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This document should include two kinds of texts 
embedded in each other: the explanatory text and the 
reference text. The former contains explanations needed 
to understand the problem at hand. Such explanations are 
supposed to help a reader who encounters this problem 
for the first time. The latter contains definitions and re-
quirements mainly in the form of short natural-language 
statements that are labeled and numbered. These defini-
tions and requirements must be self-contained and easily 
separated from the accompanying explanations. They 
form the unique reference to correctness.

The definitions and requirements document is analo-
gous to a book of mathematics where fragments of the 
explanatory text, in which the author informally explains 
his approach and sometimes gives some historical back-
ground, are intermixed with fragments of more formal 
items: definitions, lemmas, and theorems, all of which 
form the reference text and can easily be separated from 
the rest of the book.

In the case of systems engineering, we label our refer-
ence definitions and requirements along two axes. 

The first axis contains the purpose (functional, equip-
ment, safety, physical units, degraded modes, errors, and 
so forth) and must be defined carefully before embarking 
on writing the definition and requirements document since 
it may vary from one project to the other. Note that the 
“functional” label corresponds to requirements dealing 
with the intended software’s specific task, whereas the 
“equipment” label deals with assumptions (which we also 
call requirements) that must be guaranteed concerning the 
environment in which the intended software is situated. 

The second axis places the reference items within a 
hierarchy going from very general (abstract) definitions 
or requirements down to increasingly more specific ones 

T
he title of my article is intended to be provoca-
tive. We all know that faultless systems are 
impossible; otherwise, we’d already be con-
structing them. And what is a “fault”?

You probably think by now that this is yet 
another guru trying to sell you his latest universal panacea. 
Rest assured, my intention is just to remind you of a few 
simple facts and ideas that you might wish to use. 

Faced with a terrible situation—and yes, the situation 
facing software and system developers is indeed terri-
ble—we might decide to change things in a brutal way, but 
it never works. My philosophy is to gradually introduce 
some simple features that together will eventually result 
in a global improvement of the situation.

DEFINITIONS AND  
REQUIREMENTS DOCUMENT

To build correct systems, we must carefully define the 
way in which we judge correctness. This is the purpose 
of a definitions and requirements document, which must 
be carefully written before embarking on any system 
development.

It is my experience that requirements documents used 
in industry typically are very poor: It is often hard to un-
derstand what the requirements are and extract them from 
these documents. People too often justify the appropriate-
ness of their requirements documents by the fact that they 
use some (expensive) tools. 

Gradually introducing some simple fea-
tures will eventually result in a global 
improvement in the software development 
situation.

Jean-Raymond Abrial, Swiss Federal Institute of Technology, Zurich

FAULTLESS 
SYSTEMS: 
YES WE CAN!
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DISCRETE TRANSITION SYSTEMS  
AND PROOFS

In addition to formalizing our mental representation 
of the future system, modeling also consists of proving 
that this representation fulfills certain desired proper-
ties, namely those stated informally in the definition and 
requirements document. 

To perform this joint task of simulation and proof, we 
use a simple formalism—discrete transition systems. In 
other words, whatever the modeling task we have to per-
form, we always represent the components of our future 
systems by means of a succession of states intermixed 
with sudden transitions, also called events. 

From the modeling point of view, it is important to un-
derstand that there is no fundamental difference between 
a human pressing a button, a motor starting or stopping, 
or a piece of software executing certain tasks, all of them 
being situated within the same global system. Each of 
these activities is a discrete transition system working 
on its own and communicating with others as shown in 
Figure 1. They are embarked upon together in the distrib-
uted activities of the system as a whole. This is the way 
we would like to perform our modeling task.

It happens that this very simple paradigm is extremely 
convenient. In particular, the proving task is partially 
performed by demonstrating that the transitions of each 
component preserve several desired global properties that 
the states of our components must permanently obey. 
These properties are the so-called invariants, which most 
often are transversal properties involving the states of 
multiple system components. The corresponding proofs 
are called the invariant preservation proofs.

States and events
Roughly speaking, several variables define a state (as 

in an imperative program). However, the difference is that 
these variables might be any integers, pairs, sets, relations, 
functions, and so on—that is, any mathematical object 
that can be represented in set theory—not just computer 
objects (limited integer and floating-point numbers, arrays, 
files, and the like).  Apart from the variables definitions, 

imposed by system promoters. It is very important that the 
stakeholders must agree upon and sign off on this rewrit-
ing of the definition and requirements document.

