarded as dan-
gerous, as these additional phases impose some significant
expenses at the beginning of a project. However, expe-
rience shows that the overall expenditure is drastically
decreased since the very costly testing phase at the end
can be significantly reduced, as well as the considerable
efforts needed to patch design errors.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore. Restrictions apply.