At the end of this phase, however, we have no guaran-
tee that the desired properties of our system that have 
been written down can indeed be fulfilled: Mandating 
that an airplane must fly doesn’t mean that it actually 
will. However, quite often after the writing of such a 
document, people rush into the programming phase, 
and we know very well what the outcome is. What is 
needed is to undertake an intermediate phase before 
programming.

MODELING VERSUS PROGRAMMING
Programming is the activity of constructing a piece of 

formal text that is supposed to instruct a computer in how 
to fulfill certain tasks. Our intention is not to do that. 

Our task is not limited to the software part alone, be-
cause what we intend to build is a system within which the 
piece of software we will construct is just one component 
among many others. In doing this as engineers, we are 
not supposed to instruct a computer; rather, we are sup-
posed to instruct ourselves. To do this in a rigorous way, 
we have no choice but to perform a complete modeling of 
our future system, including the software that will eventu-
ally be constructed and its environment—which includes 
equipment, physically varying phenomena, other software, 
and even users.

Programming languages are of no help in doing this. 
All this must be carefully modeled so that we know the 
exact assumptions within which our software is to behave. 
Modeling is therefore the main task of system engineers. 
Programming is then merely a subtask that may very well 
be performed automatically.

Computerized system modeling had been undertaken in 
the past (and still is) with the help of simulation languages 
such as Simula 67, the predecessor of all object-oriented 
programming languages. What we propose here is also to 
perform a simulation. But rather than doing it with the help 
of a simulation language for which the outcome can be in-
spected and analyzed, we propose to do it by constructing 
mathematical models that will be analyzed by doing proofs. 
Physicists or operational researchers proceed in this way. 
We’ll do the same.

Since we are not instructing a computer, we do not have 
to say what is to be done; rather, we need to explain and 
formalize what we can observe. This immediately raises 
the question, How can we observe something that does not 
exist yet? Simple: It doesn’t exist yet in the physical world 
but, for sure, it exists in our mind. 

Engineers or architects always proceed in this way: 
They construct artifacts according to the predefined rep-
resentation they have of them in their mind.

Motor

Start Stop

Buttons

Controller

Figure 1. Three communicating discrete transition systems.
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Vertical refinement and proofs
A second kind of refinement takes place when all hori-

zontal refinement steps have been performed. As a result, 
we do not enter any more new details of the problem in the 
model; rather, we transform some states and transitions of 
our discrete system so that it can easily be implemented 
on a computer. This is called vertical refinement (or data 
refinement), which often can be performed by a semiau-
tomatic tool. Refinement proofs must also be performed to 
make sure that our implementation choice is coherent with 
the more abstract view. 

A typical example of vertical refinement is the transfor-
mation of finite sets into Boolean arrays together with the 
corresponding transformations of set-theoretic operations 
(union, intersection, inclusion, and so on) into program 
loops. When conducting a vertical refinement, we can 
remove some variables and add new ones. An important 
aspect of vertical refinement is the so-called “gluing” in-
variant linking the concrete and abstract states.

Communication and proofs
An important aspect of the modeling task is concerned 

with the communication between the future system’s vari-
ous components. We must be very careful here to proceed 
again by successive refinements. It is a mistake to immedi-
ately model the communication between components as 
they will appear in the final system.

A good approach is to consider that each component 
has the “right” to directly access the state of other com-
ponents (which are still very abstract too). In doing that, 
we “cheat,” of course, as this is clearly not the way things 
work in reality. But this is convenient to use in the ini-
tial horizontal refinement steps as our components are 
gradually refined, with their communication also becom-
ing gradually richer as we go down the refinement steps. 
Only at the end of the horizontal refinement steps is it 
appropriate to introduce various channels correspond-
ing to the real communication schemes at work between 
components and to possibly decompose our global system 
into several communicating subsystems.

We will then notice that each component reacts to the 
transitions of others with a fuzzy picture of their states 
because it takes time to transmit the messages between the 
components. We then have to prove that despite this time 
shift, things remain “as if” such a shift did not exist. This is 
yet another refinement proof that we have to perform.

BEING FAULTLESS: WHAT DOES THAT MEAN?
We are now ready to be precise about what we mean 

by a “faultless” system, achieving which represents our 
ultimate goal, as the title of this article suggests.

Let’s consider a program controlling a train network. If 
it is not developed to be correct by construction, then after 
writing it we can certainly never prove that this program 

we might have invariant statements, which can be any 
predicate expressed within the notation of first-order logic 
and set theory. By putting all this together, a state can be 
simply abstracted to a set. 

An event can be abstracted to a simple binary relation 
built on the state set. This relation connects two successive 
states, considered just before and just after the event “execu-
tion.” However, defining an event directly as a binary relation 
would not be very convenient. A better notation involves 
splitting an event into two parts: guards and actions. 

A guard is a predicate, and all the guards conjoined in an 
event form the corresponding relation’s domain. An action 
is a simple assignment to a state variable. The actions of 
an event are supposed to be “executed” simultaneously 
on different variables. Variables that are not assigned are 
unchanged. This is all the notation we need to define our 
transition systems.

Horizontal refinement and proofs
Modeling a large system containing many discrete 

transition components must be undertaken in successive 
steps. Each step makes the model richer by first creating 
and then enriching the states and transitions of its various 
components, first in a very abstract way and later by in-
troducing more concrete elements. This activity is termed 
horizontal refinement (or superposition). 

In doing this, the system engineer explores the defini-
tion and requirements document and gradually extracts 
from it some elements to be formalized. Thus, the trace-
ability of the definitions and requirements starts within the 
model. If we discover through modeling that the definition 
and requirements document is incomplete or inconsistent, 
we then have to edit it accordingly.

By applying this horizontal refinement approach, we 
have to perform some proofs—namely that a more concrete 
refinement step does not invalidate what has been done in a 
more abstract step. These are the refinement proofs. Note, 
finally, that the horizontal refinement steps are complete 
when there are no remaining definitions and requirements 
that have not been taken into account in the model. 

In undertaking horizontal refinement, we do not care 
about implementability. Our mathematical model is built 
using the set-theoretic notation to write down the state 
invariants and the transitions. When undertaking horizon-
tal refinement, we extend a model’s state by adding new 
variables. We can strengthen an event’s guards or add new 
guards. We also add new actions in an event. Finally, it is 
possible to add new events.

Modeling a large system containing  
many discrete transition components 
must be undertaken in successive steps.
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pieces of software, and users. It is quite clear that these ele-
ments cannot be modeled completely. Rather than saying 
that our software is correct relative to its environment, it 
would be more appropriate to be modest and say that our 
software is correct relative to the model of the environ-
ment we have constructed. This model is certainly only 
an approximation of the physical environment. Should 
this approximation be too far from the real environment, 
then it will still be possible for our software to fail under 
unforeseen external circumstances.

In short, we can only pretend to achieve a relative fault-
less construction, not an absolute one, which is clearly 
impossible. A problem solution for which is still in its 
infancy is finding the right methodology to perform an 
environmental model that is a “good” approximation of the 
real environment. It is clear that a probabilistic approach 
would certainly be very useful for doing this.

About proofs
Clearly, we need a tool that automatically generates the 

proofs we perform during the modeling process since it 
would be foolish and error prone to let a human write the 
formal statements for thousands of such proofs. As a rule 
of thumb, we want a tool that will automatically discharge 
90 percent of the proofs.

An interesting question is then to study what happens 
when an automatic proof fails. It might be because the 
automatic prover is not smart enough, the statement we 
are trying to prove is false, or the statement to be proven 
just cannot be proved.

In the first case, we must perform an interactive proof. 
In the second, the model must be modified significantly. 
In the last case, the model must be enriched. The last 
two cases are very interesting as the proof activity plays 
the same role for models as the one played by testing for 
programs. The final percentage of proofs discharged auto-
matically is a good indication of the quality of the model. If 
there are too many interactive proofs, this may signify that 
the model is too complicated. By simplifying the model, 
we often also significantly augment the percentage of au-
tomatically discharged proofs.

Design patterns
Design patterns became very popular some years ago 

in object-oriented software development. But the idea is 
more general than that: It can be fruitfully extended to 
any particular engineering discipline and, in particular, 
to system engineering as envisaged here.

will guarantee that two trains never collide. It is too late. 
The only thing we might sometimes, and unfortunately not 
always, be able to test or prove is that such a program does 
not include array accesses that are out of bounds or dan-
gerous null pointers that might be accessed, or that it does 
not contain the risk of some arithmetic overflow. However, 
recall that it was precisely this undetected problem that 
caused the Ariane 5 crash on its maiden voyage.

There is an important difference between a solution 
validation and a problem validation. It seems that there is 
a lot of confusion here as people do not make any clear dis-
tinction between the two. A solution validation is concerned 
solely with the constructed software, and it validates this 
piece of code against several software properties. Con-
versely, a problem validation is concerned with the system’s 
overall purpose—for example, to ensure that trains travel 
safely within a given network. To do this, we must prove 
that all components of this system (not just the software) 
harmoniously participate in this global goal.

To prove that our program will guarantee that two trains 
will never collide, we must construct this program by mod-
eling the problem. And, of course, the property in question 
must be part of the model to begin with. We should note, 
however, that people sometimes succeed in doing some sort 
of problem proofs directly on the solution (the program). 
This is done by incorporating some so-called “ghost” vari-
ables dealing with the problem inside the program. Such 
variables are then removed in the final code. We consider 
this approach a rather artificial afterthought.

During the horizontal refinement phase of our model 
development, we shall take account of many properties. At 
the end of the horizontal refinement phase, we shall then 
be able to know exactly what we mean by this noncollision 
property. In doing so, we shall make all the assumptions 
precise (in particular any environmental assumptions) 
under which our model will guarantee that two trains will 
never collide. 

As can be seen, the property alone is not sufficient. By 
exhibiting all these assumptions, we are doing a problem 
validation that is completely different in nature than the 
one we can perform on the software only. Using this kind 
of approach for all properties of our system will allow us 
to claim that, at the end of our development, our system 
is faultless by construction. As such, we have made very 
precise what “faults” are under consideration and, in par-
ticular, their relevant assumptions.

We should note a delicate point here. We pretended that 
this approach allows us to produce a final version of the 
software that is correct by construction relative to its sur-
rounding environment. In other words, the global system is 
faultless. We achieved this by means of proofs performed 
during the modeling phase, in which we constructed a 
model of the environment. We said earlier that this envi-
ronment was made up of equipment, physical phenomena, 

We can only pretend to achieve a relative 
faultless construction, not an absolute 
one, which is clearly impossible.
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It may seem that animation must be performed after 
proving (as an additional phase before programming). But 
in fact, the idea is to use animation as early as possible 
during the horizontal refinement phase, even on very ab-
stract steps. The reason is that if we have to change our 
requirements and thus redo some proofs, we must know 
exactly what we can save in our model and where we have 
to modify the construction.

There is another positive outcome as a result of animating 
and proving simultaneously. Recall that we said that proving 
was a way to debug our model: A proof that cannot be done 
is an indication that there is a “bug” in our model or that it’s 
a poor model. The fact that an invariant preservation proof 
cannot be done can be pointed out and explained by an ani-
mation even before doing the proof. Animation often easily 
discovers deadlock freedom counterexamples. 

Note that animation does not mean that we can suspend 
our proof activity, but it is a very useful complement to it.

Tools
Tools are important for developing correct systems. 

Here we propose to depart from the usual approach in 
which there is a formal text file containing models and 
their successive refinement. It is far more appropriate to 
have a database at our disposal. This database handles ob-
jects such as models, variables, invariants, events, guards, 
actions, and their relationships. 

Static analyzers, which are widely available, can be 
used on these components for lexical analysis, name clash 
detection, mathematical text syntactic analysis, refine-
ment rules verification, and so on. An important tool is 
the proof obligation generator, which analyzes the models 
(invariants, events) and their refinements to produce cor-
responding statements to prove.

Finally, we need some automatic and interactive proving 
tools to discharge the proof obligations provided by the 
previous tool. An important thing to understand here is 
that the proofs to be performed are not the kind of proofs 
a professional mathematician would do or be interested in. 
Our proving tool must take this into account.

In a mathematical project, the mathematician is inter-
ested in proving one theorem (say, the four-color theorem) 
together with some lemmas (say, 20 of them). The math-
ematician does not use mathematics to accompany the 
construction of an artifact. During the mathematical 
project, the problem does not change as this is still the 
four-color problem.

In an engineering project, thousands of predicates 
must be proved. Moreover, what we have to prove is not 
known right from the beginning. Again, we do not prove 
that trains do not collide: We prove that the system we are 
constructing ensures that, under certain hypotheses about 
the environment, trains do not collide. What we have to 
prove evolves with our understanding of the problem and 

The idea is to write down some predefined little en-
gineering recipes that can be reused in many different 
situations provided that these recipes are instantiated 
accordingly. In our situation, it takes the form of some 
proven, parameterized models that can be incorporated 
in a large project. The nice effect is that it saves redoing 
proofs that have already been done in the pattern devel-
opment. Tools can be developed to easily instantiate and 
incorporate patterns in a systematic fashion.

Animation
Here is a strange thing: Thus far we have strongly pro-

posed to base our correctness assurance on modeling and 
proof. Here, we are going to say that, well, it might also be 
good to animate—that is, execute—our models. But, we 
thought that mathematics was sufficient and precise and 
that there was no need to execute. Is there any contradiction 
here? Are we in fact not so sure after all that our mathemati-
cal treatment was sufficient, that mathematics are always 
“true”? No. After a proof of the Pythagorean theorem, no 
mathematician would think of measuring the hypotenuse 
and the two legs of a right triangle to check the validity of the 
theorem. So why would we execute our models?

We have certainly proved something, and we have no 
doubts about our proofs. But are we sure that what we 
proved was indeed the right thing to prove? This may be 
a bitter pill to swallow: We painfully wrote the definition 
and requirements document precisely for that reason—to 
know exactly what we have to prove. And now we claim 
that perhaps what the requirements document said was 
not what is wanted. 

Directly animating the model—we are not talking here 
about a special simulation, but are still using the very 
model that we proved. Showing this animation of the entire 
system (not only the software part) on a screen is a useful 
means of checking in another way (besides referencing 
the requirements document) that what we want is indeed 
what we wrote. Quite often, by doing this, we discover that 
our requirements document was not accurate enough, or 
that it required properties that are not included, or even 
properties that are different from what we want. 

Animation complements modeling. It allows us to dis-
cover that we might have to change our minds very early 
on. The interesting thing is that it does not cost that much 
money, far less indeed than doing a real execution on the 
final system and discovering far too late that the system 
we built is not the system we want.

The idea is to use animation as early  
as possible during the horizontal 
refinement phase, even on very  
abstract steps.
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Set-theoretic notation
Physicists or operational researchers, who also proceed 

by constructing models, never invented specific languages 
to do so: They all use classical set-theoretic notations. 

Computer scientists, because they have been educated 
to program only, believe that it is necessary to invent 
specific languages to do the modeling. This is an error. Set-
theoretic notations are well suited to performing system 
modeling; moreover, we can understand what it means 
when we write a formal statement.

We also frequently hear that we must hide the usage 
of mathematical notation because engineers will not un-
derstand it or will be afraid of it. This is nonsense. Is it 
necessary to hide the mathematical notation used in the 
design of an electrical network because electrical engi-
neers would be afraid of it?

Other validation approaches
For decades, various approaches have been dedicated to 

the validation of software. Among them are tests, abstract 
interpretation, and model checking. 

These approaches validate the solution, the software—
not the problem, the global system. In each case, we 
construct a piece of software and then, and only then, try 
to validate it (although this is not entirely the case with 
model checking, which is also used for problem validation). 
To do so, we think of a certain desired property and check 
that indeed our software is consistent with it. If this is not 
the case, then we have to modify the software and thus, 
quite often, introduce more problems. It is also well known 
that such approaches are very expensive, far more so than 
the pure development cost.

We do not think that these approaches alone are ap-
propriate. Of course, we are not saying that we should 
reject them. We are just saying they may complement the 
modeling and proving approach and not replace it. 

INNOVATION
Big industrial corporations often cannot innovate. They 

do so sometimes, provided a very large amount of money 
is given to them precisely for this purpose. It is well known 
that many so-called R&D divisions of big companies are 
not providing any significant technologies for their busi-
ness units. 

Nevertheless, financing agencies still insist on having 
practical research proposals connected with such large 
companies. This is an error. They should do a better job by 

our (nonlinear) progress in the construction process. 
As a consequence, an engineering prover needs to have 

functionality that is not necessarily needed in provers 
dedicated to performing proofs for mathematicians. Two of 
these functionalities are differential proving (how to figure 
out which proofs have to be redone when we make a slight 
modification to our model) and proving in the presence of 
useless hypotheses.

To the tools we have already mentioned, it is useful 
to add several other tools using the same core database, 
tools for animation, model-checking, UML transformation, 
design patterns, composition, decompositions, and so on. It 
means that our tooling system must be built in such a way 
that this extension approach is facilitated. A tool developed 
according to this philosophy is the Rodin platform, which 
can be freely downloaded from www.event-b.org.

Legacy code
When dealing with legacy code, we either want to de-

velop a new piece of software that is connected to some 
legacy code or renovate particular legacy code.

The first and most common approach is usually found 
in the development of a new piece of software. In this case, 
the legacy code is just an element of our new product’s  
environment. The challenge is to capture legacy code be-
havior so that we can enter it in the model as we do with 
any other element of the environment. To do this, our new 
product’s requirements document must contain some ele-
ments concerned with the legacy code. Such requirements 
(assumptions) must be defined informally. The goal is to 
develop in our model the minimal interface compatible 
with the legacy code. As usual, the key is abstraction and 
refinement: How can we gradually introduce the legacy 
code into our model in such a way that we take full account 
of the concrete interface it offers? 

The second problem is far more difficult. In fact, such 
renovations often give very disappointing results. People 
tend to consider that the legacy code “is” the requirements 
document of the renovation. This is an error. 

The first step is to write a new requirements document, 
not hesitating to deviate completely from the legacy code 
and define abstract requirements that are independent 
from the precise implementation seen in the legacy code. 

The second step is to renovate the legacy code by devel-
oping and proving a model of it. The danger here is that we 
try to mimic the legacy code too closely because it might 
contain aspects that are not comprehensible (except by the 
absent legacy code programmers) and that are certainly 
not the result of a formal modeling approach.

Our advice here is to think twice before embarking on 
such a light renovation. A better approach is to develop a 
new product. People think it might consume more time 
and money than a simple renovation; experience shows 
that it is rarely the case.

The challenge is to capture legacy code 
behavior so that we can enter it in the 
model as we do with any other element  
of the environment.
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But above all, the initial action to be done to transfer 
a technology to industry is to perform a significant pre-
liminary education effort. Without that initial effort, any 
technology transfer attempt is certain to fail.

T
he ideas presented in this article are not new. 
Most of them come from the seminal ideas of 
action systems developed in the 1980s and 
1990s, including those by Ralph-Johan Back 
and Reino Kurki-Suonio1 and Michael Butler.2 

More recently, some of the ideas presented in this article 
have been put into practice (www.event-b.org).3

The simple ideas presented here offer suggestions for 
how to improve the situation of computerized system de-
velopment. Now the question is clearly, Has all this been 
put into practice? The answer is a small yes: Faultless 
systems exist.4,5 However, many more steps must be per-
formed to have these ideas more widely understood and 
accepted. This is what we are presently doing in the Euro-
pean Project Deploy (www.deploy-project.eu). 
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accepting connections with far smaller, more innovative 
entities. It is my belief that the introduction into industry 
of the approach I advocate should be done through small 
innovative companies rather than big corporations.

EDUCATION
Many of the people presently involved in large soft-

ware engineering projects are not correctly educated. 
Companies think that programming jobs can be done 
by junior people with little or no mathematical back-
ground and interest (quite often programmers do not 
like mathematics: This is why they choose computing in 
the first place). All this is bad. A system engineer’s basic 
background must be a mathematical education at a good 
(even high) level. 

Computing should come second, after the necessary 
mathematical background has been well understood. 
As long as this is not the case, things cannot improve. 
Of course, it is clear that many academics will disagree 
with this: It is not the smallest problem we have to 
face. Quite often, academics confuse computation and 
mathematics.

It is far less expensive to have a few well-educated 
people than an army of people who are not educated at the 
right level. This is not an elitist attitude: Who would think 
that a doctor or an architect can perform well without a 
proper education in a specific discipline? Again, the basic 
discipline of system and software engineers is (discrete) 
mathematics.

Two specific topics to be taught to future software en-
gineers are the writing of requirements documents (this is 
barely present in practical software engineering curricula) 
and the construction of mathematical models. Here the 
basic approach is a practical one: These topics must be 
taught by having the students explore many examples and 
projects. Experience shows that mastering the mathemati-
cal approach (including the proofs) is not a problem for 
students with a good mathematical background.

TECHNOLOGY TRANSFER
Technology transfer of this kind in industry is a serious 

problem due to the extreme reluctance of managers to 
modify their development process. Usually such processes 
are difficult to define and more difficult to put into prac-
tice, which is why managers do not like to modify them.

The incorporation of an important initial phase of 
requirements document writing followed by another 
important phase of modeling is usually regarded as dan-
gerous, as these additional phases impose some significant 
expenses at the beginning of a project. However, expe-
rience shows that the overall expenditure is drastically 
decreased since the very costly testing phase at the end 
can be significantly reduced, as well as the considerable 
efforts needed to patch design errors.

Authorized licensed use limited to: Peking University. Downloaded on November 2, 2009 at 04:13 from IEEE Xplore.  Restrictions apply. 


